
Citation: Srisuradetchai, P.;

Niyomdecha, A. Bayesian Inference

for the Gamma Zero-Truncated

Poisson Distribution with an

Application to Real Data. Symmetry

2024, 16, 417. https://doi.org/

10.3390/sym16040417

Academic Editors: Arne Johannssen,

Nataliya Chukhrova

and Quanxin Zhu

Received: 12 March 2024

Revised: 28 March 2024

Accepted: 31 March 2024

Published: 2 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Bayesian Inference for the Gamma Zero-Truncated Poisson
Distribution with an Application to Real Data
Patchanok Srisuradetchai * and Ausaina Niyomdecha

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,
Pathum Thani 12120, Thailand; ausaina.niy@dome.tu.ac.th
* Correspondence: patchanok@mathstat.sci.tu.ac.th

Abstract: This article presents Bayesian estimation methods applied to the gamma zero-truncated
Poisson (GZTP) and the complementary gamma zero-truncated Poisson (CGZTP) distributions, en-
compassing both one-parameter and two-parameter models. These distributions are notably flexible
and useful for modeling lifetime data. In the one-parameter model case, the Jeffreys prior is mathe-
matically derived. The use of informative and noninformative priors, combined with the random
walk Metropolis algorithm within a Bayesian framework, generates samples from the posterior
distributions. Bayesian estimators’ effectiveness is examined through extensive simulation studies, in
comparison with the maximum likelihood method. Results indicate that Bayesian estimators provide
more precise parameter estimates, even with smaller sample sizes. Furthermore, the study and
comparison of the coverage probabilities (CPs) and average lengths (ALs) of the credible intervals
with those from Wald intervals suggest that Bayesian credible intervals typically yield shorter ALs
and higher CPs, thereby demonstrating the effectiveness of Bayesian inference in the context of GZTP
and CGZTP distributions. Lastly, Bayesian inference is applied to real data.

Keywords: gamma zero-truncated Poisson; complementary gamma zero-truncated Poisson; random
walk metropolis; squared error loss; Bayesian estimation; credible interval

1. Introduction

The gamma zero-truncated Poisson (GZTP) and complementary gamma zero-truncated
Poisson (CGZTP) distributions hold significant importance in statistical modeling, particu-
larly for lifetime data exhibiting nonmonotonic hazard functions. The GZTP distribution
provides a flexible model for phenomena where an event is guaranteed to occur, effectively
handling datasets where zero counts are inapplicable. This makes it ideal for reliability
analyses where the time to first failure is of interest. The CGZTP further extends this
utility by modeling the bathtub-shaped hazard function, which is characterized by an
initial decrease, followed by a constant rate, and then an increase. Such a capability to
fit a bathtub hazard function makes the CGZTP a robust tool for complex survival data,
overcoming the limitations of traditional models such as the gamma distribution.

The GZTP distribution, introduced by Niyomdecha et al. [1], is derived from com-
pounding the gamma and zero-truncated Poisson distributions using the minimum func-
tion. Consider a collection of N independent and identically distributed random variables
X1, X2, . . . , XN , each following a gamma distribution with a probability density function
f (x; α, β) defined as f (x; α, β) = βαxα−1e−βx/Γ(α), x > 0, where α > 0 is a shape parameter
and β > 0 is a rate parameter. The variable N follows a zero-truncated Poisson distribution,
given by: P(N = n) = e−λλn/n!

(
1− e−λ

)
, n = 1, 2, . . ., and λ > 0. Assuming X and N

are independent, Z is defined as the minimum of X1, X2, . . . , XN . The probability density
function (pdf) of the GZTP distribution is denoted as
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fGZTP(z; λ, α, β) =

(
λβαzα−1e−λ−βz

Γ(α)
(
1− e−λ

) ) exp
[

λ

(
Γ(α, βz)

Γ(α)

)]
, z > 0, λ > 0, α > 0, β > 0, (1)

where Γ(α, βz) =
∞∫

βz
tα−1e−tdt is the upper incomplete gamma function. The CGZTP distri-

bution utilizes the same compounding principle as the GZTP but employs the maximum
function instead [2]. Consider Y to be the maximum of X1, X2, . . . , XN . The pdf for the
CGZTP distribution is then given as follows:

fCGZTP(y; λ, α, β) =

(
λβαyα−1e−λ−βy

Γ(α)
(
1− e−λ

) ) exp
[

λ

(
1− Γ(α, βy)

Γ(α)

)]
, y > 0, λ > 0, α > 0, β > 0. (2)

These distributions exhibit flexible shapes of distribution functions, as shown in Figure 1.
Previous studies have covered inferential procedures for the parameters of the GZTP and
CGZTP distributions. Niyomdecha et al. [1] employed maximum likelihood estimation
(MLE) to estimate GZTP parameters and then examine their asymptotic properties, while
the MLEs and asymptotic confidence intervals for CGZTP parameters were discussed
by Niyomdecha and Srisuradetchai [2]. The MLEs exhibited accurate estimations, and
the confidence interval achieved the nominal coverage probability in the case of a large
sample size. Several studies have been conducted on compound distributions using
Bayesian methods. Xu et al. [3] investigated Bayesian estimators of Exponential-Poisson
(EP) parameters by employing general noninformation prior distributions under symmetric
and asymmetric loss functions. Yan et al. [4] determined the Bayesian estimators of the
parameters in the EP distribution under general entropy, LINEX, and a scaled squared
loss function based on type-II censoring. In a study conducted by Pathak et al. [5], the
Bayesian estimators of Weibull–Poisson (WP) parameters were obtained by assuming that
these parameters follow independently distributed prior distributions.
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Figure 1. Probability density functions of GZTP (left) and CGZTP (Right) for various parameter sets
θ = (λ, α, β).

The loss function is instrumental in measuring how much an estimated parameter
value deviates from its true value. The squared error loss function, a symmetric loss
function, is commonly used in practice, especially when overestimation and underestima-
tion are equally problematic [6,7]. Elbatal et al. [8] addressed parameter estimation for
the Nadarajah–Haghighi distribution with progressive Type-1 censoring, employing the
squared error loss function to produce Bayes estimates and credible intervals for maximum
posterior density. Eliwa et al. [9] utilized balanced linear exponential and general entropy
loss functions to estimate parameters for the new Weibull-Pareto distribution. Similarly,
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Abdel-Aty et al. [10] applied squared error, LINEX, and general entropy loss functions for
future failure times in a joint type-II censored sample from multiple exponential populations.

In many studies, the posterior distributions often become complicated and cannot be
simplified into any closed form. The samples were obtained from the posteriors using a
Markov Chain Monte Carlo (MCMC) method, such as the Gibbs sampler (see [11]) and
the Metropolis–Hastings algorithm (see [12]). Additionally, a summary of the predicted
posteriors is provided based on a sample-based approach. The MCMC based on Metropolis–
Hastings algorithms was used in [13] to estimate the unknown parameters of the alpha-
power Weibull distribution under Type II hybrid censoring. In [14], the parameters of the
unit-log-logistic distribution were estimated using a Bayesian approach. Noninformative
priors were used, and samples from the joint posterior distribution were obtained using
the random walk Metropolis algorithm. El-Sagheer et al. [15] employed Gibbs sampling
to estimate the parameters for an asymmetric distribution and various lifetime indices,
including reliability and hazard rate functions.

It is widely regarded that the conjugate prior for the Poisson parameter and the gamma
rate parameter follow a gamma distribution. However, there is no proper conjugate prior
for the gamma shape parameter [16,17]. Several papers explore Bayesian inference for
estimating the parameters of the gamma distribution. Naji and Rasheed [18] derived
Bayes estimators for the shape and scale parameters of the gamma distribution using
the precautionary loss function. They assumed gamma and exponential priors for the
shape and scale parameters, respectively, to represent prior information. Moala et al. [19]
studied various noninformative priors, including Jeffreys prior, reference prior, maximal
data information prior, Tibshirani prior, and a novel prior based on the copula method.
Additionally, Pradhan and Kundu [20] assumed that the scale parameter follows a gamma
distribution prior, while the shape parameter follows a log-concave distribution prior.

The existing literature has not addressed Bayesian inference on parameters of the
GZTP and CGZTP) distributions. While Niyomdecha et al. [1] and Niyomdecha and
Srisuradetchai [2] have conducted MLE and Wald’s interval analyses, their findings sug-
gest that the mean square errors of MLEs remain high and that Wald’s interval coverage
probabilities are below the nominal level for small sample sizes. This study, therefore, seeks
to explore Bayesian inference for the GZTP and CGZTP distributions.

This paper is structured as follows: Section 2 delves into maximum likelihood estima-
tion along with the corresponding interval estimation, which will be compared with the
Bayesian credible interval. Section 3 elaborates on the prior and posterior distributions,
estimation procedures based on the squared error loss function, and the application of the
random walk Metropolis algorithm for simulating posterior samples. Simulation studies,
which are conducted for scenarios involving one and two unknown parameters within
both GZTP and CGZTP distributions, are presented in Section 4. Section 5 demonstrates
two example applications using real data. Finally, the paper concludes with a discussion in
Section 6.

2. Maximum Likelihood Estimation

Let Z1, Z2, . . . , Zn be random samples from a GZTP distribution and Y1, Y2, . . . , Yn
be random samples from a CGZTP distribution. The likelihood functions based on the
observed random sample of size n will be as follows:

LGZTP(λ, α, β|z) =
(

λe−λ

1− e−λ

)n(
βnα

(Γ(α))n

)( n

∏
i=1

zi

)α−1

exp

[
−β

(
n

∑
i=1

zi

)
+

λ

Γ(α)

n

∑
i=1

Γ(α, βzi)

]
, (3)

LCGZTP(λ, α, β|y) =
(

λ

1− e−λ

)n( βnα

(Γ(α))n

)( n

∏
i=1

yi

)α−1

exp

[
−β

(
n

∑
i=1

yi

)
− λ

Γ(α)

n

∑
i=1

Γ(α, βyi)

]
. (4)

The corresponding log-likelihood function of the GZTP distribution is
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lGZTP(λ, α, β|z) = n
(
log λ− λ− log

(
1− e−λ

))
+ nα log β− n log Γ(α) + (α− 1)

n
∑

i=1
log zi

−β

(
n
∑

i=1
zi

)
+ λ

Γ(α)

n
∑

i=1
Γ(α, βzi),

(5)

and the log-likelihood function of the CGZTP distribution is

lCGZTP(λ, α, β|y) = n
(
log λ− log

(
1− e−λ

))
+ nα log β− n log Γ(α) + (α− 1)

n
∑

i=1
log yi

−β

(
n
∑

i=1
yi

)
− λ

Γ(α)

n
∑

i=1
Γ(α, βyi).

(6)

The maximum likelihood estimators of λ, α and β for the GZTP and CGZTP distribu-
tions are obtained by maximizing (5) and (6). This process is accomplished by solving the
first derivatives with respect to each parameter of the log-likelihood function. These first
derivatives are difficult and complex to solve, making it impossible to find the MLE of λ, α
and β analytically. Consequently, numerical techniques such as the simulated annealing
method are employed to estimate λ, α and β that maximize the likelihood function.

The MLEs are asymptotically normally distributed with a multivariate normal (MVN)
distribution given by(

λ̂, α̂, β̂
)′ ∼ MVN

(
(λ, α, β)′, I−1(λ, α, β)

)
as n→ ∞,

where I(λ, α, β) is the Fisher information matrix with element Iij = −∂l2/∂θi∂θj, i, j = 1, 2, 3
and θ = (λ, α, β) [21]. The asymptotic variances of MLEs can be obtained from the inverse
Fisher information matrix. Then, the corresponding (1− α)100% Wald confidence intervals
for θi are given by θ̂i ± z1−α/2

√
Îii, where Îii is the ii-th element of the inverse of

[
I
(
θ̂
)−1
]
,

i.e., Îii =
[

I
(
θ̂
)−1
]

ii
and z1−α/2 is the (1− α/2)-th quantile of the standard normal [22].

3. Bayesian Estimation

This section presents the formulation of prior distributions for each parameter, acknowl-
edging their independence, and the subsequent derivation of joint posterior distributions.

3.1. Prior and Posterior Distributions
3.1.1. Case 1: α and β Are Unknown

To estimate the parameters for the GZTP or CGZTP distributions when α and β are
unknown but λ is known, we assume that α and β have priors p1(·) and p2(·), which
correspond to Gamma(a, b) and Gamma(c, d), respectively, and they are independently
distributed. The prior distributions for α and β are obtained as follows:

p1(α; a, b) =
baαa−1e−bα

Γ(a)
and p2(β; c, d) =

dcβc−1e−dβ

Γ(c)
,

where hyperparameters β > 0, c > 0, d > 0.
Let Z1, Z2, . . . , Zn be random samples from a GZTP distribution, so the joint posterior

distribution given data z = (z1, z2, . . . , zn) is as follows:
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pGZTP(α, β|z)
= L(α,β;z)p1(α)p2(β)

∞∫
0

∞∫
0

L(α,β;z)p1(α)p2(β)dαdβ

∝ L(α, β; z)p1(α)p2(β)

∝
(

λe−λ

1−e−λ

)n( βnα

(Γ(α))n

)( n
∏
i=1

zi

)α−1
exp

[
−β

(
n
∑

i=1
xi

)
+ λ

Γ(α)

n
∑

i=1
Γ(α, βzi)

]
×
(

baαa−1e−bα

Γ(a)

)(
dc βc−1e−dβ

Γ(c)

)
,

and Y1, Y2, . . . , Yn are the random samples from the CGZTP distribution, and the corre-
sponding joint posterior distribution given data y = (y1, y2, . . . , yn) is given by:

pCGZTP(α, β|y) ∝
(

λ
1−e−λ

)n( βnα

(Γ(α))n

)( n
∏
i=1

yi

)α−1
exp

[
−β

(
n
∑

i=1
yi

)
− λ

Γ(α)

n
∑

i=1
Γ(α, βyi)

]
×
(

baαa−1e−bα

Γ(a)

)(
dc βc−1e−dβ

Γ(c)

)
.

The marginal posterior distributions of α and β have no closed form; as a consequence,
the MCMC method is employed to provide Bayesian estimation.

3.1.2. Case 2: λ Is Unknown
Gamma Priors

To estimate parameter λ for the GZTP or CGZTP when α and β are known. Assuming
that λ has a prior Gamma(m, n):

p3(λ) =
nmλm−1e−nλ

Γ(m)
, λ > 0, m > 0, n > 0.

Let Z1, Z2, . . . , Zn be random samples from a GZTP distribution. The corresponding
posterior distribution, given data z = (z1, z2, . . . , zn), is as follows:

pGZTP(λ|z) ∝ L(λ; z)p3(λ)

=
(

λe−λ

1−e−λ

)n( βnα

(Γ(α))n

)( n
∏
i=1

zi

)α−1
exp

[
−β

(
n
∑

i=1
zi

)
+ λ

Γ(α)

n
∑

i=1
Γ(α, βzi)

]
×
(

nmλm−1e−nλ

Γ(m)

)
.

Furthermore, let Y1, Y2, . . . , Yn be random samples from a CGZTP distribution. The
corresponding posterior distribution given data y = (y1, y2, . . . , yn) is:

pCGZTP(λ|y) ∝ L(λ; y)p3(λ)

=
(

λ
1−e−λ

)n( βnα

(Γ(α))n

)( n
∏
i=1

yi

)α−1
exp

[
−β

(
n
∑

i=1
yi

)
− λ

Γ(α)

n
∑

i=1
Γ(α, βyi)

]
×
(

nmλm−1e−nλ

Γ(m)

)
.

Because the posterior distributions above are also complicated to derive analytically,
MCMC is used to simulate samples from them.

Jeffreys Prior

Jeffreys prior is proposed as a widely known prior to represent a situation in which
there is little information regarding the parameters. The Jeffreys prior for one parameter is
proportional to the square root of the expected Fisher information [23]. From the likelihood
functions in cases when α and β are known, the associated gradients are:

∂lGZTP(λ; z)
∂λ

= n
(

1
λ
− 1− e−λ

1− e−λ

)
+

n
∑

i=1
Γ(α, βzi)

Γ(α)
, (7)
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∂lCGZTP(λ; y)
∂λ

= n
(

1
λ
− e−λ

1− e−λ

)
−

n
∑

i=1
Γ(α, βyi)

Γ(α)
. (8)

By differentiating (7) and (8), the observed Fisher information values of λ for the GZTP
and CGZTP distributions are the same:

IGZTP(λ) = ICGZTP(λ) =
n(1 + e2λ − eλ(λ2 + 2))(

eλ − 1
)2

λ2

and the expected Fisher information is

JGZTP(λ) = JCGZTP(λ) = E

[
n(1 + e2λ − eλ(λ2 + 2))(

eλ − 1
)2

λ2

]
=

n(1 + e2λ − eλ(λ2 + 2))(
eλ − 1

)2
λ2

. (9)

Thus, from (9), the Jeffreys prior for the λ parameter is given by:

p4(λ) ∝

√√√√n(1 + e2λ − eλ(λ2 + 2))(
eλ − 1

)2
λ2

.

3.2. Point and Interval Estimations

This section explores the process of obtaining Bayesian estimates and constructing
credible intervals for unknown parameters of the GZTP and CGZTP distributions. The
squared error loss function is a symmetric function, defined by L

(
θ, θ̂
)
=
(
θ − θ̂

)2
, where

θ̂ is an estimate of θ [24,25]. For example, for given data z = (z1, z2, . . . , zn), under the
squared error loss function, the Bayesian estimator of θ is θ̂GZTP

B = E(θ|z).
Bayesian interval estimates for θ are also calculated based on the posterior distribution

p(θ|z). They are referred to as credible intervals to differentiate them from confidence
intervals. For a given value of γ ∈ (0, 1), a γ · 100% credible interval is determined by
values l and u that satisfy

u∫
l

p(θ|z)dθ = γ,

where γ is called the credible level of the credible interval [l, u].
For GZTP, the Bayesian estimates of the unknown parameter(s) are given by:

• Case 1: α and β are unknown:

ĝGZTP
B (α, β) = E(g(α, β)|z) =

∞∫
0

∞∫
0

g(α, β)pGZTP(α, β|z)dαdβ,

• Case 2: λ is unknown:

λ̂GZTP
B = E(λ|z) =

∞∫
0

λpGZTP(λ|z)dλ.

From CGZTP for the given data y1, y2, . . . , yn, the Bayes estimates of the unknown
parameter(s) are given by

• Case 1: α and β are unknown:

ĝCGZTP
B (α, β) = E(g(α, β)|y) =

∞∫
0

∞∫
0

g(α, β)pCGZTP(α, β|y)dαdβ,
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• Case 2: λ is unknown:

λ̂CGZTP
B = E(λ|y) =

∞∫
0

λpCGZTP(λ|y)dλ.

Due to the complexity involved in constructing explicit forms of Bayes estimates
for both cases, the random walk Metropolis algorithm, which is a variant of the MCMC
methods, will be utilized to derive the Bayes estimates of the unknown parameters.

3.3. Random Walk Metropolis Algorithm

In this paper, random walk Metropolis is implemented. The random walk Metropolis
(RWM) algorithm, a subset of the Metropolis–Hastings algorithms, is favored in Bayesian
computation for its conceptual simplicity and operational ease. It is particularly advanta-
geous when the posterior distribution is unknown or complex, offering a straightforward
mechanism to generate sample values for parameter estimation. The strength of RWM
lies in its local exploration capability, allowing it to meticulously probe the parameter
space using a symmetric proposal density, which simplifies the acceptance criteria. This
simplicity facilitates easier tuning and implementation, often requiring only the adjustment
of the proposal distribution’s scale to balance the acceptance rate and the chain’s mix-
ing [26,27]. Concurrently, credible intervals for unknown parameters are generated during
this procedure. Since the density of the posterior distribution is proportional to the product
of the likelihood and the density of the prior distribution, we use L(α, β; z)p1(α)p2(β) or
L(α, β; y)p1(α)p2(β) as the target density for generating random samples from the joint
posterior distribution of α and β. The RWM algorithm for generating random samples from
the joint posterior distributions of α and β is shown as follows:

1. Choose starting values of θ0 =

[
α0
β0

]
and define σ1.

2. At step i, we draw
[

ε1
ε2

]
i
∼ MVN

([
0
0

]
, σ2

1

[
1 0
0 1

])
and draw a new value

[
α̃

β̃

]
i
=

[
α
β

]
i−1

+

[
ε1
ε2

]
i

3. The candidate
[

α̃

β̃

]
i

will be accepted with a probability given by the Metropolis ratio:

r

([
α
β

]
i−1

,
[

α̃

β̃

]
i

)
= min

 LGZTP

(
α̃, β̃; z

)
p1(α̃)p2

(
β̃
)

LGZTP(α, β; z)p1(α)p2(β)
, 1

 for GZTP,

and r

([
α
β

]
i−1

,
[

α̃

β̃

]
i

)
= min

 LCGZTP

(
α̃, β̃; y

)
p1(α̃)p2

(
β̃
)

LCGZTP(α, β; y)p1(α)p2(β)
, 1

 for CGZTP.

4. Repeat steps 2–3 M times to obtain samples (α1, β1), (α2, β2), . . . , (αM, βM) and discard
the first N values of the chain for burn-in.

5. The Bayesian estimates of parameters α and β are computed as

α̂B =

M
∑

j=N+1
αj

M− N
and β̂B =

M
∑

j=N+1
β j

M− N
.
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6. To compute the credible intervals of α and β, order αi and βi, then γ · 100% credible
interval of α and β can be given, respectively, by[

α(b(M−N)(1−γ)/2c), α(b(M−N)(1+γ)/2c)

]
and

[
β(b(M−N)(1−γ)/2c), β(b(M−N)(1+γ)/2c)

]
,

where α(.) and β(.) are the ordered statistics from the MCMC samples for α and β,
after discarding the burn-in, and b·c is the floor function.

For the unknown λ, L(λ; z)p(λ) or L(λ; y)p(λ) is considered the target density for
generating random samples from the posterior distribution of λ. The RWM algorithm for
generating random samples from the posterior distribution of λ is given below:

1. Choose starting values of λ0 and define σ2.
2. At step i, we draw εi ∼ N

(
0, σ2

2
)

and draw a new value λ̃i = λi−1 + εi.
3. The candidate λ̃i will be accepted with a probability given by the Metropolis ratio:

r
(

λi−1, λ̃i

)
= min

 LGZTP

(
λ̃; z
)

p3(λ)

LGZTP(λ; z)p3(λ)
, 1

 for GZTP,

and

r
(

λi−1, λ̃i

)
= min

 LCGZTP

(
λ̃; y

)
p3(λ)

LCGZTP(λ; y)p3(λ)
, 1

 for CGZTP.

4. Repeat steps 2–3 M times to obtain samples λ1, λ2, . . . , λM and remove the first N
values of the chain for burn-in.

5. The Bayesian estimates of parameters λ is computed by λ̂B =
M
∑

j=N+1
λj/(M− N).

6. To compute the credible intervals of λ, order λi, then γ · 100% credible interval of

λ can be given by
[
λ([(M−N)(1−γ)/2]), λ(b(M−N)(1+γ)/2c)

]
, where λ(.) is the ordered

statistics.

4. Simulation Study

The simulation study encompasses various sample sizes and hyperparameter val-
ues. Specifically, sample sizes n = 15, 25, 50, and 100 are examined. Table 1 presents
the hyperparameter values for informative prior distributions. The means of the prior
distributions, which have small and large variances, are equal to the true values of the
unknown parameters, α and β. For example, for the case of α = 2 and β = 0.5, with
the hyperparameters of Prior 1 (a = 1, b = 0.5), the variance of α equals 4, and with the
hyperparameters of Prior 2 (a = 2, b = 1), the variance of α equals 2. Thus, the variance of
Prior 1 is considered “High” compared to that of Prior 2. Both prior distributions of α have
the same mean, 2, which equals to the true value.

Table 1. The prior distributions of parameters α and β for the GZTP and CGZTP distributions.

α∼Gamma(a,b), β∼Gamma(c,d)
Informative

Priors

Hyperparameter Values

True Values Variances a b c d
α β α β

2 0.5 4 (High) 0.5 (High) Prior 1 1 0.5 0.5 1
2 (Low) 0.125 (Low) Prior 2 2 1 2 4

2 1 4 (High) 2 (High) Prior 1 1 0.5 0.5 0.5
2 (Low) 0.5 (Low) Prior 2 2 1 2 2

1 1 2 (High) 2 (High) Prior 1 0.5 0.5 0.5 0.5
0.5 (Low) 0.5 (Low) Prior 2 2 2 2 2



Symmetry 2024, 16, 417 9 of 22

Values of α and β are selected to create a variety of distribution shapes, as shown in
Figure 1. Additionally, Table 2 details the prior distributions of the parameter λ. The shapes
of gamma prior distributions with different hyperparameters, as presented in Tables 1
and 2 are illustrated in Figure 2.

Table 2. The prior distributions of parameter λ for the GZTP and CGZTP distributions.

λ∼Gamma(m,n) Informative
Priors

Hyperparameter Values

True Values Variances m n

0.5 0.25 (High) Prior 1 1 2
0.083 (Low) Prior 2 3 6

1 1 (High) Prior 1 1 1
0.333 (Low) Prior 2 3 3Symmetry 2024, 16, x FOR PEER REVIEW 10 of 24 
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Figure 2. Gamma prior distributions with different hyperparameters.

The RWM algorithm, as described in Section 3.3, is executed for 10,000 iterations with
a burn-in period of 1000. In both panels of Figure 3, the examples of the trace plots for α and
β suggest that the Markov chains have reached a stationary distribution, evidenced by the
dense and fuzzy appearance of the plots, which indicates good mixing of the chains. The
variability observed within each plot is consistent with the stochastic nature expected from
RWM sampling, and there are no discernible trends or drifts to suggest nonconvergence.
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and n = 25.
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Further examination of the pair plots shown in Figure 4 reveals that, despite the initial
starting points being far from the true values, the pairs of samples drawn from the RWM
algorithm progress toward a densely clustered area. This dense cluster signifies the region
of high probability density within the posterior distribution, illustrating the algorithm’s
ability to converge to the region of interest. For unknown λ, the examples of the trace plots
are shown in Figure 5.
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Monte Carlo simulations are performed to compare the performances of the Bayes
estimators with those of the classical estimators. Point estimates for parameters are aver-
aged over 1000 iterations. Subsequently, the mean squared errors (MSEs) of the parameter
estimates are calculated. The coverage probabilities (CPs) of 95% Wald confidence intervals
and credible intervals and their average lengths (ALs) are determined.

Table 3 presents the detailed MLEs and MSEs obtained from simulated data sets from
GZTP where the values of α and β are unknown. As sample sizes increase, estimates
become more accurate and the MSE values decrease. For example, for the parameter set
(0.5, 2, 0.5), the MLE of α decreases from 2.3637 with an MSE of 0.8896 at sample size 15 to
2.0644 with an MSE of 0.0760 at sample size 100. It is also noticed that the MSEs of α̂ and
Bayes estimate α̂B increase as α increases given that β is fixed. For example, in a case where
λ = 1, β = 1, and the sample size is 15, when α is 1, the MSE for Prior 2 is 0.0566; whereas
when α increases to 2, the MSE for the same prior and sample size is 0.2314. Similarly, when
α is fixed, the MSEs of β̂ and Bayes estimate β̂B increase as β increases. When the sample
size is small, MLEs tend to have higher MSE compared to Bayesian estimates. However,
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between the two priors, Prior 2 has the lowest MSE. For instance, for the parameter set (0.5,
2, 0.5) and a sample size of 25, Prior 2 produces an estimate for α with an MSE of 0.1854,
which is lower than the MSE of 0.2777 for Prior 1, indicating that the more informative
Prior 2 generally results in a lower MSE.

Table 3. MLE and Bayesian estimates and mean squared errors of α and β for the GZTP distributions.

(λ, α, β) n Parameter
MLE Prior 1 Prior 2

Est MSE Est MSE Est MSE

(0.5, 2, 0.5) 15 α 2.3637 0.8896 2.1942 0.4956 2.1459 0.2622
β 0.6240 0.0887 0.5734 0.0545 0.5550 0.0252

25 α 2.2284 0.4436 2.1328 0.2777 2.0948 0.1854
β 0.5770 0.0453 0.5470 0.0282 0.5338 0.0179

50 α 2.1062 0.1668 2.0926 0.1516 2.0800 0.1235
β 0.5370 0.0165 0.5299 0.0144 0.5256 0.0115

100 α 2.0644 0.0760 2.0508 0.0701 2.0470 0.0639
β 0.5218 0.0072 0.5181 0.0065 0.5168 0.0059

(0.5, 2, 1) 15 α 2.4156 1.0762 2.1780 0.4874 2.1173 0.2686
β 1.2744 0.4485 1.1408 0.2068 1.0821 0.0921

25 α 2.2438 0.4768 2.153 0.2941 2.1123 0.1933
β 1.1501 0.181 1.0977 0.1151 1.0701 0.0724

50 α 2.1056 0.1639 2.0762 0.1517 2.0635 0.1230
β 1.0662 0.0646 1.0521 0.0593 1.0436 0.0472

100 α 2.0601 0.0846 2.0391 0.0701 2.0363 0.0638
β 1.0404 0.0317 1.0241 0.0263 1.0221 0.0237

(1, 1, 1) 15 α 1.1737 0.1848 1.0936 0.1119 1.0673 0.0566
β 1.3308 0.5707 1.1928 0.2931 1.1408 0.1377

25 α 1.1025 0.0946 1.0639 0.0626 1.0428 0.0398
β 1.1897 0.2654 1.1393 0.1780 1.0949 0.1005

50 α 1.0546 0.0410 1.0359 0.0306 1.0297 0.0246
β 1.0831 0.0825 1.0743 0.0773 1.0613 0.0583

100 α 1.0222 0.0157 1.0133 0.0126 1.012 0.0114
β 1.0335 0.0347 1.0283 0.0320 1.0255 0.0283

(1, 2, 1) 15 α 2.4131 1.1079 2.1565 0.4129 2.1110 0.2314
β 1.2995 0.5299 1.1395 0.1984 1.1040 0.1045

25 α 2.2186 0.3595 2.0983 0.2705 2.0633 0.1757
β 1.1492 0.1642 1.0889 0.1277 1.0615 0.0782

50 α 2.1123 0.1617 2.0942 0.1412 2.0806 0.1149
β 1.0762 0.0732 1.0662 0.0609 1.0562 0.0480

100 α 2.0594 0.0684 2.0233 0.0658 2.0207 0.0596
β 1.0405 0.0293 1.0191 0.0277 1.0172 0.0248

Form Table 4, the 95% credible intervals and Wald confidence intervals for α and β are
presented. As the sample size increases, the CPs tend to approach the nominal coverage
probability of 0.95, while the ALs decrease. Typically, CPs are generally above 0.95, despite
the small sample size of 15. Moreover, the Prior 2 tends to have the smallest ALs with the
same sample size.

Figure 6 graphically summarizes the average of estimates, MSEs, CPs, and ALs for
a selected case of GZTP. In the first row, which shows estimates of α and β, there are two
line graphs, one for each parameter. These results display the average estimates obtained
through MLE and two Bayesian methods with different priors (Prior 1 and Prior 2). Prior
2 yields the most accuracy, followed by Prior 1 and MLE. However, as the sample size
increases, the estimates from all methods converge, suggesting that larger sample sizes lead
to more accurate estimations. From the second row, the bar charts show that the precision
of the estimation methods improves with larger samples. Bayesian estimates, particularly
those with Prior 2, tend to have lower MSEs than MLEs. In the third row, the CPs from
Prior 2 tend to be higher than the others, especially in the small sample size. As the sample
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size increases, all the methods tend to produce about the same CP. From the last row, the
ALs generally decrease as the sample size increases, showing that the intervals become
narrower and, thus, more precise with larger samples. The Bayesian estimates with Prior 2
consistently show the shortest ALs across all sample sizes for both parameters.

Table 4. Coverage probabilities and average lengths of intervals for α and β of the GZTP distributions.

(λ, α, β) n Parameters
MLE Prior 1 Prior 2

CP AL CP AL CP AL

(0.5, 2, 0.5) 15 α 0.9730 3.0606 0.9685 2.6428 0.9846 2.3063
β 0.9770 0.9618 0.9685 0.8251 0.9885 0.7076

25 α 0.9570 2.2254 0.9690 2.0294 0.9840 1.8566
β 0.9620 0.6919 0.9640 0.6273 0.9710 0.5675

50 α 0.9550 1.4793 0.9500 1.4353 0.9580 1.3681
β 0.9560 0.4570 0.9480 0.4397 0.9560 0.4172

100 α 0.9550 1.0235 0.9460 1.0019 0.9500 0.9777
β 0.9570 0.3145 0.9460 0.3077 0.9550 0.3004

(0.5, 2, 1) 15 α 0.9660 3.1336 0.9577 2.6152 0.9700 2.2779
β 0.9660 1.9618 0.9608 1.6386 0.9831 1.3854

25 α 0.9610 2.2423 0.9700 2.0519 0.9810 1.8675
β 0.9610 1.3787 0.9600 1.2565 0.9750 1.1329

50 α 0.9590 1.4789 0.9580 1.4253 0.9640 1.3588
β 0.9510 0.9074 0.9480 0.8743 0.9640 0.8314

100 α 0.9500 1.0210 0.9420 0.9976 0.9520 0.9753
β 0.9530 0.6271 0.9480 0.6098 0.9490 0.5949

(1, 1, 1) 15 α 0.9770 1.3758 0.9654 1.2205 0.9831 1.0506
β 0.9690 2.3137 0.9708 1.9558 0.9831 1.6251

25 α 0.9580 0.9916 0.9600 0.9296 0.9700 0.8376
β 0.9630 1.6189 0.9550 1.4939 0.9720 1.3081

50 α 0.9510 0.6956 0.9420 0.6427 0.9470 0.6119
β 0.9550 0.9973 0.9570 1.0209 0.9660 0.9580

100 α 0.9440 0.4748 0.9560 0.4450 0.9610 0.4338
β 0.9450 0.6760 0.9530 0.7008 0.9620 0.6791

(1, 2, 1) 15 α 0.9650 3.0460 0.9700 2.5165 0.9846 2.1990
β 0.9620 2.0739 0.9715 1.6988 0.9892 1.4562

25 α 0.9690 2.1501 0.9630 1.9375 0.9740 1.7639
β 0.9710 1.4321 0.9600 1.2959 0.9750 1.1647

50 α 0.9560 1.4393 0.9490 1.3946 0.9550 1.3289
β 0.9580 0.9520 0.9560 0.9193 0.9640 0.8700

100 α 0.9580 0.9890 0.9490 0.9575 0.9520 0.9363
β 0.9560 0.6521 0.9550 0.6301 0.9610 0.6140

From simulated CGZTP datasets where the values of α and β are unknown, the
conclusions are consistent with those from GZTP. The detailed results are summarized in
Appendix A, Tables A1 and A2 which provide the average Bayesian estimates, MSEs, CPs,
and ALs of parameters. As sample sizes increase, estimates become more accurate, and
the MSE values decrease. It is observed that, while holding β constant, the MSEs of α̂ and
α̂B increase as α increases. Likewise, as β increases, the MSEs of β̂ and Bayes estimate β̂B
increase when α remains constant. Applying Prior 2 results in the lowest MSE values for α
and β. Figure 7 graphically summarizes the averages of estimates, MSEs, CPs, and ALs for
α and β of the two-parameter CGZTP distribution with λ = 1, α = 1, and β = 1 of CGZTP.
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Figure 6. The average of estimates, MSEs, CPs, and ALs for α and β of the two-parameter GZTP
distribution with λ = 0.5, α = 2 and β = 0.5. Column (a) presents results for the parameter α, and
column (b) for the parameter β.

For parameter λ of the GZTP distribution, the MSE values decrease as sample sizes
increase, as shown in Figure 8. Both the MLE and the Jeffreys prior estimates result in poor
estimations with large MSEs. As expected, the performance of these methods improves as
the sample size increases. However, Prior 2 yields the lowest MSE, even with a sample size
as small as 15. In all situations, the CPs either approach the desired coverage probability
or exceed 0.95, and the ALs decrease as sample sizes increase. For additional scenarios,
Tables A3 and A4 in Appendix A provide a summary of all estimates, MSEs, CPs, and ALs.
Similarly, the findings for λ of the CGZTP distribution are in line with those for the GZTP
distribution. The MSEs of Bayesian estimates under informative priors are lower than those
for the MLE and the Jeffreys prior. The CPs of credible intervals from informative priors
tend to be higher than those from Wald intervals and the credible interval from the Jeffreys
prior. Figure 9 presents estimates, MSEs, CPs, and ALs for three methods in a specific case,
while results for other scenarios are compiled in Tables A5 and A6.
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5. Application on Real Data
5.1. March Precipitation

The data in Table 5 represent the amount of precipitation (in inches) that fell in
March in Minneapolis/St. Paul, including 30 consecutive measurements. These data were
first discussed by Hinkley [28]. The MLE and the Bayesian summaries for α and β are
presented in Table 6. The MLE of the parameters are α̂ = 3.0597 and β̂ = 1.7214 with
the corresponding standard errors as 0.7207 and 0.4656, respectively. The 95% confidence
intervals for α̂ and β̂ are (1.6347, 4.4847) and (0.8086, 2.6341), respectively. Using the
RWM with gamma priors and assuming λ = 0.38, the Bayesian estimates for α and β are
α̂B = 3.0289 and β̂B = 1.7005, respectively. The 95% credible intervals for α and β are given,
respectively, as (1.8884, 4.3697) and (0.9805, 2.6144). A histogram with the fitted GZTP
curve (the orange line) and Bayesian estimates is illustrated in Figure 10. The pair plot of
RWM depicted in Figure 11 illustrates that the estimates are converging to a stationary
state and distributing around the posterior means, with cluster points appearing elliptical,
suggesting a correlation between these two parameters. This pattern implies that Wald’s
confidence intervals may not be optimal.

Table 5. March precipitation data.

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20

3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81

2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05
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Table 6. Bayesian and Maximum Likelihood Estimates with standard errors, 95% Wald CIs and
Bayesian credible intervals, and goodness-of-fit testing results for two datasets.

Dataset Method Parameter Estimate Standard
Error Interval K-S p-Value

March
precipitation

Bayes
α 3.0289 0.6281 (1.8884,

4.3697) 0.0623 0.9998

β 1.7055 0.4089 (0.9805,
2.6144)

MLE
α 3.0597 0.7270 (1.6347,

4.4847) 0.0602 0.9999

β 1.7214 0.4656 (0.8086,
2.6341)

Remission
Time

Bayes
α 1.1697 0.1292 (0.9283,

1.4277) 0.0713 0.5341

β 0.1246 0.0175 (0.0921,
0.1596)

MLE
α 1.1719 0.1312 (0.9147,

1.4290) 0.0739 0.4866

β 0.1258 0.0174 (0.0919,
0.1599)
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Notably, the Bayesian estimates are very close to the MLE values; however, the
Bayesian credible intervals are consistently shorter than those from Wald’s confidence
intervals. The Kolmogorov–Smirnov (K-S) test and the corresponding p-values indicate
that both methods are effective, with Bayesian estimates exhibiting a slight performance
edge over the MLEs. Note that a higher p-value indicates a better fit model.

5.2. Remission Time of Bladder Cancer Patients

The dataset consists of the number of months that 128 patients with bladder cancer
spent in remission, as reported by Lee and Wang [29]. From Table 6, the MLEs of the
parameters are α̂ = 1.1719 and β̂ = 0.1258 with the corresponding 95% confidence intervals
for α̂ and β̂‚ as (0.9147, 1.4290) and (0.0919, 0.1599), respectively. Assuming that λ = 0.0238
with the unknown parameters being α and β, the Bayesian estimates for α and β are
α̂B = 1.1697 and β̂B = 0.1246, respectively. The 95% credible intervals for the parameters α
and β are given, respectively, by (0.9283, 1.4277) and (0.0921, 0.1596). Moreover, the K-S
tests suggest that both methods can be used to model the data at a significance level of
0.05. The histogram with the fitted GZTP curve (the orange line) is illustrated in Figure 12,
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and the pair plot of RWM is depicted in Figure 13. Initially, there appears to be a wide
spread of values indicating that the Markov chain is exploring the parameter space. As
the iterations progress, the points seem to converge towards a narrower region of the plot,
which suggests that the parameters are settling into a region that could represent the mode
of the posterior distribution.
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6. Conclusions and Discussion

Both point and interval estimation have been studied within Bayesian frameworks.
For point estimation, informative gamma priors with both low and high variance, as well
as Jeffreys prior, are employed, and the results are compared with those obtained from
MLE in terms of MSEs. Since the posterior distributions for GZTP and CGZTP do not have
closed forms, the RWM algorithm is utilized to generate posterior samples. Furthermore,
the Bayesian credible intervals are compared to Wald’s intervals in terms of coverage
probability and average length.

Bayesian estimates using informative priors are obviously superior to the MLE and
Bayesian estimates with Jeffreys priors in terms of MSEs. Among the informative priors
having the mean equal to the true parameter, the one with a low variance yields a slightly
lower MSE compared to that with high variance. In detail, when α is fixed, the MSEs of
β̂ and Bayes estimate β̂B increase as β increases. Similarly, the MSEs of α̂ and Bayesian
estimate α̂B increase as α increases given that β is fixed. In the case of an unknown λ, where
the Jeffreys prior can be mathematically derived, the corresponding Bayesian estimates
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are slightly better than the MLE. However, as the sample size increases, the discrepancy
among the MSEs obtained from all methods tends to decrease.

For interval estimation, the Bayesian credible intervals tend to be more conservative,
with coverage probabilities exceeding the nominal level of 0.95, particularly for small
sample sizes. The ALs of the credible intervals are notably shorter than those of the Wald
confidence intervals. It is worth noting that credible intervals can achieve greater coverage
with shorter interval lengths because Priors 1 and 2 were deliberately chosen so that the
expected value of the prior equals the true parameter value. These informative priors have
a substantial impact, often outweighing the data in their influence on the posterior. As the
sample size increases, the influence of the data begins to outweigh that of the prior. In such
cases, the lengths of the credible intervals tend to converge towards those of the frequentist
confidence intervals, such as Wald’s intervals, and the high coverage probabilities adjust
closer to the expected levels under the true confidence level.

Author Contributions: Conceptualization, P.S.; methodology, P.S. and A.N.; software, A.N.; vali-
dation, P.S. and A.N.; formal analysis, P.S.; investigation, P.S.; resources, A.N.; data curation, A.N.;
writing—original draft preparation, P.S. and A.N.; writing—review and editing, P.S.; visualization,
A.N.; supervision, P.S.; project administration, P.S.; funding acquisition, P.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was supported by Thammasat University Research Fund, Contract No TUFT
71/2566.

Data Availability Statement: The data presented in this study are openly available in reference
number [28,29].

Acknowledgments: We express our gratitude to Thammasat University for their financial assistance.
Additionally, we extend our appreciation to the editor and reviewers for their insightful remarks and
suggestions, which have greatly enhanced the quality of the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. MLE and Bayesian estimates and mean squared errors of α and β for the CGZTP distributions.

(λ, α, β) n Parameter
MLE Prior 1 Prior 2

Est MSE Est MSE Est MSE

(0.5, 2, 0.5) 15 α 2.4064 1.0745 2.2300 0.5426 2.1470 0.2972
β 0.6155 0.0776 0.5664 0.0399 0.5388 0.0200

25 α 2.2791 0.5593 2.1328 0.2987 2.0922 0.1994
β 0.5770 0.0392 0.5417 0.0234 0.5305 0.0151

50 α 2.1226 0.1949 2.0704 0.1592 2.0581 0.1306
β 0.5341 0.0130 0.5232 0.0112 0.5200 0.0091

100 α 2.0505 0.0838 2.0598 0.0833 2.0551 0.0756
β 0.5141 0.0058 0.5173 0.0058 0.5160 0.0052

(0.5, 2, 1) 15 α 2.4632 1.3465 2.2194 0.5722 2.1180 0.2863
β 1.2479 0.3794 1.1209 0.1603 1.0708 0.0780

25 α 2.2731 0.5534 2.1589 0.3628 2.1103 0.2345
β 1.1462 0.1469 1.1014 0.1104 1.0743 0.0710

50 α 2.1415 0.2206 2.0898 0.1648 2.0767 0.1345
β 1.0778 0.0612 1.0490 0.0464 1.0418 0.0374

100 α 2.0438 0.0849 2.0476 0.0887 2.0436 0.0805
β 1.0217 0.0231 1.0264 0.0246 1.0243 0.0222
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Table A1. Cont.

(λ, α, β) n Parameter
MLE Prior 1 Prior 2

Est MSE Est MSE Est MSE

(1, 1, 1) 15 α 1.2364 0.3033 1.1329 0.1744 1.0545 0.0755
β 1.2613 0.3650 1.1601 0.2148 1.0759 0.0872

25 α 1.1446 0.1446 1.0926 0.1016 1.0535 0.0617
β 1.1639 0.1662 1.1075 0.1165 1.0754 0.0749

50 α 1.0656 0.0566 1.0491 0.0427 1.0481 0.0365
β 1.0645 0.058 1.0549 0.0515 1.0521 0.044

100 α 1.0214 0.0213 1.0189 0.0189 1.0174 0.018
β 1.0294 0.0252 1.0224 0.0227 1.0222 0.0208

(1, 2, 1) 15 α 2.5058 1.5343 2.2172 0.6129 2.1247 0.2988
β 1.2501 0.3653 1.1132 0.1546 1.0787 0.0791

25 α 2.3069 0.6666 2.1333 0.3636 2.0895 0.2332
β 1.1546 0.1637 1.0704 0.0914 1.0490 0.0582

50 α 2.1053 0.2120 2.0823 0.1880 2.0683 0.1528
β 1.0520 0.0511 1.044 0.0446 1.0373 0.036

100 α 2.0638 0.0911 2.0313 0.0861 2.0281 0.0779
β 1.0322 0.0220 1.0128 0.0213 1.0114 0.0192

Table A2. Coverage probabilities and average lengths of intervals for α and β of the CGZTP distributions.

(λ, α, β) n Parameter
MLE Prior 1 Prior 2

CP AL CP AL CP AL

(0.5, 2, 0.5) 15 α 0.9700 3.3858 0.9677 2.8886 0.9854 2.4848
β 0.9630 0.9029 0.9723 0.7734 0.9869 0.6534

25 α 0.9620 2.4768 0.9720 2.1980 0.9840 2.0040
β 0.9560 0.6564 0.9740 0.5895 0.9820 0.5340

50 α 0.9560 1.6249 0.9530 1.5412 0.9660 1.4722
β 0.9670 0.4304 0.9600 0.4122 0.9710 0.3924

100 α 0.9530 1.1081 0.9510 1.0954 0.9540 1.0699
β 0.9630 0.2933 0.9470 0.2906 0.9470 0.2832

(0.5, 2, 1) 15 α 0.9640 3.4834 0.9669 2.8776 0.9831 2.4506
β 0.9600 1.8363 0.9623 1.5292 0.9838 1.2982

25 α 0.9610 2.4693 0.9690 2.2273 0.9790 2.0198
β 0.9650 1.3041 0.9610 1.1997 0.9750 1.0820

50 α 0.9580 1.6402 0.9690 1.5563 0.9730 1.4867
β 0.9570 0.8685 0.9620 0.8241 0.9720 0.7857

100 α 0.9560 1.1042 0.9430 1.0910 0.9480 1.0680
β 0.9640 0.5831 0.9330 0.5780 0.9410 0.5644

(1, 1, 1) 15 α 0.9630 1.7800 0.9646 1.5340 0.9862 1.2472
β 0.9580 1.8864 0.9638 1.6510 0.9877 1.3453

25 α 0.9670 1.2679 0.9490 1.1538 0.9710 1.0215
β 0.9710 1.3529 0.9600 1.2331 0.9670 1.1009

50 α 0.9480 0.8310 0.9580 0.7954 0.9660 0.7598
β 0.9640 0.8791 0.9460 0.8469 0.9530 0.8078

100 α 0.9620 0.5613 0.9460 0.5481 0.9510 0.5337
β 0.9640 0.6028 0.9480 0.5874 0.9560 0.5721

(1, 2, 1) 15 α 0.9620 3.7003 0.9685 2.9872 0.9831 2.5573
β 0.9670 1.8137 0.9700 1.4938 0.9792 1.2863

25 α 0.9580 2.6326 0.9440 2.2804 0.9660 2.0762
β 0.9580 1.2987 0.9470 1.1363 0.9630 1.0340

50 α 0.9510 1.6938 0.9460 1.6069 0.9540 1.5427
β 0.9500 0.8379 0.9520 0.8008 0.9610 0.7682

100 α 0.9590 1.1722 0.9460 1.1287 0.9460 1.0986
β 0.9580 0.5811 0.9470 0.5572 0.9450 0.5438
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Table A3. MLE and Bayesian estimates and mean squared errors for λ of the GZTP distributions.

(λ, α, β) n
MLE Prior 1 Prior 2 Jeffreys

Est MSE Est MSE Est MSE Est MSE

(0.5, 2, 0.5) 15 0.9783 0.6802 0.4326 0.0520 0.4785 0.0177 1.1344 0.7413
25 0.8088 0.4188 0.4396 0.0518 0.4898 0.0135 0.9237 0.3766
50 0.6605 0.1944 0.4693 0.0492 0.5034 0.0104 0.7184 0.1554
100 0.5637 0.0961 0.4767 0.0482 0.5019 0.0073 0.6155 0.0809

(0.5, 2, 1) 15 0.9706 0.6877 0.4418 0.0430 0.4806 0.0171 1.1038 0.6507
25 0.7741 0.3625 0.4571 0.0460 0.4862 0.0142 0.9235 0.3736
50 0.6646 0.1974 0.4748 0.0477 0.4967 0.0099 0.7318 0.1698
100 0.558 0.0997 0.4770 0.0499 0.5016 0.0073 0.6397 0.0964

(1, 1, 1) 15 1.2712 0.6759 0.9282 0.2182 0.9756 0.0704 1.4279 0.6366
25 1.1256 0.4531 0.8853 0.1970 0.9811 0.0736 1.2635 0.4066
50 1.0375 0.2303 0.8710 0.1611 0.9910 0.0844 1.1083 0.1933
100 1.0007 0.1301 0.9120 0.1111 0.9997 0.0629 1.0411 0.1204

(1, 2, 1) 15 1.2710 0.6781 0.9179 0.2193 0.9857 0.0632 1.4052 0.6096
25 1.1546 0.4163 0.8926 0.1999 0.9670 0.0782 1.2536 0.3643
50 1.0215 0.2225 0.8936 0.1605 0.9568 0.0726 1.1249 0.2155
100 1.0090 0.1255 0.9093 0.1002 0.9512 0.0639 1.0358 0.1125

Table A4. Coverage probabilities and average lengths of intervals for λ of the GZTP distributions.

(λ, α, β) n
MLE Prior 1 Prior 2 Jeffreys

CP AL CP AL CP AL CP AL

(0.5, 2,
0.5) 15 0.9730 2.7571 1.0000 1.4701 1.0000 1.0381 0.9750 2.5537

25 0.9670 2.1522 0.9980 1.3225 1.0000 1.0042 0.9610 2.0079
50 0.9710 1.5770 0.9930 1.1184 1.0000 0.9139 0.9730 1.4764
100 0.9670 1.1773 0.9850 0.9505 0.9990 0.8064 0.9710 1.1332

(0.5, 2, 1) 15 0.9750 2.7480 1.0000 1.4452 1.0000 1.0376 0.9660 2.5227
25 0.9750 2.1212 1.0000 1.3397 1.0000 0.9945 0.9610 2.0065
50 0.9690 1.5807 0.9980 1.1470 1.0000 0.9077 0.9650 1.4882
100 0.9630 1.1716 0.9790 0.9643 0.9990 0.8090 0.9590 1.1481

(1, 1, 1) 15 0.9860 3.0348 0.9960 2.2782 0.9990 1.7953 0.9700 2.9185
25 0.9760 2.4057 0.9820 1.9691 0.9990 1.6606 0.9620 2.3558
50 0.9790 1.8204 0.9540 1.6183 0.9890 1.4316 0.9750 1.7843
100 0.9570 1.3605 0.9570 1.3058 0.9780 1.1528 0.9540 1.3459

(1, 2, 1) 15 0.9820 3.0353 0.9970 2.2602 1.0000 1.8119 0.9700 2.8891
25 0.9780 2.4414 0.9740 1.9752 0.9950 1.6444 0.9730 2.3516
50 0.9780 1.8143 0.9610 1.6380 0.9850 1.4057 0.9630 1.7875
100 0.9580 1.3642 0.9480 1.3070 0.9820 1.1519 0.9450 1.3473

Table A5. MLE and Bayesian estimates and mean squared errors of λ for the CGZTP distributions.

(λ, α, β) n
MLE Prior 1 Prior 2 Jeffreys

Est MSE Est MSE Est MSE Est MSE

(0.5, 2, 0.5) 15 0.9492 0.6656 0.4331 0.0422 0.4868 0.0187 1.1209 0.6926
25 0.7598 0.3479 0.4518 0.0505 0.4908 0.0164 0.9110 0.3663
50 0.6418 0.1843 0.4791 0.0507 0.4969 0.0098 0.6994 0.1555
100 0.5452 0.0914 0.4875 0.0413 0.4980 0.0066 0.5954 0.0810
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Table A5. Cont.

(λ, α, β) n
MLE Prior 1 Prior 2 Jeffreys

Est MSE Est MSE Est MSE Est MSE

(0.5, 2, 1) 15 0.9335 0.6615 0.4933 0.0456 0.4932 0.0186 1.1018 0.6776
25 0.7784 0.3877 0.4659 0.0459 0.4927 0.0156 0.9068 0.3476
50 0.6426 0.1863 0.4535 0.0461 0.4944 0.0107 0.7164 0.1577
100 0.5518 0.0950 0.4416 0.0449 0.5025 0.0071 0.6143 0.0864

(1, 1, 1) 15 1.2711 0.7890 0.8892 0.2052 0.9525 0.0727 1.4025 0.6383
25 1.1178 0.4082 0.8908 0.1929 0.9737 0.0738 1.1995 0.3194
50 1.0621 0.2468 0.8759 0.1559 0.9700 0.0822 1.1013 0.2088
100 0.9895 0.1185 0.9003 0.1070 0.9987 0.0616 1.0307 0.1115

(1, 2, 1) 15 1.2915 0.7555 0.9263 0.2130 0.9532 0.0810 1.4141 0.6101
25 1.1182 0.4259 0.8949 0.1924 0.9669 0.0789 1.2223 0.3408
50 1.0282 0.2143 0.8925 0.1564 0.9814 0.0714 1.0949 0.1891
100 1.0117 0.1288 0.9169 0.1120 0.9849 0.0629 1.0425 0.1101

Table A6. Coverage probabilities and average lengths of intervals of for the CGZTP distributions.

(λ, α, β) n
MLE Prior 1 Prior 2 Jeffreys

CP AL CP AL CP AL CP AL

(0.5, 2,
0.5) 15 0.9700 2.7226 1.0000 1.4714 1.0000 1.0311 0.9630 2.5391

25 0.9780 2.1114 1.0000 1.3436 1.0000 0.9944 0.9680 1.9886
50 0.9710 1.5639 0.9970 1.1372 1.0000 0.9137 0.9680 1.4510
100 0.9810 1.1668 0.9850 0.9591 0.9990 0.8150 0.9690 1.1202

(0.5, 2, 1) 15 0.9680 2.7063 1.0000 1.4829 1.0000 1.0401 0.9590 2.5048
25 0.9730 2.1223 1.0000 1.3163 1.0000 0.9891 0.9620 1.9820
50 0.9690 1.5636 0.9990 1.1441 1.0000 0.9164 0.9670 1.4768
100 0.9800 1.1688 0.9770 0.9645 0.9990 0.8224 0.9610 1.1323

(1, 1, 1) 15 0.9720 3.0214 0.9930 2.2146 1.0000 1.8279 0.9750 2.8808
25 0.9860 2.4110 0.9820 1.9761 0.9960 1.6479 0.9730 2.2986
50 0.9660 1.8304 0.9590 1.6258 0.9970 1.4200 0.9660 1.7716
100 0.9580 1.3607 0.9470 1.3019 0.9700 1.1551 0.9610 1.3438

(1, 2, 1) 15 0.9750 3.0453 0.9960 2.2751 1.0000 1.8100 0.9730 2.8994
25 0.9750 2.4082 0.9890 1.9854 1.0000 1.6575 0.9670 2.3193
50 0.9810 1.8234 0.9660 1.6416 0.9940 1.4134 0.9660 1.7773
100 0.9480 1.3634 0.9470 1.3040 0.9850 1.1542 0.9530 1.3458
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