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Abstract: The commonly used POI route recommendation methods usually ignore the effects of
tourists’ interests and transportation geographical conditions, and so may not output the optimal
results. To solve the problems, we propose a POI route recommendation model based on symmetrical
Naive Bayes classification spatial accessibility (NBCSA) and an improved cockroach swarm optimiza-
tion algorithm (ICSOA), aiming to recommend POI routes that satisfy tourists’ interests and have
the lowest travel costs under tourism transportation geographical conditions. Using the historical
POIs visited by tourists as the training set, we construct an improved symmetrical Naive Bayes
classification algorithm (NBCA), and the POIs in the destination city are divided into categories by
tourists’ preferences. Then we propose an improved NBCSA model to calculate the spatial accessibil-
ity field strength (SAFS) for each category’s POIs. Based on the recommended POIs, we propose the
ICSOA to recommend optimal POI routes. The experiment verifies that the proposed algorithm can
effectively classify the POIs and recommend POIs that best match the tourists’ interests and produce
the lowest travel costs. Compared with the TCA and GDA method, the proposed algorithm can
output the POI routes with lower travel costs and has higher algorithm execution efficiency. Among
the output optimal routes, the proposed algorithm can reduce costs by 5.62% at the lowest and 52.25%
at the highest.

Keywords: symmetrical Naive Bayes classification; SAFS; ICSOA; tourism recommendation

1. Introduction
1.1. Research Background

POI route recommendation methods include collaborative filtering, association rule,
knowledge-based, etc., which focus on the operation efficiency and accuracy of the algo-
rithms. For POI route recommendation, the commonly used methods include extracting
route information through the locations of the travel photos, tracing tourists’ GPS spa-
tial trajectories, and recommending via travel logs and guides. The historical POI route
information is directly recommended for tourists with similar interests. These methods
have the following problems. First, the goal of recommending is not merely to improve
the efficiency and accuracy of the algorithm, but also to satisfy tourists’ interests; the com-
monly used methods lack studies on user interests, resulting in poor matching between the
recommendation results and the tourists’ interests. Second, the commonly used methods
usually use evaluation scores as the criterion. It subjectively evaluates the feature attributes
of POIs. Tourism activities are performed in a geospatial environment and are constrained
by geospatial conditions; therefore, the spatial accessibility and distribution of POIs should
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also be considered. Third, POI route recommendation cannot only be considered as the
mining of historical information. It does not consider POIs that conform to the tourists’
interests and the constraints of the geospatial environment, which causes deviations in
route recommendations. Thus, POI route recommendation should combine the factors of
tourists’ interests, POI feature attributes and tourism geospatial constraints.

1.2. Related Works

Scholars’ research on tourism and POI route recommendation mainly includes the
following aspects.

(1) Optimizing the recommendation algorithm. Chen et al. [1] studied the influence of
power law distribution of long-tailed data on tourism recommendation results from a
mathematical perspective. Zheng et al. [2] built a tourism recommendation model by
using the neural network and matrix decomposition method to solve the information
overload problem. Chen et al. [3] constructed a tourism recommendation model
using the graph representation learning method and sequence mining, solving the
problem of complex sequence semantics in tourism mining. Zheng et al. [4] proposed a
recommendation algorithm based on user similarity, POI popularity and time context,
which solved the problem of decreased user decision-making efficiency. Lin et al. [5]
proposed a tourism recommendation method based on the constrained association
rule algorithm. It obtained higher algorithm efficiency and made mining results
more consistent with user needs. Cheng et al. [6] proposed a POI recommendation
algorithm based on multidimensional feature clustering and user scoring. It solved
the data sparsity problem.

(2) Mining user interests based on historical data, browsing data and evaluation data,
etc. Ahn Jinhyun et al. [7] proposed a tourism recommendation by users’ behavior
of refreshing and browsing tourism websites. Hong et al. [8] used a multi-scale ten-
sor model to construct a tourism recommendation model based on spatiotemporal
data. They analyzed the travel data with spatiotemporal changes and used spatiotem-
poral trajectories as the basis for recommendation. Abbasi Moud Zahra et al. [9]
constructed a tourism recommendation model based on semantic clustering and sen-
timent analysis, and tourist social networks were used to extract tourists’ interests.
Jeong Chi Seo et al. [10] conducted data analysis based on tourist social networks,
and used deep learning to mine data and set up a tourism recommendation system.
Cui et al. [11] used sentiment intensity analysis and the TOPSIS sorting method to
construct a recommendation algorithm based on user online comments. Cui et al. [12]
proposed a tourism recommendation method based on user profiles. It obtained basic
data and behavioral information of users and generated user profiles. On the aspect of
big data application and optimization, Ahmed H. Almulihi et al. [13] used intelligent
computing technology to mine and analyze big data, which obtained the factors and
problems that cause data security risks and improved the data security. By evaluating
the correctness of the dataset, a dynamic digital healthcare data breach environment
using a fuzzy based computational technique was established. This study helps to
provide a new method for utilizing tourism big data and protecting the security of
tourism big data, which can guarantee the safety for tourists’ information.

(3) Integrating tourism scene features such as POIs and geographic information for rec-
ommendation. Han Shanshan et al. [14] extracted spatiotemporal data from photos
labeled with geographic information and recommended POIs based on geographic
labels. Filipe Santos et al. [15] analyzed the functionality and accessibility of POIs,
combining these with the physical and mental conditions of tourists, then constructed
an individualized tourism recommendation system. Zhang et al. [16] set up a rural
tourism recommendation model based on seasonal features and the geographic infor-
mation extraction model. They analyzed the seasonal features of rural tourism and
integrated geographic information factors.
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1.3. Research Objectives and Algorithm Mechanism
1.3.1. Research Objectives

We propose a POI route recommendation model based on the symmetrical NBCSA and
ICSOA. The aim is to recommend POIs and routes that not only satisfy tourists’ interests
but also achieve optimal spatial distribution and minimize the travel costs. It solves
three problems. (1) Feature attribute mining is conducted on the POIs that the tourists
have once visited to obtain interest data. Based on the data criterion, the symmetrical
Naive Bayes classification algorithm (NBCA) is set up for the classification on the POIs in
the destination city. Thus, the classification on the POIs is completely based on tourists’
interests. (2) Under the geospatial constraints of the tourism destination, the model obtains
the POIs with optimal spatial distributions and the lowest travel costs, and realizes a POI
recommendation with the best-matched feature attributes and the lowest spatial costs. (3)
Based on the recommended POIs, under the travel conditions and geospatial constraints,
the improved cockroach swarm optimization algorithm (ICSOA) is designed to achieve the
optimal solution, providing tourists with the lowest travel costs and the optimal routes.

1.3.2. Algorithm Mechanism

Figure 1 shows the modeling process of the proposed recommendation algorithm. The
algorithm mechanism is as follows. Tourists firstly input the POIs they have visited before
and classify their preferences. As to the classification of POIs and preferences, a training
set X based on the historical POIs is established, which is used to construct a Naive Bayes
classification algorithm (NBCA). In step 1©, the text mining method is used to determine
the feature vector L of the training set X, which stores the classification features of the
NBCA. In step 2©, in order to avoid the situation that a conditional probability gets to the
value 0 when constructing the NBCA, a disturbance factor is introduced for the conditional
probability, then an improved NBCA is established. The improved NBCA is used to classify
the POIs in the destination city, and the classification results will match the interests and
needs of tourists. In step 3©, based on the classification results, a spatial accessibility field
strength (SAFS) model is constructed to calculate the SAFS for each classified POI. Based on
the calculation results, a classification POI recommendation algorithm based on the SAFS
model is constructed to recommend the optimal POIs. In step 4©, an improved cockroach
swarm optimization algorithm (ICSOA) is constructed based on the recommended POIs
and the urban geospatial environment. Finally, a POI route recommendation model based
on the ICSOA is constructed.
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The proposed POI route recommendation model can accurately recommend POIs and
POI routes for different cultural contexts and user groups. The algorithm mechanism that
is adapted to the users from different cultural contexts is as follows.
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Firstly, as to the process of the tourism recommendation model in Figure 1, the goal
of this algorithm is to recommend POIs and POI routes for a single user. After inputting
interest needs from any cultural contexts and user groups, this algorithm can accurately
match POIs based on user interests, and search for the optimal POI route based on the
recommended POIs and geospatial conditions. When the tourists’ cultural contexts, the
once-visited POIs and the preferences to the POIs change, the algorithm can still recommend
relative POIs according to the dynamic input interest data, and then search for different
optimal routes accordingly. That is, the recommendation results are always generated
based on the tourists’ interests, which can fully match the tourists’ needs.

Secondly, the constructed NBCA in the recommendation model is a “filter” for dif-
ferent cultural contexts and user groups’ interest needs. Its “filtering” function is mainly
manifested in the following aspects: (1) User groups with different cultural contexts have
different perceptions and interests in the once-visited POIs and the POIs in the destination
city. Therefore, when collecting the training set, users will initially categorize the POIs
they have once visited based on their own perceptions and preferences. This step is a
raw collection of user interests. (2) Based on different user interests, the feature labels are
designed to establish quantitative feature labels and label data ranges for the NBCA. The
trained classification algorithm is based on the users’ cultural contexts and interests, and
thus, the classification on the POIs in the destination city is also based on the users’ cultural
contexts and interests. The classification results are highly accurate.

Thirdly, tourists with different cultural contexts have different preferences for the
starting points of POI routes, the types of POIs they expect to visit and the specific quantities
of POIs to be visited. They also have different preferences for the spatial accessibilities and
feature attributes of POIs. Therefore, the recommended POIs output by the classification
results and the SAFS model are also different. The filtering mechanism of the SAFS model
can adapt to the needs of users from different cultural contexts and recommend precise
POIs based on their interests. In terms of POI route recommendation, tourists from different
cultural contexts have different choices of transportation tools, perceptions of geospatial
environments, scheduled travel times, and planned travel costs. The recommendation
algorithm ultimately searches for the optimal POI route based on these constraints, and the
results are also different. Therefore, in terms of the POI route recommendation mechanism,
this algorithm can adapt to the interests of tourists from different cultural contexts, and
search and recommend POI routes based on the individualized interests.

2. POI Recommendation Algorithm Based on the Symmetrical NBCSA

Previous experiences are the best source of interests, and historical interests have a
symmetrical relationship with the current preferences of tourists. Tourists who have visited
certain POIs will exhibit certain degrees of preferences. Obtaining and classifying the once-
visited POIs by preferences can clarify the tourists’ interests, and then obtain the original
training data set for constructing the classification model. The Naive Bayes algorithm has
the advantages of high efficiency, accurate classification ability and suitability for small-
scale data, making it suitable for POI classification [17,18]. Combined with POI feature
attributes, the acquisition of classifier training data is improved. A classification algorithm
incorporating a disturbance factor is proposed by using the preference classification and
quantitative attributes of POIs as training data, which is used for the classification on the
POIs in the destination city. Based on the classification results and geospatial constraints,
the SAFS model is set up to search for the optimal POIs.

2.1. The Symmetrical NBCA Based on Tourists’ Interests

The symmetrical NBCA includes two aspects: the acquisition of the training data set
and the foundation of the model. The training data set X is composed of the N number
of once-visited POIs with preference classifications provided by tourists. Each sample
POI x(i) has feature attributes. The training data set X is grouped into C(i): {C(1): favorite;
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C(2): like; C(3): dislike}. The feature attributes are obtained by text mining in the tourism
encyclopedia big data [19].

2.1.1. The Foundation of the Feature Vector on Sample POI

The feature vector L of the sample POI x(i) contains the feature attributes of the POI,
which is the symbol to distinguish it from other POIs. The feature vector L is composed
of k number of feature labels l(i), 0 < i ≤ k, i, k ∈ N, in which the number of text feature
label to express feature attribute is k(1), while the number of value labels to express tourism
feature is k(2). Based on the k(1) number of text feature labels, the text feature label matrix
L(i,j) is set up as Formula (1). In the formula, l(i,j) is the No. j sub-label of the text label l(i).
Each sub-label l(i,j) represents a kind of text note for the text label group l(i). By calculating
the weight value for the text label group l(i), the constraint ranges for the k(1) number of
text feature labels in the vector L are confirmed.

L(i,j) =


l(1,1) l(1,2) . . . l(1,p)
l(2,1) l(2,2) . . . l(2,p)

. . . . . .
l(k(1),2) . . . . . . l(k(1),p)

 (1)

Search for the |D| number of text documents of POI x(i) from the corpus in the
encyclopedia and tourism service platform. Based on the feature label l(i), count the
occurrence number of each sub-label l(i,j) of l(i) in the |D| number of documents and get
the initial value for the word frequency of TFl(i) . Calculate the weight values for all the
labels l(i) by the TF–IDF. The process is shown as follows.

Step 1. Search and count the occurrence number of label l(1) in the matrix L(i,j). Search
and count the occurrence number of sub-label l(1,j) in the |D| number of documents, noted
as n·l(1,j). Iterate until j = p + 1 and stop searching. Output n·l(1) as Formula (2) shows.

n·l(1) =
p

∑
j=1

n·l(1,j) (2)

Step 2. Search and count the occurrence number of label l(2) in the matrix L(i,j). Search
and count the occurrence number of sub-label l(2,j) in the |D| number of documents, noted
as n·l(2,j). Iterate until j = p + 1 and stop searching. Output n·l(2).

Step 3. In line with the Step 1–Step 2, search and count the occurrence number n·l(i) of
label l(i) in the matrix L(i,j). Iterate until i = k(i) + 1 and stop searching. Output n·l(k(1)),
0 < i ≤ k(1), i, k(1) ∈ N.

Step 4. Calculate the word frequency TFl(i) of label l(i) in the |D| number of documents
as Formula (3).

TFl(i) =

p
∑

j=1
n·l(i,j)

k(1)
∑

i=1

p
∑

j=1
n·l(1,j)

(3)

Step 5. Calculate the inverse document frequency IDFl(i) and feature label weight TFIDFl(i)

of label l(i) in the |D| number of documents, shown as Formulas (4) and (5).
∣∣∣{s : l(i) ∈ ds

}∣∣∣
represents the occurrence number of documents with the label l(i):

{
i, j ∈ (0, p]

∣∣∣l(i,j)} in
the |D| number of documents.

IDFl(i) = log
|D|∣∣∣{s : l(i) ∈ ds

}∣∣∣+1
(4)
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TFIDFl(i) = TFl(i) × IDFl(i) (5)

The weight value TFIDFl(i) of l(i) is the quantization for the k(1) number of text labels of
x(i). Through the weight value TFIDFl(i) , the constraint ranges of k(1) number of text labels
are confirmed. The quantization values for the other k(2) number of tourism attributes
of x(i) are searched out or calculated from the tourism big data to confirm the constraint
ranges. The 1× k dimension vector which is composed of the weight values TFIDFl(i) of k(1)
number of text labels and the quantization values of the k(2) number of tourism attributes
is defined as the feature vector L of the POI x(i). According to the modeling conditions of
NBCA and the quantization values of feature vector L labels, convert each value into a
value range and store them into the training data set.

2.1.2. The Symmetrical NBCA Based on Tourists’ Interests

As to arbitrary ∀x(i) in the N number of POIs, it must relate to the label vector:
{TFIDFl(i) , TEXTl(i) , C(i)}, in which TFIDFl(i) stands for the k(1) number of text feature
label quantization ranges, TEXTl(i) stands for the k(2) number of tourism attribute label
quantization ranges and C(i) stands for the preference categories of x(i). The k number
of feature labels in vector L are mutually independent, which conforms to the modeling
conditions for the NBCA.

Set y(i) as the POI to be classified in the destination city. The classifying is to match the
y(i) with the once-visited POIs x(i) as well as classifications C(i). Through the classification
algorithm, y(i) will be absorbed into C(i) with the highest calculation conditional probability.
In this process, the tourists’ interests are set as the criterion to measure whether y(i) should
be an interested POI. Suppose H is the assumption that the sample y(i) belongs to the
category C(i). Then the basic idea of the Bayes theorem is to calculate the conditional

probability P(C(i)

∣∣∣y(i)) which makes the assumption H be true. Formula (6) is the Bayes
posterior classification model.

P(C(i)|y(i)) =
P(y(i)

∣∣∣C(i))P(C(i))

P(y(i))
(6)

As to the interest preference category C(i) confirmed by tourists, 0 < i ≤ t, i, t ∈ N,
the Naive Bayes classifier will predict that the sample y(i) belongs to the category with the
highest posterior probability. Namely, as to the t number of categories C(i) in the sample
space, the condition that the sample y(i) belongs to the category C(i) is when and only

when P(C(i)

∣∣∣y(i)) > P(C(j)

∣∣∣y(i)) , 0 < i, j ≤ t, i 6= j. At this time, the category C(i) with

the highest posterior probability P(C(i)

∣∣∣y(i)) is the maximum posterior assumption. The
improved NBCA to classify the sample y(i) in the destination city is designed as follows.

Step 1. As to the Bayes posterior classification model, the probability P(y(i)) of
the sample y(i) is a constant value to each category C(i). Convert the issue of calculating

P(C(i)

∣∣∣y(i)) in the Bayes posterior classification model to calculating the P(y(i)
∣∣∣C(i))P(C(i)) ,

which is defined as the conversion value δ(y(i)).
Step 2. Based on the N number of x(i) and categories set by the tourists, the feature

label vector for each sample x(i) is obtained as L: {TFIDFl(i) , TEXTl(i) , C(i)}. The quantity of
sample POI x(i) for each category C(i) is s(i) and the total quantity of the sample x(i) is S.
The probability for each sample’s classification is different, calculated by Formula (7).

P(C(i)) =
s(i)
s

(7)
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Step 3. Continue to calculate P(y(i)
∣∣∣C(i)) . Since the attributes in the vector L are

mutually independent, the calculation method of P(y(i)
∣∣∣C(i)) is designed as Formula (8).

The P(l(k)
∣∣∣C(i)) is evaluated by the training samples. Since the sample’s feature attributes

l(k) are all discrete values, the calculation method of P(l(i)
∣∣∣C(i)) is designed as Formula

(9), in which s(i,k) is the quantity of the training samples that contains l(k) in category C(i)
and s(i) is the quantity of samples in category C(i). According to the attribute labels and
actual tourism conditions, the situation of s(i,k) = 0 may occur on the label l(k). Introduce
the disturbance factor ε as the adjustment for the label l(k) when its quantity is 0, designed
as Formula (10).

P(y(i)|C(i)) =
n

∏
k=1

P(l(k)|C(i)) (8)

P(l(k)|C(i)) =
s(i,k)
s(i)

(9)

P (y(i)
∣∣∣C(i))

∆

ε
=

n

∏
k=1

(
s(i,k)
s(i)

+ ε) (10)

Step 4. Calculate the conversion value δ(y(i)) of the Bayes posterior classification model.
The C(i) with the maximum value maxδ(y(i)) is the category that the sample y(i) belongs to.
Store the probability value.

2.2. POI Recommendation Algorithm Based on NBCSA

As to the m number of POIs in the destination city, set the quantity of POIs that are
grouped into C(i) as m(i). POIs are distributed in the geospatial environment, and not all the
POIs are optimal in spatial distribution; thus, the spatial feature is the key to determining
travel costs [20–22]. The SAFS model is constructed to calculate spatial accessibility and
recommend the POIs with the best-matched attributes and the optimal spatial distribution.

2.2.1. SAFS Model of the Naive Bayes Classification

Tourists start trips at certain initial points S. POIs have spatial attributes such as
latitude, longitude, spatial distance, etc. Confined by geospatial conditions, the process
of traveling from the initial point S to the POI y(i) will be hindered by the space and the
time. The weaker the hindrance is, the higher the spatial accessibility of y(i) will be, and
the lower the travel costs will be. Constructing SAFS is the key to quantifying the spatial
distributions for the POIs.

Definition 1. Research domain spatial grid G. As to the research scope, design a spatial range
φ with length L and width W to cover the whole domain. Divide the φ into u× v number of
unit grids g(x,y) and each grid represents the internal micro-region of the destination city. x and
y represent the coordinates of the grid g(x,y). The spatial location for y(i) is the spatial coordinate
Ly(i) = (x(y(i)), y(y(i))).

Definition 2. SAFS of A(y(i),S) and A∗(y(i),S) based on the spatial grid G. The absolute SAFS
of A(y(i),S) represents the space and time hindrance between the initial point S and the POI y(i).
Set the S coordinate as LS = (x(S), y(S)). A(y(i),S) is constructed as Formula (11), and ζ(0) is the
normalization coefficient. Introduce the relative SAFS of A∗(y(i),S), namely, the ratio between the
absolute SAFS of y(i) and S to the sum of the absolute SAFS of other samples y(i) and S, shown as
Formula (12).

A(y(i),S) = ζ(0) ×
1√∣∣∣x(y(i)) − x(S)
∣∣∣2 + ∣∣∣y(y(i)) − y(S)

∣∣∣2 (11)
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A∗(y(i),S) =
A(y(i),S)

m
∑

i=1
A(y(i),S)

(12)

Definition 3. POI SAFS matrix A(x,y). Based on the u× v number of unit grids g(x,y) contained
in the grid G of the spatial range φ, set a u× v-dimension matrix with the initial element of the
unit grid g(x,y) at the origin point of the coordinates XYG. The matrix is used to store A∗(y(i),S) of
y(i) and is defined as the POI SAFS matrix A(x,y). According to the definition, the matrix element
meets the condition of Formula (13).

A(x,y) =

{
0 , y(i) /∈ g(x,y)
A∗(y(i),S) , y(i) ∈ g(x,y))

(13)

Definition 4. POI SAFS of Φ. Take the POI SAFS matrix A(x,y) as the base and build a three-
dimensional spatial field visualization model; this model is defined as the POI SAFS of Φ. Figure 2
is the modeling process of the POI SAFS. Figure 2a shows the research domain, Figure 2b shows the
spatial range, Figure 2c shows the spatial grid, Figure 2d shows the spatial coordinates, Figure 2e
shows the spatial accessibility coordinates and Figure 2f shows the spatial accessibility field strength.
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2.2.2. POI Recommendation Algorithm Based on the SAFS Model

The recommendation of POI in real-world tourism scenarios should comprehensively
consider the tourists’ interests and the spatial optimality of POIs, so that the POIs not
only meet tourists’ interests, but also minimize the travel costs. The POI recommendation
algorithm based on the SAFS model is established as follows, and Figure 3 shows the
modeling process.
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Step 1. Set up the recommendation matrix R(C(i))
for the category C(i).

In this step, the matrix R(C(i))
meets the following conditions:

(1) The dimension of R(C(i))
is r×maxm(i).

(2) The symbol r represents the number of the category C(i).
(3) The symbol m(i) represents the quantity of POIs in the category C(i) after classifying.
(4) The No. i row stores POIs of C(i). The No. j column stores the No. j POI in C(i).
(5) If the element in the matrix does not store POI, it is set as element number 0.
(6) In the matrix, the arbitrary rows ∀i and ∀i′, and the arbitrary columns ∀j and ∀j′, are

all nonlinear correlated.
(7) The row rank meets the condition rank(R(C(i))

)
ro
= r.

(8) The column rank meets the condition rank(R(C(i))
)

co
= maxm(i).

Step 2. Set up the spatial grid G of the research domain φ.

(1) Form the u× v dimension unit grids for the grid G.
(2) Confirm the coordinates Ly(i) = (x(y(i)), y(y(i))) for each POI y(i) in category C(i) in the

grid G, 0 < i ≤ m, i, m ∈ N.
(3) The coordinates of all the POIs in r number of categories are confirmed.

Step 3. Calculate the spatial accessibility field strength (SAFS) for POIs.

(1) Confirm the initial point S, and set its coordinate LS = (x(S), y(S)) in the grid G.
(2) Calculate the SAFS A∗(y(i),S) for all the POIs y(i) in categories C(i).

(3) Generate the SAFS matrix A(x,y) and SAFS model Φ.

Step 4. Set up the recommendation vector r(C(i))
for category C(i). The dimension of

the vector is 1×m(i) and it contains m(i) number of elements.
Step 5. Make a judgement on the attribute and SAFS for C(i). δ(y(i)) is the Naive Bayes

conversion value; A∗(y(i),S) is the SAFS.
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Step 6. Introduce the tourist need weight ε(x) and recommendation index σ(y(i)).

(1) Define ε(1) as the factor to confine δ(y(i)), which measures the preferences of the tourists
on the POI attributes.

(2) Define ε(2) as the factor to confine A∗(y(i),S), which measures the preferences of the
tourists on the POI spatial accessibilities.

(3) For the two factors ε(1) and ε(2), the higher the value is, the more likely the tourists
prefer the factor.

(4) The constraint is set as ε(1) + ε(2) = 1.
(5) The recommendation index model is designed as Formula (14).

σ(y(i)) = ε(1) · δ(y(i)) + ε(2) · A∗(y(i),S) (14)

Step 7. Tourists provide ε(x). Calculate σ(y(i)) of POIs in categories C(i), and form
full-ranked r(C(i))

.

(1) Extract from the No.1 row C(1) the No.1 element C(1,1) and No.2 element C(1,2). Make
a judgement.

(i) If σ(C(1,1))
> σ(C(1,2))

:

The σ(y(i)) of C(1,1) is higher than C(1,2). Store C(1,1) and C(1,2) into the No.1 and No.2
elements r(1) and r(2) in r(C(i))

.

(ii) If σ(C(1,1))
≤ σ(C(1,2))

:

The σ(y(i)) of C(1,2) is higher than C(1,1). Store C(1,2) and C(1,1) into the No.1 and No.2
elements r(1) and r(2) in r(C(i))

.

(2) Extract the No.3 element C(1,3) and make a judgement.

(i) If σ(C(1,1))
> σ(C(1,2))

:

1© If σ(C(1,1))
> σ(C(1,2))

≥ σ(C(1,3))
, keep C(1,1) and C(1,2); store C(1,3) into r(3). 2© If

σ(C(1,1))
≥ σ(C(1,3))

> σ(C(1,2))
, store C(1,2) into r(3); store C(1,3) into r(2). 3© If σ(C(1,3))

>

σ(C(1,1))
> σ(C(1,2))

, store C(1,3), C(1,1) and C(1,2) into r(1), r(2) and r(3).

(ii) If σ(C(1,1))
≤ σ(C(1,2))

:

1© If σ(C(1,3))
< σ(C(1,1))

≤ σ(C(1,2))
, keep C(1,1) and C(1,2); store C(1,3) into element r(3).

2© If σ(C(1,1))
≤ σ(C(1,3))

≤ σ(C(1,2))
, store C(1,1) into r(3); store C(1,3) into r(2). 3© If

σ(C(1,1))
≤ σ(C(1,2))

< σ(C(1,3))
, store C(1,3), C(1,2) and C(1,1) into r(1), r(2) and r(3).

(3) In line with Step (1)–Step (2), continue searching the No. j element (C(1,j)).

(i) Calculate the σ(C(1,j))
.

(ii) Descend to store the index σ(C(1,j))
into vector r(C(1))

.

(iii) The stop searching condition is j = m(i) + 1.
(iv) When the searching stops, output the full-ranked vector r(C(1))

.

(4) Continue searching the other category rows C(i). Output the full-ranked vector r(C(i))
.

Traverse i ∼ (0, r], i, r ∈ N.

Step 8. Output all vectors r(C(i))
for categories C(i).

(1) In vector r(C(i))
, the front-end elements have the higher recommendation index σ(y(i)),

and will be preferentially recommended.
(2) According to the actual needs of tourists, w number of optimal POIs in categories C(i)

will be taken as the tour route nodes to be visited.
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3. POI Route Recommendation Model Based on the ICSOA
3.1. Modeling Principle

The POI route algorithm should be constructed on the recommended POIs. Tourists
start from the points S and visit the w number of POIs. The tour will be influenced by
several factors: transportation mode, travel distance, travel time, travel fee. It is necessary
to find out the POI routes with the lowest costs. Thus, the modeling problem converts to the
searching for an optimal route conforming to the geospatial conditions and passing through
all POIs [23–25]. The cockroach swarm optimization algorithm (CSOA) is an excellent
algorithm that can search for the global optimal solution [26,27]. We analyze the need
and necessity of using the CSOA to construct a POI route recommendation model and the
idea of optimizing the tourism recommendation model from the aspects of the algorithm
characteristics, the algorithm execution principles and the route searching scenarios based
on geospatial environment.

(1) The need and necessity of the algorithm

Firstly, the route searching algorithm is divided into two parts: interval local searching
and global searching. Local searching is to find out the optimal route between two POIs,
passing through road nodes. Global searching is to find out the optimal route through
all POIs based on the local searching. There are many road nodes and POIs in urban
geographic space, so it is necessary to choose a certain intelligent algorithm with fast
computation speed, rapid convergence speed, and the ability to search for the global
optimal solutions. The CSOA can meet this requirement.

Secondly, as to the interval local searching, the CSOA achieves the step size transfor-
mation through a 2-opt approach, forming new cockroach individuals. The calculation
process for the generation cost of each cockroach individual is a linear superposition on
the spatial cost between two road nodes, and the calculation speed is fast. The process
of searching for the optimal cockroach individual involves traversing a certain number
of steps and combining them with the sorting algorithm. The maximum amount of its
computation is the factorial calculation, with low time complexity and fast convergence.
Therefore, the CSOA is very suitable for the interval shortest distance calculation involving
multiple road nodes and is suitable for the interval local searching.

Thirdly, as to the global searching, when traversing all the POIs, the CSOA achieves
step size transformation through a 2-opt approach, forming new cockroach individuals.
The calculation process for the generation cost of each cockroach individual is a linear
superposition on the spatial cost between two POIs, and the computational speed is fast.
The process of searching for the optimal cockroach individual is still a combination of the
factorial operation and sorting algorithm, with low time complexity and fast convergence.
Therefore, the CSOA is suitable in searching for the global optimal solution that includes
all POIs.

Fourthly, compared to the other optimization algorithms that are prone to falling into
local optimal solutions, the CSOA has a homing strategy that can jump out of the local
optimal solution and ultimately search for the global optimal solution. Therefore, it is very
suitable in searching for the global optimal route passing through all POIs.

(2) The application to optimize POI route recommendation model

Firstly, traditional POI route recommendation methods use historical big data, and
directly recommend routes previously visited by tourists with similar interests to current
tourists, or determine tourists’ preferences and recommend similar routes based on the
GPS trajectories on POIs visited by tourists. These methods are not based on the interests
of current tourists, and they directly recommend routes visited by historical tourists, which
does not conform to the current tourism scenarios and tourists’ interests. The constructed
CSOA can solve this problem. The algorithm is based on the current tourists’ tourism
scenarios and geographic information conditions, aiming to match the tourist interests.
Finally, all the POIs on the route meet the tourists’ interests, which improves the accuracy
of the recommended routes.
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Secondly, the goal of the ICSOA is to find out the optimal route between two POIs and
the global optimal route passing through all POIs. The algorithm is based on the current
geospatial data and the constraints on the travel costs. It performs the route-searching steps
under the condition of the selected transportation mode. The final searched POI route is the
route with the lowest costs, which can save travel costs and improve tourists’ satisfaction.

Thirdly, compared to the other POI route planning algorithms such as the Dijkstra al-
gorithm and A* algorithm, the ICSOA has fast convergence speed and low time complexity.
Its homing strategy can jump out of the local optimal solutions and ultimately find out the
global optimal solution, relating to the optimal POI route.

Based on the above analysis, in this section, an ICSOA that fuses geospatial constraints
is proposed. It can output POI routes that best match tourists’ interests and have the lowest
travel costs under the selected transportation mode. Cockroach crawling is used to search
for the shortest path in the sub-interval and confirm the pass hindrance factors. The factors
are used to establish the sub-interval hindrance function, based on which the interval
hindrance function is designed. Then the cockroach crawling is used to search for the
optimal solution of the interval hindrance function to recommend the optimal route with
the lowest travel costs.

3.2. Modeling Process
3.2.1. Related Definition

Definition 5. Cockroach crawling interval Cr(S, t(x)) and cockroach crawling sub-interval
Cr(t(i), t(j)). Set the w number of POIs as t(i), 0 < i ≤ w, i, w ∈ N. The interval between
the initial point S and the terminal POI t(x) forms a complete route, and this interval is defined as
the cockroach crawling interval Cr(S, t(x)), 0 < x ≤ w, x, w ∈ N. Tourists traveling from point
t(i) to t(j) will pass several road nodes. This traveling interval is defined as the cockroach crawling
sub-interval Cr(t(i), t(j)). In Cr(S, t(x)), the cockroach is noted as Z(a,h), which represents a POI
route. In Cr(t(i), t(j)), the cockroach is noted as Z(b,s), which represents a path between the point
t(i) and t(j).

Definition 6. Control node V(i) in Cr(t(i), t(j)). In Cr(t(i), t(j)), the road node that the tourists

pass is defined as the control node V(i). The set
{

V(i)

}
determines the path in Cr(t(i), t(j)). Under

different transportation modes, the shortest path in the same Cr(t(i), t(j)) may pass through different
control nodes V(i).

Definition 7. Cockroach crawling sub-interval hindrance factor ζ(i). Tourists traveling in
Cr(t(i), t(j)) will be influenced by the transportation mode, travel distance, travel time and travel
fee. A factor that will influence the travel costs is defined as the cockroach crawling sub-interval
hindrance factor ζ(i). Set the travel fee in the sub-interval as F(t(i), t(j)), the travel distance as
D(t(i), t(j)), the travel time as T(t(i), t(j)); the calculation method for the sub-interval hindrance
factor ζ(i) is designed as Formula (15).

ζ(1) =
1

F(t(i), t(j))
, ζ(2) =

1
D(t(i), t(j))

, ζ(3) =
1

T(t(i), t(j))
(15)

Definition 8. Cockroach crawling sub-interval hindrance function f (t(i), t(j))(k) and cockroach

crawling interval hindrance function f (S, t(x)). The travel cost function generated in the process
of tourists’ traveling from the point t(i) to t(j) in the sub-interval Cr(t(i), t(j)) is defined as the
cockroach crawling sub-interval hindrance function f (t(i), t(j))(k). k represents the code for the
current sub-interval, 0 < k ≤ w, k, w ∈ N; w is the number of POIs. The travel cost function
generated in the process of tourists’ traveling from the initial point S to the terminal POI t(x) in
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Cr(S, t(x)) is defined as the cockroach crawling interval hindrance function f (S, t(x)). The functions
f (t(i), t(j)) and f (S, t(x)) are constructed as Formulas (16) and (17).

f (t(i), t(j))(k) =
maxi

∑
i=1

ζ(i) (16)

f (S, t(x)) =
w

∑
k=1

f (t(i), t(j))(k) (17)

Definition 9. Cockroach crawling interval step size Step(t(i), t(j)) and cockroach crawling sub-
interval step size Step(V(i), V(j)). In Cr(S, t(x)), a cockroach crawling for one time is called the
cockroach crawling interval step size Step(t(i), t(j)). In Cr(t(i), t(j)), a cockroach crawling for
one time is called cockroach crawling sub-interval step size Step(V(i), V(j)). A step size performs a
2-opt operation.

Definition 10. Cockroach crawling interval path Path(S, t(x)) and cockroach crawling sub-interval
path Path(t(i), t(j)). The path formed by a cockroach crawling for p times of step size Step(t(i), t(j))
is defined as the cockroach crawling interval path Path(S, t(x)). The path formed by a cockroach
crawling for q times of step size Step(V(i), V(j)) is defined as the cockroach crawling sub-interval
path Path(t(i), t(j)). Formulas (18) and (19) are the calculation methods for Path(S, t(x)) and
Path(t(i), t(j)).

Path(S, t(x)) =
p

∑
u=1

Step(t(i), t(j))(u) (18)

Path(t(i), t(j)) =
q

∑
u=1

Step(V(i), V(j))(u) (19)

3.2.2. Modeling Process

The ICSOA is set up as follows.
Step 1. As to the initial point S and the w number of POIs t(i), form w number of

Cr(t(i), t(j)).
Step 2. Confirm the g number of control nodes V(i) in the sub-interval Cr(t(i), t(j)).
Step 3. Search for the optimal solution in the Cr(t(i), t(j)) and output optimal D(t(i), t(j))

in each Cr(t(i), t(j)).

(1) Initialize the cockroach individuals Z(a,h).

(i) Initialize the node distances d =
{

V(i), V(j)

}
, 0 < i, j ≤ g, i, j, g ∈ N.

(ii) Search g(i) number of nodes V(i) from t(i) to t(j) in Cr(t(i), t(j)), 0 < g(i) ≤ g.
(iii) Initialize Z(a,h), D(t(i), t(j))(h)(h = 1, 2, 3, . . . , m).

(iv) Randomly select cockroach Rand(Z(a,h)) ∼ Z(a,h1) as a target solution.

(2) All the Z(a,h) crawl to Z(a,h1) by Step(V(i), V(j)).

(i) The path is Path(t(i), t(j))(h).
(ii) When the m− 1 number of cockroaches crawl to Z(a,h1), if there exists a better

D(t(i), t(j))(h) relating to Z(a,h2), replace Z(a,h1) by Z(a,h2).

(3) All the cockroaches go back to nest, namely the initial status.

(i) Set Z(a,h2) as a new target solution.
(ii) All the Z(a,h) crawl to Z(a,h2) by Step(V(i), V(j)).
(iii) The path is Path(t(i), t(j))(h).
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(iv) When the m− 1 number of cockroaches crawl to Z(a,h2), if there exists a better
D(t(i), t(j))(h) relating to Z(a,h3), replace Z(a,h2) by Z(a,h3).

(4) Repeat Step 3(1)–Step 3(3) until reach the status when cockroaches crawl to and
reach the current optimal Z(a,h)opt; the searched optimal solution Z(a,h)opt is always
unchanging. The searching ends.

(5) Output the stable optimal Z(a,h)opt, and the related D(t(i), t(j))(h) is the travel distance

for Cr(t(i), t(j)).

Step 4. Based on the D(t(i), t(j))(h), calculate the hindrance factor ζ(i) of Cr(t(i), t(j))

and hindrance function value f (t(i), t(j))(k), k is the code for the current sub-interval.

Step 5. Search the hindrance function value f (S, t(x)) relating to the optimal solution
for Cr(S, t(x)).

(1) Initialize the cockroach individuals Z(b,s).

(i) Initialize the hindrance function value f (t(i), t(j))(k) for the sub-intervals, 0 < k ≤ w,
k, w ∈ N.

(ii) Initialize Z(b,s)(s = 1, 2, 3, . . . , n), f (S, t(x))(h)(h = 1, 2, 3, . . . , n).

(iii) Randomly select cockroach Rand(Z(b,s)) ∼ Z(b,s1) as the target solution.

(2) All the Z(b,s) crawl to Z(b,s1) by Step(t(i), t(j)).

(i) The path is Path(S, t(x))(h).

(ii) When the n− 1 number of cockroaches crawl to Z(b,s1), if there exists a better
f (S, t(x))(h) relating to Z(b,s2), replace the Z(b,s1) by Z(b,s2).

(3) All the cockroaches go back to nest, namely the initial status.

(i) Set Z(b,s2) as a new target solution.
(ii) All the Z(b,s) crawl to Z(b,s2) by Step(t(i), t(j)).
(iii) The path is Path(S, t(x))(h).

(iv) When the n− 1 number of cockroaches crawl to Z(b,s2), if there exists a better
f (S, t(x))(h) relating to Z(b,s3), replace the Z(b,s2) by Z(b,s3).

(4) Repeat Step 5(1)–Step 5(3) until get to the status when cockroaches crawl to and
reach the current optimal Z(b,s)opt, the searched optimal solution Z(b,s)opt is always
unchanging. The searching process ends.

(5) Output the optimal Z(b,s)opt. The related f (S, t(x))(h) stands for the lowest travel costs

for Cr(S, t(x)).

Step 6. Output the route with the optimal hindrance function value f (S, t(x))(h) as the
optimal POI route for recommendation.

Figure 4 is the constructed POI route recommendation algorithm based on ICSOA.
Figure 4A shows the specific algorithm steps for the sub-interval, Figure 4B shows the specific
algorithm steps for the interval, Figure 4C shows the flow chart of the constructed algorithm.

3.3. The Analysis on the Algorithm

The proposed POI route recommendation model based on ICSOA consists of the
NBCA, the SAFS model and the CSOA model. Among them, the NBCA and the SAFS
model are the foundation. Based on the modeling ideas, the key factors influencing
algorithm accuracy and efficiency are analyzed as follows.

(1) The improved NBCA aims to mine the tourists’ interests based on the POIs they have
visited before and classify the POIs in the destination city based on their interests.
Therefore, the accuracy of classification depends on the selection of feature labels
in the training set and the quantified range values of the feature labels. The closer
the feature labels are to the tourists’ interests, the more accurate the range values of
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feature labels calculated by text mining, and the more accurate the final classification
results will be, which will better match the tourists’ interests. Meanwhile, the selected
feature labels must be independent to ensure the stability of the algorithm. The NBCA
has a very stable efficiency, simple execution mechanism and low time complexity,
and is suitable for the small-scale data classification. In the process of algorithm
modeling, the collected training sets and the POI sets to be classified are all small-scale
datasets, so the algorithm has high computational efficiency.

(2) The goal of the SAFS is to find out the optimal POIs from the already classified ones.
The factors that determine the accuracy of the SAFS model are the coordinates of the
starting points and the POIs. The spatial accessibility and feature attributes have a
decisive impact on the accuracy of POI recommendation. We define weights ε(1) and
ε(2), representing tourists’ preferences for spatial accessibilities and feature attributes.
The higher the weight is, the more emphasis the tourists will lay on certain conditions,
which directly affects the final recommendation results.

(3) The ICSOA generates new individuals by changing the step size. The algorithm
searching for the optimal route includes two parts: interval searching and global
searching. When searching between two POIs, the key factor affecting the optimal
path is the distance between road nodes, which determines the travel time and cost,
and ultimately determines the individual costs of cockroaches. The key factor affect-
ing the optimal route in global searching is the travel costs between POIs. Therefore,
determining road nodes and distances, as well as the cost of path between POIs, is the
key to the algorithm accuracy. The ICSOA adopts the 2-opt idea when searching for
individual costs of cockroaches. The time complexity of searching for the better solu-
tions that replace previous cockroach individuals is not higher than that of factorial
operation; thus, the computational speed is very fast. The algorithm constantly re-
places cockroach individuals and searches for the global optimal solution; thus, it has
a time complexity not higher than that of the sorting algorithm, and the computational
speed is also very fast. Therefore, the key factors affecting algorithm efficiency are the
quantity of road nodes and POIs. Since the set of road nodes between two POIs and
the set of POIs to be visited are both small datasets, the algorithm convergence speed
will be very fast. It can quickly output the global optimal solution and recommend
the optimal POI route for tourists.

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 34 
 

 

(i) Initialize the hindrance function value )()()( )( , kji ttf   for the sub-intervals, 
wk ≤<0 , N∈wk , . 

(ii) Initialize ),( sbZ ( ns ,...,3,2,1= ), )()( )( , hxtSf ( nh ,...,3,2,1= ). 
(iii) Randomly select cockroach )1,(),( )(Rand sbsb ZZ ~  as the target solution. 

(2) All the ),( sbZ crawl to )1,( sbZ  by )( )()( , jitep ttS . 
(i) The path is )()( ),( hxath tSP . 
(ii) When the 1−n number of cockroaches crawl to )1,( sbZ , if there exists a better 

)()( )( , hxtSf  relating to )2,( sbZ , replace the )1,( sbZ  by )2,( sbZ . 

(3) All the cockroaches go back to nest, namely the initial status. 
(i) Set )2,( sbZ  as a new target solution. 
(ii) All the ),( sbZ  crawl to )2,( sbZ  by )( )()( , jitep ttS . 
(iii) The path is )()( ),( hxath tSP . 
(iv) When the 1−n  number of cockroaches crawl to )2,( sbZ , if there exists a better 

)()( )( , hxtSf  relating to )3,( sbZ , replace the )2,( sbZ  by )3,( sbZ . 

(4) Repeat Step 5(1)–Step 5(3) until get to the status when cockroaches crawl to and reach 
the current optimal opt),( sbZ , the searched optimal solution opt),( sbZ  is always unchang-
ing. The searching process ends. 

(5) Output the optimal opt),( sbZ . The related )()( )( , hxtSf  stands for the lowest travel costs 
for ),( )(xtSrC . 

Step 6. Output the route with the optimal hindrance function value )()( )( , hxtSf as the 
optimal POI route for recommendation. 

Figure 4 is the constructed POI route recommendation algorithm based on ICSOA. 
Figure 4A shows the specific algorithm steps for the sub-interval, Figure 4B shows the 
specific algorithm steps for the interval, Figure 4C shows the flow chart of the constructed 
algorithm. 

 
(A) 

Figure 4. Cont.



Symmetry 2024, 16, 424 16 of 34Symmetry 2024, 16, x FOR PEER REVIEW 16 of 34 
 

 

 
(B) 

 
(C) 

Figure 4. The constructed POI route recommendation algorithm based on ICSOA. (A) shows the 
specific algorithm steps for the sub-interval, (B) shows the specific algorithm steps for the interval, 
(C) shows the flow chart of the constructed algorithm. In (A,B), the different colors in sub-interval 
and interval mean the cockroaches, and one color means one cockroach. The blue color in )(iV and

)(it means the control node of the sub-interval and interval. 

3.3. The Analysis on the Algorithm 
The proposed POI route recommendation model based on ICSOA consists of the 

NBCA, the SAFS model and the CSOA model. Among them, the NBCA and the SAFS 

Figure 4. The constructed POI route recommendation algorithm based on ICSOA. (A) shows the
specific algorithm steps for the sub-interval, (B) shows the specific algorithm steps for the interval,
(C) shows the flow chart of the constructed algorithm. In (A,B), the different colors in sub-interval
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t(i) means the control node of the sub-interval and interval.
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4. Experiment and Result Analysis

We designed an experiment to testify the proposed algorithm. The experimental area
is the downtown of Chengdu. The experimental subjects are two visitors who come to
Chengdu. The experiment studies the algorithm in five aspects: (1) Naive Bayes classifi-
cation results; (2) SAFS; (3) POI recommendation results; (4) POI route recommendation
results; (5) the comparison with the commonly used route plan methods.

4.1. Experimental Conditions and Materials

(1) Tourist A and Tourist B both provide 10 once-visited POIs and make judgements on
preferences, C(i): {C(1): favorite; C(2): like; C(3): dislike}.

(2) Tourist A starts the trip from “Tianfu Square”; Tourist B starts the trip from “Chengdu
Railway Station”.

(3) Choose 20 POIs in Chengdu. The feature attributes are l(1): natural view; l(2): human-
ity and history; l(3): consumption and shopping; l(4): amusement and sports. From
tourism big data, obtain sub-labels l(i,j) for each label l(i).

(4) Take 50 text documents to calculate weight TFIDFl(i) . The tourism attributes are l(5):
entrance ticket fee (¥ CNY); l(6): visiting time (hour); l(7): attraction index.

Table 1 shows the results of weights TFIDFl(i) and tourism attribute weights on the
POIs provided by Tourists A and B. Table 2 shows the designed value ranges for NBCA. In
the table, TA(1): The Summer Palace, TA(2): Disneyland, TA(3): Hangzhou West Lake, TA(4):
The Palace Museum, TA(5): Yellow Crane Tower, TA(6): Juzizhou Island, TA(7): Tang Par-
adise, TA(8): Dianchi Lake, TA(9): Pingyao Ancient City, TA(10): Gulangyu Islet, TB(1): Yuyan
Garden, TB(2): Wuhan East Lake, TB(3): Yanta Square, TB(4): Huangguoshu Waterfall, TB(5):
Shaanxi Museum, TB(6): The Imperial Palace of Shenyang, TB(7): Hangzhou West Lake,
TB(8): The Longmen Grottoes, TB(9): Tengwang Pavilion, TB(10): Leshan Grand Buddha.

Table 1. The calculation results of TFIDFl(i) and tourism attribute weights on the POIs.

T-A TA(1) TA(2) TA(3) TA(4) TA(5) TA(6) TA(7) TA(8) TA(9) TA(10)

l(1) 0.013 0.047 0.011 0.028 0.038 0.026 0.075 0.009 0.071 0.013
l(2) 0.030 0.069 0.014 0.018 0.050 0.059 0.103 0.099 0.025 0.075
l(3) 0.079 0.048 0.056 0.076 0.056 0.052 0.056 0.067 0.039 0.070
l(4) 0.040 0.020 0.037 0.033 0.048 0.041 0.050 0.031 0.029 0.047
l(5) 30.00 475.00 0 60.00 80.00 0 120.00 0 130.00 90.00
l(6) 3.00 8.00 5.00 4.00 3.00 3.00 3.00 2.00 3.00 3.00
l(7) 0.94 0.94 0.94 0.96 0.92 0.92 0.88 0.92 0.90 0.88
C(i) C(1) C(3) C(2) C(1) C(2) C(3) C(1) C(2) C(1) C(2)

T-B TB(1) TB(2) TB(3) TB(4) TB(5) TB(6) TB(7) TB(8) TB(9) TB(10)

l(1) 0.033 0.026 0.030 0.018 0.043 0.058 0.011 0.030 0.036 0.021
l(2) 0.042 0.046 0.026 0.078 0.013 0.024 0.014 0.021 0.023 0.013
l(3) 0.138 0.065 0.063 0.054 0.064 0.068 0.056 0.037 0.036 0.051
l(4) 0.042 0.086 0.037 0.030 0.021 0.051 0.037 0.033 0.039 0.032
l(5) 40.00 0 0 160.00 0 50.00 0 120.00 50.00 80.00
l(6) 2.00 4.00 2.00 4.00 3.00 2.00 5.00 4.00 2.00 3.00
l(7) 0.94 0.94 0.90 0.90 0.92 0.92 0.94 0.94 0.92 0.90
C(i) C(2) C(1) C(2) C(1) C(3) C(3) C(1) C(2) C(2) C(1)
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Table 2. The designed value ranges for the proposed classification algorithm.

Value Range 1 Value Range 2 Value Range 3 Value Range 4 Value Range 5

l(1) ∼ l(4) 0 < l(i) ≤ 0.025 0.025 < l(i) ≤ 0.05 0.05 < l(1) ≤ 0.075 0.075 < l(1) ≤ 0.100 l(1) > 0.100
l(5) 0 ≤ l(1) ≤ 50 50 < l(1) ≤ 100 100 < l(1) ≤ 150 150 < l(1) ≤ 200 l(1) > 200
l(6) 0 < l(1) ≤ 1 1 < l(1) ≤ 3 3 < l(1) ≤ 5 l(1) > 5
l(7) l(1) ≤ 0.90 0.90 < l(1) ≤ 0.92 0.92 < l(1) ≤ 0.94 0.94 < l(1) ≤ 0.96 l(1) > 0.96

Chengdu POIs are: Tu(1): Temple of Marquis, Tu(2): Kuanzhai Alley, Tu(3): The People’s
Park Tu(4): Du Fu Thatched Cottage, Tu(5): Chunxi Road, Tu(6): Donghu Park, Tu(7):
Chengdu Happy Valley, Tu(8): Panda Base, Tu(9): Eastern Suburb Memory, Tu(10): Qinglong
Lake Wetland, Tu(11): Jincheng Lake, Tu(12): San Sheng Flower Town, Tu(13): Wenshu
Temple, Tu(14): Qingyang Palace, Tu(15): Jinsha site, Tu(16): Jinli Street, Tu(17): Sichuan
Museum, Tu(18): Tazishan Park, Tu(19): Fenghuang Mountain, Tu(20): Chengdu Zoo.

4.2. Experimental Results and Analysis
4.2.1. Classification Results and Analysis

(1) POI attribute label weight and classification results

Calculated by the improved NBCA, Chengdu POIs are grouped into three categories
by tourists’ interests. Table 3 shows the feature attribute weights TFIDFl(i) and tourism
attribute weights. Table 4 shows the calculated Bayes conditional probability and classifica-
tion results.

Table 3. The calculated TFIDFl(i) and tourism attribute weights of the experimental POIs.

Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

l(1) 0.036 0.026 0.048 0.030 0.011 0.050 0.063 0.173 0.041 0.036
l(2) 0.034 0.054 0.080 0.025 0.056 0.115 0.068 0.150 0.069 0.083
l(3) 0.073 0.101 0.071 0.049 0.041 0.098 0.055 0.143 0.075 0.052
l(4) 0.036 0.064 0.061 0.043 0.069 0.053 0.032 0.095 0.049 0.050
l(5) 50.00 0 0 50.00 0 0 230.00 55.00 0 0
l(6) 3.00 3.00 3.00 3.00 2.00 1.00 8.00 3.00 2.00 2.00
l(7) 0.90 0.90 0.92 0.92 0.92 0.94 0.92 0.92 0.90 0.92

Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)

l(1) 0.051 0.029 0.071 0.093 0.079 0.053 0.034 0.036 0.053 0.121
l(2) 0.058 0.089 0.049 0.041 0.051 0.039 0.032 0.035 0.054 0.088
l(3) 0.057 0.074 0.058 0.041 0.066 0.036 0.036 0.064 0.048 0.089
l(4) 0.080 0.075 0.027 0.037 0.023 0.059 0.034 0.089 0.064 0.101
l(5) 0 0 0 10.00 70.00 0 0 0 0 20.00
l(6) 3.00 6.00 2.00 2.00 2.00 3.00 2.00 3.00 3.00 4.00
l(7) 0.90 0.86 0.92 0.90 0.94 0.90 0.92 0.90 0.90 0.94

Table 4. Bayes conditional probability and classification results of the experimental POIs.

T-A Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

δ(C(1))
0.2373 0.0352 0.0264 0.1055 0.0176 0.0396 0.0281 0.0176 0.1582 0.0791

δ(C(2))
0.4746 0.0527 0.2109 0.2109 0.1172 0.0141 0.0844 0.0313 0.4746 0.6328

δ(C(3))
0.0750 0.0563 0.0750 0.1500 0.0750 0.0188 0.1500 0.0063 0.2250 0.1500

C(i) C(2) C(3) C(2) C(2) C(2) C(1) C(3) C(2) C(2) C(2)

T-A Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)
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Table 4. Cont.

δ(C(1))
0.0703 0.0211 0.1582 0.1055 0.0264 0.0703 0.0791 0.0791 0.0469 0.0264

δ(C(2))
0.1055 0.0633 0.4219 0.1055 0.1055 0.0352 0.2109 0.1582 0.0352 0.0211

δ(C(3))
0.0375 0.0375 0.0500 0.0250 0.0750 0.0125 0.1500 0.0375 0.0375 0.0063

C(i) C(2) C(2) C(2) C(1) C(2) C(1) C(2) C(2) C(1) C(1)

T-B Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

δ(C(1))
0.3164 0.0281 0.0633 0.0703 0.0234 0.0188 0.0234 0.0105 0.2109 0.1582

δ(C(2))
0.7910 0.1318 0.1318 1.0547 0.0586 0.0469 0.0211 0.0178 0.3955 0.3955

δ(C(3))
0.0844 0.0563 0.5063 0.2531 0.0844 0.0188 0.0108 0.0141 0.0970 0.2531

C(i) C(2) C(2) C(3) C(2) C(3) C(2) C(1) C(2) C(2) C(2)

T-B Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)

δ(C(1))
0.0844 0.0844 0.1055 0.0703 0.0422 0.0281 0.0527 0.1898 0.0188 0.0469

δ(C(2))
0.0439 0.0527 0.2637 0.3516 0.0234 0.1172 1.0547 0.2637 0.0586 0.0234

δ(C(3))
0.0844 0.0647 0.2531 0.0141 0.0323 0.0647 0.0844 0.0970 0.0563 0.0054

C(i) C(1) C(1) C(2) C(2) C(1) C(2) C(2) C(2) C(2) C(1)

If the probability meets δ(y(i)) = P(y(i)
∣∣∣C(i))P(C(i)) , the disturbance factor is taken as

ε = 0.5.

(2) The analysis on the classification results

(i) Analyze the Table 4 results.

For Tourist A, POIs are divided into:
1© {C(1): favorite}, including the Donghu Park, the Qingyang Palace, the Jinli Street,

the Fenghuang Mountain and the Chengdu Zoo;
2© {C(2): like}, including the Wuhou Temple, the People’s Park, the Du Fu Thatched

Cottage, the Chunxi Road, the Panda Base, the Eastern Suburb Memory, the Qinglong
Lake Wetland, the Jincheng Lake, the Sansheng Flower Town, the Wenshu Temple
site, the Sichuan Museum and the Tazishan Park;
3© {C(3): dislike}, including the Kuanzhai Alley and the Chengdu Happy Valley.

For Tourist B, POIs are divided into:
1© {C(1): favorite}, including the Chengdu Happy Valley, the Jincheng Lake, the

Sansheng Flower Town, the Jinsha Site and the Chengdu Zoo;
2© {C(2): like}, including the Wuhou Temple, the Kuanzhai Alley, the Du Fu Thatched

Cottage, the East Lake Park, the Panda Base, the Eastern Suburb Memory, the Qinglong
Lake Wetland, the Wenshu Temple, the Qingyang Palace, the Jinli Street, the Sichuan
Museum, the Tazishan Park and the Fenghuang Mountain;
3© {C(3): dislike}, including the People’s Park and the Chunxi Road.

It demonstrates that the proposed algorithm has good classification performance.

(ii) For each POI to be classified, the category corresponding to the maximum
Bayes conditional probability is taken as the category of the POI, which indi-
cates that the feature attributes and tourism attributes of the POI are closest
to the attributes of this category provided by the tourists. It proves that the
proposed algorithm obtains the tourists’ interests and divides the POIs into
the categories provided by the tourists based on individualized interests. It
excludes the uninteresting POIs while recommend the interesting ones.

(iii) When different tourists provide different interests, it will produce discrepant
results. It proves that the proposed algorithm has the feature of universal-
ity, and the classification results are based on the individualized interests of
tourists, which can recommend exclusive POIs for tourists.
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4.2.2. Spatial Accessibility Calculation Results and Analysis

(1) Spatial accessibility calculation results

The initial points for Tourists A and B are: SA: Tianfu Square; SB: Chengdu Railway
Station. The categories are: C(1) “favorite”, C(2) “like” and C(3) “dislike”.

The absolute and relative SAFS of A(Tu(i),S) and A∗(Tu(i),S) are shown in Table 5 and
visualized in Figure 5. Figure 5a–c are the SAFS classified in C(1),C(2) and C(3) for Tourist
A. Figure 5d–f are the SAFS classified in C(1),C(2) and C(3) for Tourist B. In the curves, the
category C(1), C(2) and C(3) are noted in red, orange and blue circles.

Table 5. The calculated A(Tu(i) ,S) and A∗(Tu(i) ,S) for each category POI.

T-A Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

A(Tu(i) ,SA) 0.4762 0.7143 1.2658 0.2778 0.6667 0.1961 0.1298 0.0862 0.1786 0.0806
A∗(Tu(i) ,SA) 0.0726 0.1089 0.1930 0.0424 0.1016 0.0299 0.0198 0.0131 0.0272 0.0123

T-A Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)

A(Tu(i) ,SA) 0.1031 0.0862 0.4762 0.4348 0.1724 0.4762 0.3226 0.1639 0.1087 0.1429
A∗(Tu(i) ,SA) 0.0157 0.0131 0.0726 0.0663 0.0263 0.0726 0.0492 0.0250 0.0166 0.0218

T-B Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

A(Tu(i) ,SB) 0.1667 0.2439 0.2222 0.1695 0.2128 0.1124 0.2128 0.1235 0.1786 0.0741
A∗(Tu(i) ,SB) 0.0459 0.0671 0.0611 0.0466 0.0585 0.0309 0.0585 0.0340 0.0491 0.0204

T-B Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)

A(Tu(i) ,SB) 0.0714 0.0662 0.4348 0.2083 0.1667 0.1667 0.1852 0.1174 0.2083 0.2941
A∗(Tu(i) ,SB) 0.0196 0.0182 0.1196 0.0573 0.0459 0.0459 0.0509 0.0323 0.0573 0.0809
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(2) Analysis on the spatial accessibility

(i) As to Table 5, different spatial attributes of POIs cause different travel costs:
the weaker the SAFS is, the higher the travel costs will be for the tourists to
reach the POI.

1© For Tourist A, in the “favorite” category, Jinli Street has the highest spatial field
strengths (SFS) of 0.4762 and 0.0726, and Fenghuang Mountain has the lowest SFSs
of 0.1087 and 0.0166. Under the same conditions of interests, the travel costs to Jinli
Street are the lowest; in the “like” category, The People’s Park has the highest SFSs of
1.2658 and 0.1930, the Qinglong Lake Wetland has the lowest SFS of 0.0806 and 0.0123.
In the same interests, the travel costs to the People’s Park is the lowest.
2© For Tourist B, in the “favorite” category, the Chengdu Zoo has the highest SFSs

of 0.2941 and 0.0809, the Sansheng flower Town has the lowest SFSs of 0.0662 and
0.0182. In the same interests, the travel costs to Chengdu Zoo are the lowest; in the
“like” category, the Wenshu Temple has the highest SFSs of 0.4348 and 0.1196, the
Qinglong Lake Wetland has the lowest SFSs of 0.0741 and 0.0204. In the same interests,
the travel costs to Wenshu Temple are the lowest. POIs in the “dislike” category are
not recommended.

(ii) Analyze Figure 5. According to the SAFS model, each POI is distributed in the
unit grid g(x,y) of the spatial grid G formed by the urban geographical space.
The position (x, y) in the grid G represents the coordinate position in the urban
geographical space. The SFS distribution of POIs relative to the initial points
of Tourist A and B, Tianfu Square and Chengdu Railway Station, are totally
discrepant. The higher the peak value is, the stronger the spatial accessibility
will be.

(iii) The experimental results verify that the proposed algorithm can not only
output POIs with attributes matching tourists’ interests, but also output POIs
with the best spatial distribution and the lowest travel costs.

4.2.3. POI Recommendation Results and Analysis

(1) POI recommendation results

(i) Based on data in Tables 4 and 5, the recommendation index σ(Tu(i))
is calculated.

Tourist A lays the same importance on POI attribute and spatial accessibility;
set ε(1) = 0.5, ε(2) = 0.5. Tourist B lays more emphasis on the travel costs; set
ε(1) = 0.3, ε(2) = 0.7.

1© Table 6 shows the calculation results of the recommendation index σ(Tu(i))
.

Table 6. Recommendation index calculation results for the POIs.

T-A Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

σ(Tu(i))
0.2736 0.0826 0.2020 0.1267 0.1094 0.0348 0.0849 0.0222 0.2509 0.3226

T-A Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)

σ(Tu(i))
0.0606 0.0382 0.2473 0.0859 0.0659 0.0715 0.1301 0.0916 0.0318 0.0241

T-B Tu(1) Tu(2) Tu(3) Tu(4) Tu(5) Tu(6) Tu(7) Tu(8) Tu(9) Tu(10)

σ(Tu(i))
0.2694 0.0865 0.1947 0.3490 0.0663 0.0357 0.0480 0.0291 0.1530 0.1329

T-B Tu(11) Tu(12) Tu(13) Tu(14) Tu(15) Tu(16) Tu(17) Tu(18) Tu(19) Tu(20)

σ(Tu(i))
0.0390 0.0381 0.1628 0.1456 0.0448 0.0673 0.3520 0.1017 0.0577 0.0707

2© Figure 6 shows the curves of the index σ(Tu(i))
. Different colors represent different

categories. The red points relate to C(1) “favorite”, the orange points relate to C(2)
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“like” and the blue points relate to C(3) “dislike”. Figure 6a,b are for Tourists A and
B, respectively.
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(ii) From Table 6 and the Figures 6 and 7 results, the four recommended POIs for
Tourist A are:

Tu(1): Temple of Marquis;
Tu(9): Eastern Suburb Memory;
Tu(10): Qinglong Lake Wetland;
Tu(13): Wenshu Temple.
The four recommended POIs for the Tourist B are:
Tu(1): Temple of Marquis;
Tu(3): The People’s Park;
Tu(4): Du Fu Thatched Cottage;
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Tu(7): Chengdu Happy Valley.
(2) Analysis on the recommendation results

(i) The demand weight ε(x) directly affects the recommendation results.
1©When ε(1) > ε(2), tourists lay more emphasis on the attributes;
2©When ε(1) < ε(2), tourists lay more emphasis on the spatial accessibility;
3©When ε(1) = ε(2), tourists lay equal importance on the two constraint factors.

In this experiment, Tourist A lays equal emphasis on both constraint factors, while
Tourist B lays more emphasis on the spatial accessibility. The recommendation results
are completely different with different weights ε(x). It proves that the proposed
algorithm is greatly influenced by the subjective needs of individual tourists, and it
can recommend POIs that match tourists’ interests with the lowest travel costs.

(ii) Analyze Table 6 and Figure 6. The POIs with the highest index σ(y(i)) are classi-
fied into the category “favorite” or “like” and are preferentially recommended.
The same POI has different recommendation indexes influenced by the weights
ε(x), and the recommendation degree shows a fluctuating trend.

1© As to the weight ε(x) of Tourist A, the average recommendation index of POIs is
0.1178, with a variance of 0.0079.
2© As to the weight ε(x) of Tourist B, the average recommendation index of POIs is

0.1222, with a variance of 0.0095.
This indicates that the average recommendation index for Tourist B is higher. For the
fluctuating trend, the smaller variance of Tourist A makes the curve fluctuation closer
to the average recommendation value. It indicates that under the given weight of
Tourist A, the recommendation degree is more stable, and the recommendation proba-
bility for each POI is more balanced, but for Tourist B, the recommendation degree sta-
bility is lower, and the recommendation probability for each POI is more discrepant.

(iii) Analyzing Figure 7, the POIs are grouped into different categories, the recom-
mendation degree for each category is different.

1© For Tourist A, the highest recommendation degree in the category “favorite” is
0.0859, while the highest recommendation degree in the category “like” is 0.3226,
which is generally higher than that in the category “favorite”. Therefore, the POIs in
the category “favorite” are recommended for Tourist A.
2© For Tourist B, the highest recommendation degree in the category “favorite” is

0.0707, while the highest recommendation degree in the category “like” is 0.3520,
which is also generally higher than that in the category “favorite”. Therefore, the POIs
in the category “favorite” are recommended for Tourist B. The POIs in the category
“dislike” will not be recommended.

4.2.4. POI Route Recommendation Results and Analysis

(1) POI route recommendation results

(i) Tourist A chooses electric bicycle; Tourist B chooses taxi. The average speed of
the electric bicycle in the downtown area is set as 10 km/h, and the average
speed of the taxi in the downtown area is set as 20 km/h. The charging rule
for the electric bicycle is: starting price 2 CNY/15 min; exceeding 15 min,
1 CNY/10 min. The charging rule for taxi is: starting price 8 CNY/2 km,
exceeding 2 km, 1.9 CNY/km. Initial points are SA: Tianfu Square and SB:
Chengdu Railway Station.

(ii) Based on the recommended POIs, combined with the geospatial and transporta-
tion conditions of Chengdu, the cockroach crawling sub-intervals, cockroach
crawling intervals and control nodes within the sub-intervals are confirmed.
The ICSOA is used to search for the shortest path within each sub-interval,
by which the hindrance factor ζ(i) and hindrance function f (t(i), t(j))(k) of the
cockroach crawling sub-interval are calculated.
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The recommended POIs for Tourist A are noted as:
Tu(1): Temple of Marquis (a1);
Tu(9): Eastern Suburb Memory (a2);
Tu(10): Qinglong Lake Wetland (a3);
Tu(13): Wenshu Temple (a4).
The recommended POIs for Tourist B are noted as:
Tu(1): Temple of Marquis (b1);
Tu(3): The People’s Park (b2);
Tu(4): Du Fu Thatched Cottage (b3);
Tu(7): Chengdu Happy Valley (b4).

(iii) Table 7 shows the sub-interval hindrance factors ζ(i) and hindrance function
values f (t(i), t(j))(k) output by ICSOA. Table 8 shows the cockroach crawling

intervals Cr(S, t(x)) and hindrance function values f (S, t(x)) output by ICSOA.
a1234 represents the cockroach crawling interval formed by Tourist A starting
from SA, followed by Temple of Marquis (a1), Eastern Suburb Memory (a2),
Qinglong Lake Wetland (a3) and Wen Shu Temple (a4).

Table 7. Sub-interval hindrance factors ζ(i) and hindrance function values f (t(i), t(j))(k) output

by ICSOA.

T-A Cr(SA, a(1)) Cr(SA, a(2)) Cr(SA, a(3)) Cr(SA, a(4))

ζ(1) 0.5319 0.2273 0.1319 0.5495
ζ(2) 0.4348 0.1538 0.0847 0.4545
ζ(3) 4.3478 1.5385 0.8475 4.5455

f (t(i), t(j))(k) 5.3145 1.9196 1.0641 5.5495

T-A Cr(a(1), a(2)) Cr(a(1), a(3)) Cr(a(1), a(4)) Cr(a(2), a(3)) Cr(a(2), a(4)) Cr(a(3), a(4))

ζ(1) 0.1712 0.1109 0.3012 0.2075 0.2591 0.1188
ζ(2) 0.1124 0.0704 0.2128 0.1389 0.1786 0.0758
ζ(3) 1.1236 0.7042 2.1277 1.3889 1.7857 0.7576

f (t(i), t(j))(k) 1.4072 0.8855 2.6416 1.7352 2.2234 0.9521

T-B Cr(SB, b(1)) Cr(SB, b(2)) Cr(SB, b(3)) Cr(SB, b(4))

ζ(1) 0.0482 0.0674 0.0510 0.0571
ζ(2) 0.1149 0.1786 0.1235 0.1429
ζ(3) 2.2989 3.5714 2.4691 2.8571

f (t(i), t(j))(k) 2.4620 3.8174 2.6436 3.0571

T-B Cr(b(1), b(2)) Cr(b(1), b(3)) Cr(b(1), b(4)) Cr(b(2), b(3)) Cr(b(2), b(4)) Cr(b(3), b(4))

ζ(1) 0.0991 0.0808 0.0390 0.0938 0.0449 0.0453
ζ(2) 0.3226 0.2326 0.0885 0.2941 0.1053 0.1064
ζ(3) 6.4516 4.6512 1.7699 5.8824 2.1053 2.1277

f (t(i), t(j))(k) 6.8733 4.9646 1.8974 6.2703 2.2555 2.2794

Table 8. Function values f (t(i), t(j)) and f (S, t(x)) output by ICSOA.

T-A f (t(i), t(j))(1) f (t(i), t(j))(2) f (t(i), t(j))(3) f (t(i), t(j))(4) f (S, t(x)) T-B f (t(i), t(j))(1) f (t(i), t(j))(2) f (t(i), t(j))(3) f (t(i), t(j))(4) f (S, t(x))

a1234 5.3145 1.4072 1.7352 0.9521 2.5254 b1234 2.4620 6.8733 6.2703 2.2794 1.1499
a1243 5.3145 1.4072 2.2234 0.9521 2.3989 b1243 2.4620 6.8733 2.2555 2.2794 1.4337
a1324 5.3145 0.8855 1.7352 2.2234 2.3435 b1324 2.4620 4.9646 6.2703 2.2555 1.2104
a1342 5.3145 0.8855 0.9521 2.2234 2.8175 b1342 2.4620 4.9646 2.2794 2.2555 1.4897
a1423 5.3145 2.6416 2.2234 1.7352 1.5928 b1423 2.4620 1.8974 2.2555 6.2703 1.5361
a1432 5.3145 2.6416 0.9521 1.7352 2.1933 b1432 2.4620 1.8974 2.2794 6.2703 1.5314
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Table 8. Cont.

T-A f (t(i), t(j))(1) f (t(i), t(j))(2) f (t(i), t(j))(3) f (t(i), t(j))(4) f (S, t(x)) T-B f (t(i), t(j))(1) f (t(i), t(j))(2) f (t(i), t(j))(3) f (t(i), t(j))(4) f (S, t(x))

a2134 1.9196 1.4072 0.8855 0.9521 3.4112 b2134 3.8174 6.8733 4.9646 2.2794 1.0476
a2143 1.9196 1.4072 2.6416 0.9521 2.6604 b2143 3.8174 6.8733 1.8974 2.2794 1.3732
a2314 1.9196 1.7352 0.8855 2.6416 2.6051 b2314 3.8174 6.2703 4.9646 1.8974 1.1499
a2341 1.9196 1.7352 0.9521 2.6416 2.5261 b2341 3.8174 6.2703 2.2794 1.8974 1.3872
a2413 1.9196 2.2234 2.6416 0.8855 2.4786 b2413 3.8174 2.2555 1.8974 4.9646 1.4338
a2431 1.9196 2.2234 0.9521 0.8855 3.1503 b2431 3.8174 2.2555 2.2794 4.9646 1.3455
a3124 1.0641 0.8855 1.4072 2.2234 3.2295 b3124 2.6436 4.9646 6.8733 2.2555 1.1685
a3142 1.0641 0.8855 2.6416 2.2234 2.8974 b3142 2.6436 4.9646 1.8974 2.2555 1.5501
a3214 1.0641 1.7352 1.4072 2.6416 2.6053 b3214 2.6436 6.2703 6.8733 1.8974 1.2103
a3241 1.0641 1.7352 2.2234 2.6416 2.3444 b3241 2.6436 6.2703 2.2555 1.8974 1.5082
a3412 1.0641 0.9521 2.6416 1.4072 3.0793 b3412 2.6436 2.2794 1.8974 6.8733 1.4895
a3421 1.0641 0.9521 2.2234 1.4072 3.1505 b3421 3.0571 2.2794 2.2555 6.8733 1.3547
a4123 5.5495 2.6416 1.4072 1.7352 1.8457 b4123 3.0571 1.8974 6.8733 6.2703 1.1591
a4132 5.5495 2.6416 0.8855 1.7352 2.2644 b4132 3.0571 1.8974 4.9646 6.2703 1.2151
a4213 5.5495 2.2234 1.4072 0.8855 2.4699 b4213 3.0571 2.2555 6.8733 4.9646 1.1174
a4231 5.5495 2.2234 1.7352 0.8855 2.3356 b4231 3.0571 2.2555 6.2703 4.9646 1.1314
a4312 5.5495 0.9521 0.8855 1.4072 3.0704 b4312 3.0571 2.2794 4.9646 6.8733 1.1127
a4321 5.5495 0.9521 1.7352 1.4072 2.5174 b4321 3.0571 2.2794 6.2703 6.8733 1.0708

(iv) Figure 8a,b show the fluctuating curves of hindrance function values in sub-
intervals of Tourist A and B. Figure 8c,d show the fluctuating curves of hin-
drance function values in intervals searched by the ICSOA of Tourist A and B.
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Figure 8. Trends of the hindrance function values in sub-intervals and the hindrance function values
in intervals. (a,b) show the fluctuating curves of hindrance function values in sub-intervals of TouristS
A and B. (c,d) show the fluctuating curves of hindrance function values in intervals searched by the
ICSOA of TouristS A and B.

As to Tourist A, interval a1423 relates to the minimum interval hindrance function
value. Tourist A taking the route “SA: Tianfu Square—Temple of Marquis (a1)—Wen shu
Temple (a4)—Eastern Suburb Memory (a2)—Qinglong Lake Wetland (a3)” for traveling will
bring the lowest costs.
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As to Tourist B, interval b2134 relates to the minimum interval hindrance function value.
Tourist B taking the route “SB: Chengdu railway station—the People’s park (b2)-Temple of
Marquis (b1)—Du Fu Thatched Cottage (b3)—Chengdu Happy Valley (b4)” for traveling
will bring the lowest costs.

(2) Analysis on the POI route recommendation results

(i) Analyze Table 7. The hindrance factor of the sub-interval is determined by
the ICSOA within the sub-interval. It can find the shortest path within the
sub-interval, resulting in the lowest travel distance, travel fee and travel time.

1© The sub-interval hindrance factor is inversely proportional to the travel distance,
travel fee and travel time.
2© The sub-interval hindrance function value is also positively correlated with the

sub-interval hindrance factor, and negatively correlated with the travel distance, travel
fee and travel time.
3© The higher the values of the travel distance, travel fee and travel time are, the

smaller the sub-interval hindrance factors will be, and the higher the sub-interval
hindrance function values will be, the higher the travel costs will be in the sub-interval;
tourists traveling through all sub-intervals will cause higher travel costs.

(ii) Analyze Figure 8a,b. The hindrance function values generated by tourists in
different sub-intervals all show fluctuating trends.

1©As to Tourist A, the minimum sub-interval hindrance value is 0.8855, at Cr(a(1), a(3)),
indicating that the travel costs between Temple of Marquis and Qinglong Lake
Wetland is the highest; The maximum sub-interval hindrance value is 5.5495, at
Cr(SA, a(4)), indicating that the travel costs between Tianfu Square and Wenshu Tem-
ple are the lowest.

2© As to Tourist B, the minimum sub-interval hindrance value is 1.8974, indicating
that the travel costs between Temple of Marquis and Chengdu Happy Valley are
the highest; the maximum sub-interval hindrance value is 6.8733, indicating that the
travel costs between Temple of Marquis and the People’s Park are the lowest.

(iii) Analyze Table 8. The interval hindrance function value is determined by the
ICSOA within the interval. The algorithm can find out the shortest path within
the interval, making the travel costs lowest.

The interval hindrance function value is negatively correlated with the sub-interval
hindrance function value. The higher the sub-interval hindrance function value is,
the smaller the interval hindrance function value will be and the lower travel costs
will be; the route will be more likely recommended. Conversely, the smaller the
sub-interval hindrance function value is, the larger the interval hindrance function
value will be and higher travel costs will be produced; the route’s probability of being
recommended will be lowered.

(iv) Analyze Figure 8c,d. The hindrance function values corresponding to different
intervals all show fluctuating trends.

1© As to Tourist A, the minimum interval hindrance value is 1.5928 for route a1423; the
maximum interval hindrance value is 3.4112 for route a2134. This indicates that the
travel costs of route a1423 are the lowest, while those for the route a2134 are the highest.
2© As to Tourist B, the minimum interval hindrance value is 1.0476 for route b2134; the

maximum interval hindrance value is 1.5501 for route b3142. This indicates that the
travel costs of route b2134 are the lowest, while those for the route b3142 are the highest.

(v) Tables 7 and 8 and Figure 8 prove that ICSOA can find out the global optimal
solution. When cockroach swarm crawling towards the current optimal solu-
tion, each step can find out a feasible solution until all solutions are traversed.
It traverses all control nodes within the sub-interval and all POIs within the
interval, allowing the algorithm to jump out of the constraints of local optimal
solutions and finally find out the global optimal solution.
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4.2.5. Route Method Comparison and Analysis

(1) Selection of comparative algorithms and design of comparative experiment
To verify the advantages of the proposed algorithm, a comparative experiment is
designed in this section. Referring to the comparative experimental methods used in
the literature figure [28,29], combined with the actual travel experiences of tourists,
the algorithms commonly used for map route searching are selected as the control
group in the experiment. The proposed algorithm is set as the experimental group.
The experiment compares the algorithms in the following aspects:

(i) The comparison of the optimal output route and cost function of each algorithm;
(ii) The advantages of the experimental group algorithm in reducing travel costs;
(iii) The advantages of the experimental group algorithm in terms of computational

complexity.

The principle and method for selecting control group algorithms in the comparative
experiment are as follows.

(i) In real tourism scenarios, tourists generally search for POI routes through elec-
tronic maps, which plan routes that meet travel requirements for tourists based
on urban geographical and transportation conditions. Due to the tendency of
map algorithms to overlook certain road nodes between two POIs, it is possi-
ble that the routes searched in sub-intervals Cr(t(i), t(j)) may not be the global
optimal solutions. Therefore, the traditional map route searching methods
have limitations. Our proposed algorithm is based on ICSOA. Each possible
road node is a node included in the individual cockroach, and the searching
objective is the global optimal solution. In terms of algorithm design and logic,
our proposed algorithm has advantages over the control group algorithms.

(ii) The commonly used algorithms for map route searching include the Dijkstra
algorithm and A* algorithm, both of which are shortest-path-searching algo-
rithms. They themselves have certain drawbacks. For example, Dijkstra is a
local greedy searching algorithm that does not traverse all feasible solutions,
resulting in low computational efficiency when there are too many nodes.
The A* algorithm also does not traverse all feasible solutions, resulting in
low computational efficiency when there are too many nodes. Our proposed
algorithm essentially compares the cost functions of cockroach individuals.
Firstly, the algorithm of searching for the quantity of cockroach individuals
is the factorial calculation, while the process of calculating the cost of each
cockroach individual is linear, with fast computational efficiency. The process
of comparing individual costs of cockroaches uses the sorting algorithm, which
has high computational efficiency. The comparative experiment sets Tencent
Maps (TCA) and GaoDe Maps (GDA) as the control group, using Dijkstra
Dijkstra algorithm and A* algorithm, respectively. The proposed algorithm
ICSOA is the experimental group.

(iii) The control group algorithms are used for map route searching and they
are the most classical methods among route searching algorithms. Based on
the conventional behaviors of tourists in tourism activities and the univer-
sality and convenience of the current electronic maps on planning routes,
the map searching algorithm is determined as the control group algorithm.
The comparison between the proposed algorithm and the classical map route
searching algorithms not only has academic research value but also practical
application value, which can provide new ideas for improving map route
searching algorithms.

According to the principle and method in determining the control group algorithms,
the specific content of the comparative experiment is designed as follows. The con-
trol group algorithms are TCA and GDA, while the experimental group algorithm
is ICSOA.
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(i) Set the same POIs as the algorithm nodes.

Tourist A will visit: Tu(1): Wu hou Temple (a1), Tu(9): Eastern Suburb Memory (a2),
Tu(10): Qinglong Lake Wetland (a3), Tu(13): Wenshu Academy (a4);
Tourist B will visit: Tu(1): Wuhou Temple (b1), Tu(3): The People’s Park (b2), Tu(4): Du
Fu Thatched Cottage (b3), and Tu(7): Happy Valley (b4).

(ii) Set the same transportation mode. Tourist A chooses the electric bicycle, while
Tourist B chooses the taxi. The average speed of a taxi in the urban area is
set as 20 km/h. The charging rules for the electric bicycle are: the initial time
range, 2 CNY/15 min; exceeding the initial time, 1 CNY/10 min. The charging
rules for a taxi are: the initial time range, 8 CNY/2 km; exceeding the initial
time, 1.9 CNY/km. Tourist A’s starting point is the Tianfu Square, Tourist B’s
starting point is the Chengdu Railway Station.

(iii) Take the travel conditions provided by Tourists A and B as the comparative
experimental conditions, and each algorithm searches for the optimal route and
two suboptimal routes that pass through the starting point and all POIs without
repeating any node. Make comparisons on the output optimal routes and costs,
route cost differences and algorithm time complexity on the three algorithms.

(2) Comparison results on the route algorithms

(i) Table 9 shows the three optimal routes and relative data searched by TCA,
GDA and ICSOA under the same experimental conditions. The number 1 is
the optimal route and the numbers 2 and 3 are the suboptimal routes.

Table 9. The three optimal POI routes and route data searched by ICSOA, TCA and GDA.

T-A Cr(S, t(x)) f (t(i), t(j))(1) f (t(i), t(j))(2) f (t(i), t(j))(3) f (t(i), t(j))(4) f (S, t(x))

ICSOA
Route-1 a1423 5.3145 2.6416 2.2234 1.7352 1.5928
Route-2 a4123 5.5495 2.6416 1.4072 1.7352 1.8457
Route-3 a1432 5.3145 2.6416 0.9521 1.7352 2.1933

TCA
Route-1 a1423 5.3145 2.6416 1.8630 1.7118 1.6877
Route-2 a4123 5.3145 2.6416 1.3766 1.7118 1.8773
Route-3 a1432 5.3145 2.6416 0.9380 1.7118 2.2170

GDA
Route-1 a1423 4.5458 2.4857 2.1119 1.1618 1.9565
Route-2 a4123 4.7162 2.4857 1.3473 1.1618 2.2173
Route-3 a1243 4.5458 1.3473 2.1119 0.8223 2.6519

T-B Cr(S, t(x)) f (t(i), t(j))(1) f (t(i), t(j))(2) f (t(i), t(j))(3) f (t(i), t(j))(4) f (S, t(x))

ICSOA
Route-1 b2134 3.8174 6.8733 4.9646 2.2794 1.0476
Route-2 b4321 3.0571 2.2794 6.2703 6.8733 1.0708
Route-3 b4312 3.0571 2.2794 4.9646 6.8733 1.1127

TCA
Route-1 b2134 1.9623 3.6475 2.5796 0.9780 2.1939
Route-2 b4321 1.3920 0.9780 3.3291 3.6475 2.3154
Route-3 b1234 1.3126 3.6475 3.3291 0.9780 2.3589

GDA
Route-1 b2134 1.8974 3.1461 2.5796 1.1319 2.1160
Route-2 b2314 1.8974 3.3291 2.5796 1.0124 2.2028
Route-3 b4321 1.3920 1.1319 3.3291 3.1461 2.2201

(ii) Figure 9 shows the comparison data curves between the optimal route 1 (Route
1), suboptimal route 2 (Route 2) and suboptimal route 3 (Route 3) of the experi-
mental and control group. Figure 9a–c represent the 1–3 routes of Tourist A, red
corresponding to ICSOA, green corresponding to TCA and blue corresponding
to GDA. Figure 9d–f represent the 1–3 routes of Tourist B, red corresponding
to ICSOA, green corresponding to TCA and blue corresponding to GDA.
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Figure 9. The comparison curves between the Route 1~3 by the three methods ICSOA, TCA and GDA.
(a–c) represent the 1–3 routes of Tourist A, red corresponding to ICSOA, green corresponding to TCA
and blue corresponding to GDA. (d–f) represent the 1–3 routes of Tourist B, red corresponding to
ICSOA, green corresponding to TCA and blue corresponding to GDA.

(iii) Based on the experimental results in Table 9, extract the total cost f (S, t(x)) of
each route output by each algorithm. Taking a tourist as an example, for the
optimal Route 1, calculate the difference in route cost between ICSOA and TCA,
as well as between ICSOA and GDA, and calculate the ratio of cost reduction of
ICSOA compared to TCA and ICSOA compared to GDA. Similarly, for Route
2 and Route 3, the same calculations are also performed and the experimental
results in Table 10 are obtained. It proves that the proposed algorithm ICSOA
has advantages over the control group algorithms and can effectively reduce
travel costs.

Table 10. The reduced ratio on the travel costs for ICSOA comparing to TCA and GDA.

Route 1 (Optimal) Route 2 (Sub-Optimal) Route 3 (Sub-Optimal)

T-A
ICSOA-TCA 5.62% 1.68% 1.07%
ICSOA-GDA 18.60% 16.76% 17.29%

T-B
ICSOA-TCA 52.25% 53.75% 52.83%
ICSOA-GDA 50.49% 51.39% 49.88%

(iv) Table 10 shows the ratio of cost reduction for ICSOA compared to TCA and
GDA. “ICSOA-TCA” in the table represents the ratio of cost reduction in the ex-
perimental group’s ICSOA compared to the control group’s TCA, and “ICSOA-
GDA” represents the ratio of cost reduction in the experimental group’s ICSOA
compared to the control group’s GDA. T-A represents Tourist A, T-B represents
Tourist B.

(v) Analyze the time complexity on the experimental group algorithm and the
control group algorithms. In the route map graph composed by POIs, the
number of nodes is n, which is the number of POIs.

1© The time complexity of the Dijkstra algorithm used in the control group TCA is
determined by the number of nodes, and it is a kind of single-source shortest path
searching method.
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2© The time complexity of the A* algorithm used by the control group GDA is also
determined by the number of nodes, and it is a kind of heuristic searching algorithm
and has a faster computational efficiency than the Dijkstra algorithm.
3© The proposed algorithm uses factorials to calculate the cost function of individual

cockroach. When searching for the optimal individual cockroach, the maximum
searching algorithm is used, and its convergence speed is very fast. According to the
analysis, the time complexities of the three algorithms are shown in Table 11.

Table 11. The comparison on time complexities of ICSOA, TCA and GDA.

TCA GDA ICSOA

Time Complexity O(n2) O(n log n) O(n)

(3) Analysis on the route comparison results

(i) Analyze the Table 9 and Figure 9. For each route, the sub-interval hindrance
function values of the three algorithms all show fluctuating trends.

1© For Tourist A, the TCA, GDA and ICSOA curves of route 1 are close, but overall,
the hindrance function values of the ICSOA sub-intervals are relatively higher. For
route 3, the TCA and ICSOA curves are relatively close, while the GDA and ICSOA
curves are significantly different. Overall, the hindrance function values of the ICSOA
sub-intervals are higher. Therefore, the overall performance of ICSOA is the best, and
its output interval hindrance function values are the lowest in routes 1, 2 and 3; the
travel costs are also the lowest. TCA performance is close to ICSOA, while the interval
hindrance function value of GDA is the highest, so its route costs are also the highest.
2© For Tourist B, the TCA and GDA curves of route 1 are relatively close, and the sub-

interval hindrance function values of ICSOA are higher than those of TCA and GDA.
The sub-interval hindrance function values of ICSOA in routes 2 and 3 are generally
higher than those of TCA and GDA. Therefore, ICSOA has the lowest hindrance
function values in the interval of routes 1, 2 and 3, and its optimal and suboptimal
routes all have lower costs than TCA and GDA.

(ii) Analyze Table 10, under the conditions of the two tourist samples:
1© For the optimal route 1, the lowest cost reduction of ICSOA is 5.62% compared to

the control group methods, and the highest cost reduction is 52.25%;
2© For the suboptimal route 2, the lowest cost reduction of ICSOA is 1.68% compared

to the control group methods, and the highest cost reduction is 53.75%;
3© For the suboptimal route 3, the lowest cost reduction of ICSOA is 1.07% compared

to the control group methods, and the highest cost reduction is 52.83%.
The ICSOA generates lower travel costs on both optimal and suboptimal routes
compared to TCA and GDA, which can help tourists effectively save travel expenses.

(iii) Analyze the time complexity of each algorithm in Table 11.
1© The control group uses the Dijkstra algorithm and A* algorithm to search for the

shortest route, with the time complexities of O(n2) and O(n log n). As to the time
complexity O(n) of the experimental group algorithm, when the number n reaches
a certain level, the time complexity of the experimental group algorithm is always
lower than that of the control group algorithms. The higher the value of n is, the
higher efficiency of the experimental algorithm will be, and the lower time complexity
will be, compared to the control group algorithms.

2© In actual tourism scenarios, the value of n is usually n ≥ 3, that is, a complete
POI route is composed of at least three POIs. Therefore, when the number of POIs
to be visited is larger than 3, the proposed algorithm has the advantage of higher
computational efficiency. When the number of POIs to be visited is less than 3, the
computational efficiency of the three algorithms is equivalent, but the route planning
algorithm has no practical significance.
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Based on the above analysis, the time complexity of the proposed algorithm is lower
than that of the control group algorithms, and it converges the fastest and has the
highest efficiency when searching for the optimal route.

(iv) This proves that the proposed ICSOA can realize the optimal POI route rec-
ommendation based on the selected optimal POIs under the constraints of
tourists’ traveling conditions and geospatial conditions. It can provide tourists
with POI routes that best match their interests and have the lowest costs. Com-
pared with the commonly used TCA and GDA methods, ICSOA has better
performance in the aspect of reducing travel costs.

5. Conclusions and Prospects
5.1. The Conclusions on the Research

On the basis of analyzing the existing problems in the current tourism recommenda-
tion research, this paper proposes a tourism recommendation model based on improved
Naive Bayes classification space accessibility (NBCSA) and an improved cockroach swarm
optimization algorithm (ICSOA). It mainly solves three problems. First, an improved Naive
Bayes classification algorithm (NBCA) fused with a disturbance factor is constructed by
using historical POIs provided by tourists as training data set. It realizes the POIs’ classifi-
cation in the destination city under the constraints of tourists’ requirements, which makes
the POIs match tourists’ interests. Second, based on the geographical and transportation
constraints, a spatial accessibility field strength (SAFS) model based on Naive Bayes classifi-
cation is established. The tourist demand weights are introduced into the model. It obtains
the POIs with the best spatial distribution and the lowest travel costs from the categories. It
realizes that the recommended POIs simultaneously satisfy interests and produce lowest
spatial costs. Third, based on the recommended POIs, the geographical constraint factors
are introduced to propose the ICSOA to realize the optimal POI route recommendation.
An experiment is performed to compare the TCA and GDA methods with the ICSOA. The
experimental results show that the ICSOA can effectively classify POIs based on tourists’
interests, and visually output SAFS of the POIs. The ICSOA can output POI routes with
lower travel costs. In the optimal routes, compared with the control group algorithms, the
ICSOA can reduce costs by 5.62% at the lowest and 52.25% at the highest, and effectively
reduce the travel expenses.

5.2. The Potential Applications of the Recommendation Model

The proposed tourism recommendation model can provide new methods for smart
tourism research. It plays a positive role in promoting the development of tourism informa-
tization and intelligence. The improved NBCA, SAFS model and the ICSOA in the model
have broad application prospects.

Firstly, the improved NBCA could be used to develop an intelligent system for tourist
classification, which can classify tourists with different cultural contexts, interest conditions
and tourism requirements, providing reference for tourism decision-making, marketing
and planning. An intelligent system for POI classification could also be developed, which
can classify POIs in the destination city based on user interests, and can also manage,
plan and recommend POIs. In addition, the text mining algorithm constructed in the
classification algorithm could be used to develop the tourism text analysis and mining
system, which can mine and analyze the tourism encyclopedia big data, tourism evaluation
data, etc., and provide decision-making support for tourism official departments.

Secondly, the SAFS model could be used to construct a spatial accessibility distribution
model for the urban, municipal and provincial POIs. A dynamic distribution map could
be established from multiple dimensions such as spatial distances, functional attributes,
popularity levels and travel costs, providing tourists with visualized three-dimensional
maps and decision-making support for planning their itineraries. In addition, the SAFS
model could be used for decision-making in tourism transportation deployment, and
in the planning of tourism transportation projects based on the spatial field strength
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of different POIs, determining the locations of tourism service centers, and conducting
buffer zone analysis of tourism service centers, which will provide convenient services for
tourists’ traveling.

Thirdly, based on the ICSOA, the functions of existing electronic maps could be
optimized to improve the accuracy and efficiency of searching for the optimal routes. The
algorithm could be used to develop a POI route planning system, providing decision
support for tourists to make POI route schedules. Combining with the intelligent connected
vehicle technology, it could be used to develop a tourism intelligent connected vehicle route
guidance system, which includes buffer zone POI searching, POI recommendation and
intelligent vehicle route guidance as the system functions, providing convenient services for
future tourists’ traveling. Combined with tourism emergency management, the algorithm
could be used to construct the spatial distribution relationship between emergency shelters
and POIs in tourism cities, plan emergency escape routes and provide decision-making
solutions for urban emergencies.

5.3. Future Research Directions and Challenges

Based on this study, the following future research directions and challenges are pro-
posed. Firstly, we introduce the concept of tourist demand weight when constructing
the POI recommendation algorithm based on Naive Bayes classification space accessibil-
ity, representing the importance evaluation on the two factors of attribute matching and
spatial accessibility by tourists. In future studies, further quantitative research on the
tourist demand weight is needed to study the differences in recommendation results under
different tourist demand conditions on the relationship between attribute demand and
spatial accessibility weight. Secondly, the establishment of the SAFS model requires further
in-depth research on the multidimensional attributes of POIs. Based on attribute charac-
teristics, a multidimensional field strength distribution model could be established, and
the SAFS model could be established from multiple dimensions such as cultural attributes,
service attributes, popularity levels and tourism costs to further improve the accuracy of
recommended POIs matching tourists’ interests. Thirdly, the constraints introduced to
the construction of the ICSOA are the key factors that affect the travel costs. In future
studies, other factors that affect the recommendation results of the ICSOA could be studied
based on real-world tourism scenarios. On the above research directions, some challenges
might be concluded. Since more factors could be merged into the modeling process, a
more complicated algorithm design will be developed. The accuracy and efficiency are the
two factors that must be considered. A more complicated design might cause higher time
complexity. Thus, how to create an algorithm with suitable computational complexity is a
challenge. Furthermore, the demand on the large quantity of big data is also a challenge.
Data collection, data processing and data mining should conform to the high-dimensional
algorithm modeling to guarantee accurate recommendation results. In future research, the
challenges will be the motivation to improve the work.
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