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Abstract: Improving velocity forecasts of blood microflows could be useful in biomedical applications.
We focus on estimating the velocity of the blood in capillaries. Modeling blood microflow in capillaries
is a complex process. In this paper, we use artificial intelligence techniques for this modeling:
more precisely, artificial neural networks (ANNs). The selected model is able to accurately forecast
the velocity, with an R2 of 0.8992 comparing the forecast with the actual velocity. A key part of
ANN model creation is selecting the appropriate parameters for the ANN, such as the number
of neurons, the number of layers and the type of training algorithm used. A grid approach with
327,600 simulations was used. It is shown that there are substantial, statistically significant differences
when different types of ANN structures are used. It is also shown that the proposed model is robust
regarding the initial random initialization of weights in the ANN. Additionally, the sensitivity of the
selected models to additional noise was also tested.

Keywords: microflow; blood; forecasting

1. Introduction

There has been an increased focus on blood microflow research [1]. There are some
related interesting biomedical papers researching control of microflows [2] and drug absorp-
tion [3,4]. Technical advances [5–8] have made possible accurate measurements at small
scale [9–11]. Milieva et al. [12] analyzed skin blood microflows using laser Doppler flowme-
try (LDF) and compared healthy control cases to individuals with rheumatic diseases [13].
This LDF approach has been followed in some other interesting articles, such as Zherebtsov
et al. [14]. In Zherebtsov et al., the authors used a combination of LDF with skin contact ther-
mometry applied for the diagnostics of intradermal finger vessels. There is some research
linking microflow (particularly microflow changes) and some illnesses. Wang et al. [15]
mentioned that there appears to be an association between some type of microflows in
the hepatic sinusoids and liver fibrosis and cirrhosis [16]. Microflow cytometry has been
extensively used in medical applications, such as Lewis et al. [17] for the detection of
prostate cancer [18]. There is even some research on blood microflow in the context of
microchips. Pitts et al. [19] studied the contact angle of blood dilutions with common
microchip materials.

Microflow measurement techniques have substantially advanced in recent years when
compared to some of the first attempts, such as Stosseck et al. [20] in 1974. In this paper
the authors measured blood microflows using electrochemically generated hydrogen.
This technique requires 15 s per measurement. Another seminal paper is the one by
Leniger-Follert [21] back in 1984, which analyzed microflows during bicuculline-induced
seizures [22–24] in anesthetized cats. In recent years, technical developments have made
the measurement task more accurate and less cumbersome. In the figure below (Figure 1),
a graphical representation of red blood cell flow as a blood vessel constricts is shown.
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Figure 1. Graphical representation of blood cell flow as the blood vessel constricts.

There are some very interesting modeling articles, such as Meongkeun et al. [25]. In
this article, the authors numerically analyzed the impact of cell deformability (red blood
cells) in blood microflow dynamics and concluded that the radial dispersion of red blood
cells can have a significant impact on microflows. Mojarab and Kamali [26] carried out
another interesting modeling work doing a numerical simulation of a microflow sensor
in a realistic model of a human aorta. This type of analysis has particular relevance in the
context of artherosclerosis and aneurysm, which are conditions associated with an elevated
mortality rate [27–29]. Having a more complete understanding of blood microflows might
help with understanding these conditions better and potentially help with finding ways to
avoid or treat them. In fact, there is some research, such as Jung et al. [30], mentioning that
there is a correlation between microflow changes in cardiogenic shock (CS) [31–33] and
outcomes in critically ill patients.

Given the complexity of the modeling of blood microflows, there has been an increased
interest in using artificial intelligence techniques to estimate some important properties
of blood microflows, such as the velocity of the blood flow. These artificial intelligence
techniques typically require a set of inputs, which are reasonably related to an output. If
everything else is equal, the more the inputs are related to the output, the more accurate the
predictions are likely to be. Understanding the underlying issue might allow researchers
to select the appropriate variables as inputs for the forecasting process. Some machine
learning approaches intrinsically use some of the symmetries in the existing data. One
well-known artificial intelligence technique is an artificial neural network (ANN) [34–37].

This is a biologically inspired approach that has proven useful when modeling several
different types of processes [38,39]. Paproski et al. [40] used a machine learning approach in
the context of extracellular vesicle microscale flow cytometry to generate predictive models
in different types of tumors. Selecting which type of ANN architecture [41] to use is impor-
tant in order to obtain accurate forecasts. Some of the parameters to be selected include
the number of neurons (n), the number of layers (m) and the type of training algorithm
used (a). There are several ways to select these parameters. In this article, we propose an
ANN model to estimate blood microflow velocities using a grid approach [42,43]. It should
be mentioned that the use of artificial intelligence techniques is not without a variety of
issues [44–46]. Lugnan et al. [47] mentioned that one issue is the high computational cost of
some of these applications, as discussed also in [48–50]. An artificial intelligence approach
can be useful in practical applications to generate accurate forecasts [51–53]. The main
objective of this type of model is not to develop an underlying model of microflows that is
easy to interpret, but to develop a tool that can generate accurate forecasts.

1.1. Objective 1

Creation of ANN model to estimate blood microflow velocities.
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1.2. Objective 2

Estimate robustness of ANN with respect to noise in inputs.

2. Materials and Methods

The data analyzed in this article were extracted from Kloosterman et al. [54] (publicly
available data). As described in Kloosterman et al., fertilized chicken (White Leghorn)
embryos were incubated sitting horizontally. The authors generated optical access to
the embryos by creating a viewing window in the egg shell. This window provided a
microscope with optical access to the embryos. The technique used by the authors for
the measurements was microscopic particle image velocimetry (micro-PIV). The authors
used a Leica FluoCombi III with a magnification of 5×. They also used a PCO Sensicam
QE camera with a pixel size of 12.9 × 12.9 µm2 and covering an area of 1.8 × 1.4 mm2 (full
details available in [54]). We use the data from Kloosterman et al. as the experimental data
on which our analysis is based.

Our proposed approach generates estimates of the velocity of the blood in a chicken
embryo, which will be compared to the empirical results obtained in Kloosterman et al.
This approach uses as input the positions (coordinates of the branch points x(t), y(t)) as
well as the diameter (d) of the blood vessel, which ranges from 25 to 500 µm, as well as the
velocity (s) in the blood vessels in the previous instant. The sampling rate for (x, y, d, s)
was 9.7 Hz. The velocity was normalized to the interval [0, 1] using the expression in
Equation (1). The velocity was also smoothed by using the average value of the previous
ten measurements. After the initial filtering (including normalization), the data consisted
of 379 data points for each variable. A table summarizing the descriptive statistics for each
variable can be seen as Table 1.

smax = max{s1, . . . , sq}; s′i =
si

smax
(1)

Table 1. Descriptive statistics of the data.

x y d s

Mean 1434.56 2904.10 27,155.15 0.35
σ 877.28 1488.75 32,054.03 0.15

An artificial neural network only requires a set of inputs x = x1, x2, . . . , xn and an
output y. These inputs and outputs are typically vectors. So x1 = xt

1 = {x1
1, x2

1, . . . , xk
1}

and y = yt = {y1, y2, . . . , yk}, with the last time instant k included. The selection of which
inputs to use is a critical step in the modeling process, but this might be restricted by the
availability of the data. The objective of the model is to accurately estimate the empirically
measured blood microflow velocity s(t).

In this notation, t denotes time. The data were divided into two different datasets: a
testing (T1) and a training (T2) dataset. See Equations (2) and (3).

T1 =


x1(t) x2(t) d(t) s(t − 1) s(t)

x1(t − 1) x2(t − 1) d(t − 1) s(t − 2) s(t − 1)
x1(t − 2) x2(t − 2) d(t − 2) s(t − 3) s(t − 2)

...
...

...
...

...
x1(t − j) x2(t − j) d(t − j) s(t − j + 1) s(t − j)

 (2)

T2 =


x1(t − j − 1) x2(t − j − 1) d(t − j − 1) s(t − j − 2) s(t − j − 1)
x1(t − j − 2) x2(t − j − 2) d(t − j − 2) s(t − j − 3) s(t − j − 2)
x1(t − j − 3) x2(t − j − 3) d(t − j − 3) s(t − j − 4) s(t − j − 3)

...
...

...
...

...
x1(t − j − q) x2(t − j − q) d(t − j − q) s(t − j − q − 1) s(t − j − q)

 (3)
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where j and q are predetermined parameters dividing the training and testing datasets.
The dataset contained 379 data points per variable; 85% of the data were allocated to the
training dataset, and 15% were allocated to the testing dataset. The training dataset was
further divided into the strictly training subset (65%) and the validation subset (20%). The
neural network was trained with the training dataset (T2).

For clarity purposes, we have added an example of the inputs and outputs of the
neural network, see Table 2, and a graphical representation in Figure 2.

Table 2. Example of the inputs and outputs of the neural network.

Inputs Output

x(t − 1) y(t − 1) d(t − 1) s(t − 1) s(t)

2125.9 20.64 103 0.53 0.53
495.36 299.28 47,967 0.53 0.59
464.4 30.96 64 0.59 0.61

2786.4 402.48 37,119 0.61 0.62
2972.2 474.72 52,861 0.62 0.61
2414.9 516 20,909 0.61 0.60
2538.7 30.96 40,355 0.60 0.55
1465.4 350.88 16,547 0.55 0.52
1052.6 381.84 19,264 0.52 0.57

...
...

...
...

...

Figure 2. Graphical description of inputs and outputs in the ANN, where x(t − 1), y(t − 1), d(t − 1)
and s(t − 1) are the inputs and s(t) is the output.

2.1. Data Mappings

It is important to have a sense of the mapping of the inputs and outputs. In this
section, we analyze the mapping of each input (x(t − 1), y(t − 1), d(t − 1)) with the output
(s(t − 1)). Hence, we can consider four mappings as shown in Table 3.

Table 3. Mappings.

Mapping Input Output

Mapping 1 (M1) x(t − 1) s(t)
Mapping 2 (M2) y(t − 1) s(t)
Mapping 3 (M3) d(t − 1) s(t)
Mapping 4 (M4) s(t − 1) s(t)

2.1.1. Mapping 1

Figure 3 is a scatter plot of input x(t − 1) vs. output s(t). The derivative of input
x(t − 1) with regard to output s(t) can be seen in Figure 4. There appear to be sudden
changes in the derivative. The curvature of a mapping of an input “in” and an output
“o” can be estimated using Equation (4), where ss is the arch of the length of the analyzed
curve. In this notation, d is the fist derivative, and d2 is the second derivative. Also, as an
example, the input for M1 is x(t − 1), and the output is s(t). This is done for each mapping
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shown in Table 3. The curvature of this mapping can be seen in Figure 5. The curvature
does not appear to be smooth.

Curvature =

∣∣∣∣(din
dss

)( d2o
dss2

)
−

( do
dss

)( d2in
dss2

)∣∣∣∣((din
dss

)2
+

( do
dss

)2)3/2 (4)

Figure 3. Scatter plot (M1) of input s(t − 1) vs. output s(t).

Figure 4. Derivative of input x(t − 1) with regard to output s(t).

Figure 5. Curvature of M1.
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A lineal model, as described in Equation (5), is another technique to analyze this
mapping. The obtained adjusted R2 in this model is −0.002522; see Table 4.

s(t) = β0 + β1x(t − 1) + ϵ (5)

Table 4. Linear regression. Equation (5).

Variable Estimate σ t p

Intercept 3.486 × 10−1 1.497 × 10−2 23.279 <2 × 10−16

x(t − 1) 2.123 × 10−6 8.930 × 10−6 0.238 0.812

Multiple R2 0.0001512
Adjusted R2 −0.002522

RSE 0.1514
p 0.8122

2.1.2. Mapping 2

Figure 6 is a scatter plot of input y(t − 1) vs. output s(t). The derivative of input
y(t − 1) with regard to output s(t) can be seen in Figure 7. There appear to be sudden
changes in the derivative. The curvature of this mapping can be seen in Figure 8. The
curvature does not appear to be smooth.

Figure 6. Scatter plot (M2) of input y(t − 1) vs. output s(t).

Figure 7. Derivative of input y(t − 1) with regard to output s(t).
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Figure 8. Curvature of M2.

A lineal model, as described in Equation (6), is another technique to analyze this
mapping. The obtained adjusted R2 in this model is 0.2277; see Table 5. Please notice
that this time series, as will shown in the next section, is not stationary. Hence, a direct
implementation of a linear model is not appropriate.

s(t) = β0 + β1y(t − 1) + ϵ (6)

Table 5. Linear regression. Equation (8).

Variable Estimate σ t p

Intercept 4.926 × 10−1 1.500 × 10−2 32.84 <2 × 10−16

s(t − 1) −4.865 × 10−5 4.606 × 10−6 −10.56 <2 × 10−16

Multiple R2 0.2298
Adjusted R2 0.2277

RSE 0.1329
p <2.2 × 10−16

2.1.3. Mapping 3

Figure 9 is a scatter plot of input d(t − 1) vs. output s(t). The derivative of input
d(t − 1) with regard to output s(t) can be seen in Figure 10. There appear to be sudden
changes in the derivative. The curvature of this mapping can be seen in Figure 11. The
curvature does not appear to be smooth.

Figure 9. Scatter plot (M3) of input d(t − 1) vs. output s(t).
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Figure 10. Derivative of input d(t − 1) with regard to output s(t).

Figure 11. Curvature of M3.

A lineal model, as described in Equation (7), is another technique to analyze this
mapping. The obtained adjusted R2 in this model is 0.01819; see Table 6.

s(t) = β0 + β1d(t − 1) + ϵ (7)

Table 6. Linear regression. Equation (7).

Variable Estimate σ t p

Intercept 3.332 × 10−1 1.013 × 10−2 32.894 <2 × 10−16

d(t − 1) 6.816 × 10−7 2.418 × 10−7 2.819 0.00507

Multiple R2 0.02081
Adjusted R2 0.01819

RSE 0.1498
p <0.005068

2.1.4. Mapping 4

Figure 12 is a scatter plot of input s(t − 1) vs. output s(t). The derivative of input
s(t − 1) with regard to output s(t) can be seen in Figure 13. The curvature of this mapping
can be seen in Figure 14.
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Figure 12. Scatter plot (M4) of input s(t − 1) vs. output s(t).

Figure 13. Derivative of input s(t − 1) with regard to output s(t).

Figure 14. Curvature of M4.

A lineal model, as described in Equation (8), is another technique to analyze this
mapping. The obtained adjusted R2 in this model is 0.9018; see Table 7. Please notice that
this time series, as will be shown in the next section, is not stationary. Hence, a direct
implementation of a linear model is not appropriate.

s(t) = β0 + β1s(t − 1) + ϵ (8)
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Table 7. Linear regression. Equation (8).

Variable Estimate σ t p

Intercept 0.018002 0.006187 2.91 0.00383
s(t − 1) 0.946893 0.016131 58.70 <2 × 10−16

Multiple R2 0.9021
Adjusted R2 0.9018

RSE 0.04738
p <2.2 × 10−16

2.2. Linear Approach

The variable that we are trying to forecast (s(t)) is not stationary. This was formally
tested with an augmented Dickey–Fuller test; see Table 8.

Table 8. The p value of augmented Dicker–Fuller test (stationary test).

Variable x(t − 1) y(t − 1) d(t − 1) s(t − 1) s(t)

p value <0.0010 0.4344 <0.0010 0.1375 0.1389

Before using an ANN, it is advisable to use a lineal model. In order to do this, the
three non-stationary variables (y(t − 1), s(t − 1) and s(t)) were made stationary by taking
the differences: for example, using (y(t − 1)− y(t − 2)) instead of y(t − 1). These variable
transformations to make them stationary will be denoted with the operator “∆”. Hence,
in the previous example (y(t − 1)− y(t − 2)), the stationary variable will be denoted as
∆y(t − 1). The same notation is used for the speed. In this case, (s(t − 1)− s(t − 2)) is
denoted by ∆s(t − 1). The target variable that we are forecasting s(t) follows the same
notation ∆s(t) (denoting (s(t)− s(t − 1)).

Having a status of being non-stationary was once more tested using an augmented
Dicker–Fuller test. As can be seen in Table 9, now all the variables are stationary.

Table 9. The p value of augmented Dicker–Fuller test (stationary test).

Variable x(t − 1) ∆y(t − 1) d(t − 1) ∆s(t − 1) ∆s(t)

p value <0.0010 <0.0010 <0.0010 <0.0010 <0.0010

A linear model of the type shown in Equation (9) can be tested.

∆s(t) = β0 + β1x(t − 1) + β2∆y(t − 1) + β3d(t − 1) + β4∆s(t − 1) + ϵ (9)

The results of the linear regression are as follows (Table 10). The multiple R2 and the
adjusted R2 are 0.020230 and 0.009641, respectively.

Table 10. Linear regression of the above-mentioned model (Equation (9)).

Variable Estimate σ t p

Intercept −5.755 × 10−3 5.502 × 10−3 −1.046 0.2963
x(t − 1) 2.912 × 10−6 2.880 × 10−6 1.011 0.3127

∆y(t − 1) 4.090 × 10−6 8.055 × 10−6 0.508 0.6119
d(t − 1) 4.132 × 10−8 7.872 × 10−8 0.525 0.5999
s(t − 1) 1.317 × 10−1 5.207 × 10−2 2.530 0.0118

Multiple R2 0.020230
Adjusted R2 0.009641

RSE 0.04815
p 0.1081
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Lineal Model with Non-Stationary Data

If the lineal model is used with non-stationary data, then it is important for comparison
purposes to use a similar approach to that in the ANN model that will be illustrated in
the following section. For comparison purposes, a lineal model can be built, and then its
generalization capabilities can be tested with 15% of the data (not used to build the linear
regression). This approach is similar to the one followed in the next section. In this case,
the obtained R2 (test data) is 0.8371 and the RMSE is 0.0483. A scatter plot of the prediction
of the linear model (using non-stationary data) and the actual values (test set) can be seen
in Figure 15.

Figure 15. Scatter plot of linear repression model (using non-stationary data) and the actual values.

2.3. ANN Approach

Authors such as Kim et al. [55] have successfully applied ANNs to non-stationary data.
Several other papers, such as Cheng et al. [56], Ghazali et al [57] and Marseguerra et al. [58],
also illustrate the application of ANN to non-stationary data. It is necessary to carry out an
ANN parameter optimization task to try to make the estimated velocity ŝi and the actual
(measured) velocity si as similar as possible. There are several metrics (ζ) that can be used
for this type of task, such as R2 or the RMSE. In this case, we selected R2 as the metric to
measure the similarity (ζ) of these values, but we also estimated the RMSE. These metrics
are impacted by the architecture of the neural network, such as the number of neurons (n),
the number of layers (m) and the training algorithm (a) used. This is an optimization problem
that can be solved by using the Algorithm 1 shown below.

Algorithm 1 An optimization problem

Require: ni, mi and ai.
Ensure: ŝ(t).

1: Compute ŝ(t) for each configuration
2: Compare ŝ(t) with s(t) for each configuration
3: Solve the following problem:

max
n1,n2,...,nmax

ζ(nl , ml , al)

m1,m2,...,mmax

a1,a2,...,amax

s.t. 1 ≤ ni < nmax,
1 ≤ mi < mmax,
1 ≤ ai < amax,

4: Obtain nl , ml and al
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It should be noted that in this case, because the selected similarity metric (ζ) is the
R2 comparing ŝ(t) with s(t), we have a maximization type of optimization problem. If we
would have chosen the RMSE as the metric, we would have had a minimization problem.
Additionally, it also should be explicitly mentioned that we are solving this problem using
a grid approach. For each network configuration ANN(ni, mi, ai), there is an associated
training process with a related training time, which is an important consideration. It will
be shown that there is a non-linear relationship between the number of neurons (n) and
the time required to train such a neural network (ANN(ni, mi, ai)).

The use of ANNs also has its disadvantages. The initial weights in an artificial neural
network are created randomly. This is an inherent part of the process. During the training
phase, those weights are then modified to make the forecast as close as possible to the
actual output (in this case, the velocity (s)). Because the weights are initially randomly
generated, each ANN, even when having identical architectures (same number of neurons,
layers and training algorithm), is likely to generate slightly different outputs. In order to
reduce the impact of this initial random generation of the weights, each configuration is
trained γ times. The similarity values are the mean values of these γ simulations for each
ANN configuration. The R2 and the RMSE reported are those obtained with the testing
dataset. The testing dataset was not used during the training phase. After the ANN was
trained, the testing data were used as input (no further training), the similarity metrics,
such as the R2 and the RMSE, were calculated, and the mean level was reported. We used a
value of γ equal to 100, i.e., each configuration (ANN(ni, mi, ai)) was simulated 100 times.
The range for the number of neurons was 10 ≤ n ≤ 100 in increments of one neuron at a
time. The hidden layers included neurons with a tansig transfer function as described in
Equation (10). The output layer consists of one linear transfer function.

Configurations with one to three layers were tested. Twelve different training algo-
rithms were used (see Table 11). Hence, 3276 different configurations were simulated
(100 times each), for a total of 327,600 simulations.

tansig(z) =
2

1 + e−2z − 1 (10)

Table 11. Twelve training algorithms were used.

Training Algorithm Training Algorithm

BFG GDM
BR GDX

CGB LM
CGF OSS
CGP RP
GDA SCG

Following this approach, the top 10 models were identified. After the model identifi-
cation section, a robustness analysis was carried out. The robustness analysis consisted in
simulating each of the ten top models identified in the previous section 1000 times. The
batch size was 30.

2.4. Impact of Noise

We studied the goodness of the fit of the model when additional noise was added
to the signal. Given the experimental challenges in achieving these measurements (at
these scales), it is important to have an understanding of how well the model works when
there is noise. This was tested by adding to the signal normally distributed noise (N(0, σ))
with mean zero (µ = 0) and σ proportional to σsignal of the original signal, according to
Equation (11).

σ = α · σsignal (11)
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where α is a parameter α = {0.1, 0.2, . . . , 1}. Several noise levels with zero means and
increasing standard deviations were simulated. The standard deviations of the noise were
increased from 1% to 100% of the standard deviation of the original signal in 1% increments.
For each of these levels of noise, the model was simulated 100 times, and then, its goodness
of fit was estimated using the R2 and RMSE metrics. This process was repeated for all top
10 configurations obtained in the previous section.

3. Results

As shown in Figure 16 the selection of the training algorithm is important. All top
ten models (highest R2) use a BR (Bayesian regression) training algorithm and have only
one hidden layer. In this table, both the R2 and the RMSE are shown as a function on the
number of neurons. As previously mentioned, the results reported are the mean values after
100 simulations for each configuration. Other models, such as GDM (see the abbreviations
table at the end of the paper for a key to the names of the algorithms), generate much less accurate
models. The top 10 models obtained are {N53, N56, N75, N68, N36, N83, N37, N63, N74, N20}.
As an example, in this notation N53, represents a model using 53 neurons in one hidden
layer. There is no mention of the number of layers or the training algorithm in the notation
because among the top 10 models, they all use the BR training algorithm and all have one
layer. The best model obtained was N53, with a mean R2 of 0.9029 and a mean RMSE
of 0.0476. A table with the results of all these 10 models can be seen in Table A1 in the
Appendix A. The results for the most accurate models for all the other configurations (other
training algorithms as well as models with two or three layers) can be seen in Table A2
in the Appendix A. All the reported data refer to the testing dataset, which was not used
during the training phase and contains approximately 15% of the total data.

Figure 16. Neural network precision for different training algorithms.

After the best 10 models were identified, it was necessary to carry out a robustness
analysis. Each of these 10 top configurations were simulated 1000 times. The resulting
R2 and RMSE2 comparing the predictions of the testing dataset with the actual data were
estimated for each simulation. The results (testing dataset) can be seen in Figures 17 and 18.
After the robustness analysis, the best model was N36 with a mean and a median R2 of,
respectively, 0.8994 and 0.9017. The mean and median value for the RMSE for this model
were 0.0480 and 0.0481, respectively. For the same ANN configuration, the validation
dataset obtained an R2 and RMSE of 0.9150 and 0.0433, respectively. The results for all the
10 models (test dataset) can be seen in Table A3 in Appendix A.
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Figure 17. Robustness testing for top 10 models (R2).

Figure 18. Robustness testing for top 10 models (RMSE).

It also should be mentioned that the training time becomes an important factor to
take into consideration. As the number of neurons increases, the related computational
requirements increase. In the case of the robustness analysis (1000 simulations per config-
uration), the same non-linear relationship was observed (Figure A1 in Appendix A). In
Figure A1, it can be seen that the related training time increases (as we passed from 100 to
1000 simulations per configuration), but the shape of the curve remains similar, with an
exponential increase in time as the number of neurons increases. The calculations were
carried out in MATLAB on a laptop with an 11th Generation Intel i7-11700 @ 2.5 GHZ and
16 GB RAM.

As can be seen in Figure 19, when noise is added, the forecast velocity becomes less
accurate. The bigger the α, the less accurate the forecast velocity becomes. As previously
mentioned, the parameter α relates (according to Equation (11)) the standard deviation (σ)
of the added noise with the standard deviation of the original signal (σsignal). A value of
α = 0.01 is 1% of the signal’s standard deviation, and α = 1 is 100% of the signal’s standard
deviation. The R2 value comparing the forecast velocity and the actual velocity remains
above 0.8 for α ≤ 0.33 (33%).
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Figure 19. Impact on noise (as % of signal) in the R2 and RMSE metrics. Model with 1 layer,
36 neurons and BR training algorithm.

4. Discussion

When analyzing the results, it should be taken into account that measuring blood
microflows remains, from an experimental point of view, a challenging tasks. Not only are
the scales involved small, but there are factors, such as the deformation of the red blood
cells as they squeeze through the capillaries, that make the flow rather complex to model.
There are also many different types of cells in the blood, further adding complexity to
the model. Hence, there can be some inaccuracies in the measurements. In this regard,
the model needs not only to be reasonably accurate but also robust and not too sensitive
to noise.

The proposed ANN-based estimations (N53 configuration) obtained a mean R2 of
0.9029 and a mean RMSE of 0.0476 in its estimations of blood velocity in capillaries
(ranging from approximately 25 to 500 µm). For comparison purposes, the configuration
with the lowest mean R2 (0.512) was an ANN with two hidden layers and a GDM training
algorithm (the results for all the configurations can be found in Table A2 in Appendix A).
A total of 327,600 simulations were carried out in order to select an appropriate ANN
architecture. The proposed grid approach selected a neural network with one hidden layer,
36 neurons and Bayesian regression (BR) as the training algorithm. Better performance of
BR against other training algorithms has been observed in other applications [59]. Deeper
ANNs (with two or three layers) were not able to improve the forecasts generated by a
one-layer structure. This highlights the need to select the appropriate network for the
appropriate task, as blindly increasing the number of layers does not translate into a better
model. This is likely due to overfitting. The importance of selecting the appropriate
parameters in an ANN has been mentioned by several authors, such as Bernardos and
Vosniakos [60]. The selected model generated accurate forecasts when tested during
the robustness analysis. When comparing these forecasts with the actual (measured)
values of the velocity, the mean and median R2 were 0.8994 and 0.9017, respectively, while
the mean and median value for the RMSE were 0.0480 and 0.0481, respectively. These
values were obtained by doing 1000 simulations with this final configuration. From a
robustness analysis point of view it is always possible to do more simulations (in this case,
we did 1000 per selected model). However, given the similarity of the results for the top
10 selected models, it would appear that 1000 iterations is likely a reasonable amount,
particularly when considering the computational cost when substantially increasing the
number of simulations per configuration. The BR training algorithm appears to consistently
outperform all the other training algorithms tested (12 in total). Similarly, there were some
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training algorithms that consistently underperformed, such as GDM, GDA and the GDX.
The best results using two hidden layers were obtained for the BR training algorithm, with
a mean R2 value of 0.8992. This value was obtained with 100 simulations; using the same
number of simulations, the one-layer model obtained a mean R2 of 0.9029 (which slightly
decreased to a value of 0.8994 after the robustness test using 1000 simulations). The worst
result using a two-layer configuration was obtained using the GDM algorithm (R2 of 0.512).
When using three layers, the best results were obtained with the Levenberg–Marquardt
training algorithm, with a mean R2 of 0.860. Similarly to the two-layer case, when using
three layers, the worst results were obtained when applying the GDM training algorithm
(R2 of 0.510). The top 10 models obtained using the grid approach generated comparable
results. Even after the robustness analysis, these 10 models seemed to perform roughly in
a similar fashion (see Figures 17 and 18). These ten models generated forecasts that are
statistically significantly better than those obtained with different ANN architectures.

It was observed that the computational time required to train the network increased
non-linearly with the number of neurons. This was observed during the model selection
phase as well as during the robustness analysis. While the computational times required
in these two sections were different (in one case, there were 100 simulations per ANN
configuration, and in the other case, there were 1000) the shape of the curve representing
computational time vs. the number of neurons was similar (exponential curve). Given
this observation and the fact that models with more neurons did not necessarily perform
better, it highlights the need for adequate ANN parameter selection. Computational time is
an important factor, with some training processes requiring more than a day for a single
configuration. This limits the total number of testable configurations. These computational
times were obtained using standard laptops, and hence, with more computational power,
these training times could be reduced. Another additional consideration is that the expo-
nential trend was observed within a particular range of neurons. It was not tested with
more than 100 neurons per layer.

It was also interesting to see the performance of the model when introducing noise
in the signal. The introduced noise was normally distributed with zero mean and a
standard distribution proportional to the original standard distribution of the signal (in
1% increments from 1% to 100%). The model managed to generate accurate forecasts,
with a mean R2 above 0.8, until reaching 33% of the standard deviation of the original
signal. This type of analysis, adding some artificial noise to the signal, was carried out
in order to better understand how well the model reacts to noise. This is important, as
measurements in the analyzed scale are experimentally difficult to obtain and could have,
in principle, substantial error that might be difficult to estimate. The model seems adequate
for the above-mentioned levels of noise (less than 33% of the standard deviation of the
original signal). If there are indications that the noise is bigger than that, then the proposed
model might not be accurate enough. The precision of the presented model is high (with
an R2 of 0.8992). The usefulness of this model to other researchers will depend on their
required precision. While the scale of the analysis is likely enough for many pharmaceutical
applications, in some instances, there might be a need for higher precision. This would
require not only further improvements in the modeling but also more precise experimental
data, which can be challenging to obtain.

Kloosterman et al. [54] mentioned that a vascular network approach can be used to
investigate vascular development. They also concluded that vascular remodeling could
be observed, and that the changes in network parameters, such as the velocity, could be
related to structural changes. The authors also mentioned that some networks became
denser, but other networks became less dense.
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5. Conclusions

Artificial neural networks appear to be a reasonable option for modeling blood mi-
croflows and generate accurate forecasts (with an R2 of 0.8992). This type of forecast might
be useful in several different applications, such as drug delivery and diffusion analysis as
well as changes in microflows, which have been an area of recent research interest. The
analysis shows that a key step in the model selection process is choosing the appropriate
parameters for the ANN, such as the number of neurons, the number of layers and the
training algorithm. Another major factor to take into account is the computational time
required to train the network. This is particularly important, as there is a large number
of potential configurations. It is also important to assess the robustness of the model as
well as how sensitive it is to noise. This is important given the experimental complexity
of making these measurements and the potential for some measurement uncertainties. It
was shown that the model can handle additional noise relatively well. It also should be
noted that several different configurations generated accurate forecasts, but that all the top
models used the same training algorithm: Bayesian regression.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BFG BFG Quasi Newton
BR Bayesian Regularization
CGB Conjugate Gradient with Powell–Beale Restarts
CGF Conjugate Gradient Fletcher–Powell
CGP Conjugate Gradient Polak–Ribiere
CS Cardiogenic Shock
GDA Backpropagation Gradient Descent with Adaptive Learning
GDM Backpropagation Gradient Descent with Momentum
GDX Backpropagation with Variable Learning
LDF Laser Doppler Flowmetry
LM Levenberg–Marquardt
OSS Secant One-Step
RP Resilient Backpropagation
SCG Scale Conjugate Gradient

Appendix A

The numerical values of the mean R2 and RMSE values in the top 10 models can be
found in Table A1.
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Table A1. Top 10 models (1-layer). All 10 top models used the BR training algorithm.

N. Neurons Algorithm Mean R-Squared Mean RMSE

53 BR 0.903 0.048
56 BR 0.902 0.048
75 BR 0.901 0.048
68 BR 0.900 0.048
36 BR 0.900 0.048
83 BR 0.900 0.048
37 BR 0.900 0.048
63 BR 0.900 0.048
74 BR 0.900 0.048
20 BR 0.900 0.048

Table A2. Top models per network architecture with 2 or 3 layers.

N. Layers Algorithm Mean R-Squared

2 BFG 0.843
2 BR 0.899
2 CGB 0.850
2 CGF 0.847
2 CGP 0.845
2 GDA 0.752
2 GDM 0.512
2 GDX 0.795
2 LM 0.866
2 OSS 0.821
2 RP 0.843
2 SCG 0.837
3 BFG 0.837
3 BR 0.675
3 CGB 0.836
3 CGF 0.838
3 CGP 0.829
3 GDA 0.735
3 GDM 0.510
3 GDX 0.733
3 LM 0.860
3 OSS 0.819
3 RP 0.834
3 SCG 0.824

Table A3. Top 10 models (1-layer) after robustness analysis. All 10 top models used the BR train-
ing algorithm.

Neurons Algorithm Mean R2 Median R2 Mean RMSE Median RMSE

53 BR 0.898 0.900 0.048 0.048
56 BR 0.898 0.901 0.048 0.048
75 BR 0.899 0.900 0.048 0.048
68 BR 0.898 0.900 0.048 0.048
36 BR 0.899 0.902 0.048 0.048
83 BR 0.897 0.899 0.048 0.048
37 BR 0.898 0.900 0.048 0.048
63 BR 0.899 0.900 0.048 0.048
74 BR 0.899 0.901 0.048 0.048
20 BR 0.898 0.900 0.048 0.048
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Figure A1. Number of neurons vs. training time (robustness analysis).
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