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Abstract: When the rotating machinery fails, the signal generated by the faulty component often
no longer maintains the original symmetry, which makes the vibration signal with nonlinear and
non-stationary characteristics, and is easily affected by background noise and other equipment
excitation sources. In the early stage of fault occurrence, the fault signal is weak and difficult to
extract. Traditional fault diagnosis methods are not able to easily diagnose fault information. To
address this issue, this paper proposes an early fault diagnosis method for symplectic geometry mode
decomposition (SGMD) based on the optimal weight spectrum index (OWSI). Firstly, using normal
and fault signals, the optimal weight spectrum is derived through convex optimization. Secondly,
SGMD is used to decompose the fault signal, obtaining a series of symplectic geometric modal
components (SGCs) and calculating the optimal weight index of each component signal. Finally,
using the principle of maximizing the OWSI, sensitive components reflecting fault characteristics are
selected, and the signal is reconstructed based on this index. Then, envelope analysis is performed on
the sensitive components to extract early fault characteristics of rolling bearings. OWSI can effectively
distinguish the interference components in fault signals using normal signals, while SGMD has
the characteristic of unchanged phase space structure, which can effectively ensure the integrity of
internal features in data. Using actual fault data of rolling bearings for verification, the results show
that the proposed method can effectively extract sensitive components that reflect fault characteristics.
Compared with existing methods such as Variational Mode Decomposition (VMD), Feature Mode
Decomposition (FMD), and Spectral Kurtosis (SK), this method has better performance.

Keywords: optimal weight spectrum index; symplectic geometry mode decomposition; early failures;
fault diagnosis

1. Introduction

Rolling bearings are one of the most important key components of rotating machinery
and are often used in rail transit, aerospace and petrochemical industries [1,2]. Due to the
harsh working environment, they often face high speed, high pressure and other conditions,
and often fail. Especially when early failure occurs, the fault signal is susceptible to the
impact of background noise and other equipment incentive sources; if not found in time,
this may easily lead to production suspension and economic losses, and in serious cases,
even endanger the safety of human life [3,4]. Therefore, both the condition detection and
fault diagnosis of rolling bearings are very important for the safe operation of mechanical
equipment.

Rolling bearings are composed of four parts: inner ring, outer ring, rolling element
and cage. When a bearing component fails, the destruction of signal symmetry may be
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caused by a variety of factors. For example, faults such as rotor imbalance, misalignment,
looseness or rub impact may lead to asymmetric signal waveform, and corresponding fault
characteristic frequency will appear in the frequency domain [5]. The fault characteristics
can be extracted by testing the vibration signal of the bearing. However, when the bearing
experiences early failure, the fault characteristic frequency is often submerged in the noise
interference, which makes it difficult to effectively extract the sensitive components related
to the fault and affects the fault identification.

Therefore, scholars have designed many noise reduction problems for bearing fault
diagnosis. Among these commonly used fault signal processing techniques, time-frequency
analysis (TFA), empirical mode decomposition (EMD), wavelet transform (WT), and singu-
lar value decomposition (SVD) are the most prominent, and these methods help to identify
the fault characteristics of bearings. Time-frequency analysis is a good method to capture
the characteristics of time-varying non-stationary signals, which has been proven to be ef-
fective for the analysis of bearing vibration signals under actual operating conditions [6–8].
Yu [9] proposed a transient-extraction transform (TET) for instantaneous pulse signals,
which was successfully applied to the characterization of the transient characteristics of
bearing fault signals. Miao [10] proposed an automatic instantaneous frequency estimation
method, which can realize instantaneous frequency estimation and feature extraction of a
variable number of multi-component signals. Wang et al. [11] proposed a data-driven adap-
tive chirp mode decomposition (DD-ACMD) method. By introducing an instantaneous
frequency estimation method based on signal derivative normalization, the adaptability of
the ACMD method to multi-component signals and noise robustness are improved, and
the method has been successfully applied to fault diagnosis of rolling bearings and the
axle box of a heavy locomotive under variable speed conditions. Zhang et al. [12] used
time-frequency images as the input of enhanced convolutional neural networks to achieve
accurate identification of bearing fault types. The method of time-frequency analysis can
solve the problem of fault feature extraction and identification in time-varying working
conditions, but for early faults, limited by noise interference, it is easy to cause energy
divergence, and fault features are easily submerged in the background noise.

As a data-driven adaptive decomposition method, EMD can decompose complex
signals into several eigenmode functions, so as to identify bearing fault information. No-
table advancements include Xia et al.’s [13] implementation of a double iterative EMD to
mitigate the effects of local polar deviation, Lashari et al.’s [14] application of a time-varying
filtered EMD for single-channel system identification, and Wu et al.’s [15] introduction of an
improved version of EMD, termed Ensemble Empirical Mode Decomposition (EEMD), to
enhance fault detection in rotating machinery. Furthermore, Lei et al. [16] and Li et al. [17]
have refined EEMD through improved adaptive resonance techniques, demonstrating their
effectiveness in the fault diagnosis of bearings. Despite their utility, these algorithms, reliant
on iterative time-domain calculations, suffer from low computational efficiency and are
vulnerable to cumulative errors, significantly impacting the precision of the final modal
decomposition.

As a typical noise reduction method, wavelet transform (WT) can deeply mine local
information of data and extract weak fault features hidden in local areas [18–21]. The signal
is decomposed into a series of wavelet coefficients, which represent the characteristics of the
signal at different scales and different positions, through the stretching and shifting wavelet
basis function. Through multi-scale analysis, the detailed information and low-frequency
components in the signal can be separated, so as to realize the noise reduction and feature
extraction of the signal. In fault diagnosis, wavelet decomposition can effectively remove
the noise in the signal and improve the signal-to-noise ratio of the fault signal by means
of threshold processing. However, wavelet transform has the following fatal shortcom-
ings [22]: (1) As a Fourier transform with adjustable window size, wavelet transform has
the problem of modal confusion. (2) When the signal is decomposed by wavelet transform,
the wavelet basis needs to be selected according to prior knowledge. The decomposition of
the same signal by different wavelet bases will produce different results, so the wavelet
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transform is not self-adaptive. (3) When the noise is low, the noise reduction effect of
wavelet transform is not ideal.

The field of signal denoising via matrix decomposition has increasingly captivated
scholarly interest. Singular Value Decomposition (SVD) stands out as a notable technique
in this realm. Sun et al. [23] utilized an enhanced SVD approach to mitigate the ambiguities
associated with the original SVD’s reconstruction order and its limited noise reduction
capability, facilitating the extraction of the bearing’s fault characteristic frequency. Zhang
et al. [24] introduced a time-variant SVD technique to accentuate periodic faults and
successfully extract the fault eigenfrequencies of bearings. Yang et al. [25] used amplitude
filtering and the negative entropy index as screening indexes to extract effective singular
values and retain effective fault information after reconstruction. Although SVD effectively
reduces noise by matrix decomposition and discarding eigenvectors associated with small
eigenvalues, in the case of strong background noise, the effect is often poor, resulting in
incomplete noise reduction and retaining some interference components.

In recent years, relevant researchers have abandoned traditional research ideas and
proposed constraint optimization methods to complete signal decomposition [26]. For
example, Dragomiretskiy et al. [27] proposed a variational mode decomposition (VMD)
method to transform the signal decomposition into a constrained variational problem, thus
adaptive decomposition into multiple eigenmodal components. However, in the VMD
method, the number of decomposition modes needs to be predetermined [28]. Li et al. [29]
improved the adaptive aspects of VMD and sparse coding. Although the sparse coding
algorithm has a good denoising ability, its denoising threshold cannot be manually drafted,
and the purpose of adaptive denoising cannot be realized. Moreover, the Minimum Entropy
Deconvolution (MED) method was innovated to negate the effects of the transmission path,
premised on the notion of an impulsive original excitation to maximize kurtosis through
the identification of an inverse filter [30]. Endo et al. [31] were pioneers in applying MED
for fault detection, achieving promising outcomes. McDonald et al. [32] critiqued MED for
its propensity to deconvolve isolated or select pulses rather than the anticipatory periodic
pulses seen during fault cycles, thereby proposing the Maximum Correlated Kurtosis
Deconvolution (MCKD) as a method geared towards deconvolving periodic pulse faults
by acknowledging the fault’s periodic nature. Recently, MCKD has been widely adopted
for extracting periodic pulse signals in fault diagnosis [33]. Miao et al. [34] introduced the
Feature Mode Decomposition (FMD) algorithm, proving its superiority over VMD in fault
signal decomposition. FMD draws upon blind deconvolution theory, integrating it into the
signal decomposition process to bolster the filtering of complex signals with indeterminate
transfer functions and unpredictable noise [35].

The Symplectic Geometric Similar Transform (SGST) method represents a matrix
decomposition-based signal processing technique [36], achieving adaptive signal transfor-
mation while preserving the integrity of the original signal structure. SGST’s enhanced
classification performance has spurred the development of improved algorithms, such
as the Adaptive Weighted Sim-geometric Decomposition (AWSGD) method proposed
by Cheng et al. [37], which leverages period kurtosis for adaptive signal decomposition.
Zhang et al. [38] introduced an advanced Symplectic Geometric Modal Decomposition
(SGMD) technique, proposing a novel fault diagnosis approach based on the refined Sim-
geometric modal decomposition, although its applicability to noise-dominated signals
remains limited. Hou et al. [39,40] proposed the concept of an optimal weight spectrum,
extracting fault components based on the optimal weight spectrum index within VMD and
WT methodologies, showcasing effective performance. Nevertheless, the efficacy of the
optimal weight spectral index in the context of matrix transformation denoising remains
an area ripe for exploration.

To solve the problems discussed above, this paper proposes a fault diagnosis method
for SGMD based on the optimal weight spectrum index. The contributions of this work are
as follows:
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1. An SGMD signal reconstruction method guided by the optimal weight spectrum
index is proposed to screen out sensitive components reflecting fault characteristics
and reduce the influence of noise and interference components.

2. Using the information of health and fault signals, the optimal weight spectrum is
generated to generate effective fault indicators and provide a robust framework for
fault detection.

3. Validation of the proposed methodology can be conducted through signal experi-
ments focused on early bearing faults, which substantiates its efficacy in practical
applications.

The remaining sections of this paper are arranged as follows: Section 2 is the theo-
retical introduction of SGMD Guided by Optimal Weight Spectrum Index, which lays the
foundation for the method proposed in this paper. Section 3 is the entire process of the
method proposed, offering a step-by-step guide to its implementation. Section 4 presents
an analysis of experimental signals, demonstrating the method’s applicability and effective-
ness in real-world scenarios. Finally, Section 5 provides a summary, encapsulating the key
findings and contributions of this study.

2. Methodological Theory
2.1. Optimal Weight Spectrum Theory

Hou et al. [37] introduced a concept of optimal weight spectrum using convex optimiza-
tion technology to identify fault and interference components in signals, which showed good
performance in practical applications. Below is an introduction to the theory. Suppose a set of
signals is represented by x = [x1, x2, . . . , xn], where n is the number of sampling points. The
Fourier spectrum of the signal x is defined as FS = f f t(x) , where f f t(·) represents the fast
Fourier transform, and the normalized Fourier spectrum is defined as follows:

NFS = FS/∥FS∥L1 (1)

In real industry, most of the data obtained are normal data. The main difference
between the fault signal and the normal signal is that there are some narrowband fault
components in the fault data, while there are interference components and noise related to
machinery and equipment in most health data. These interference components also exist
in the fault signals tested by the same equipment. The useful information in these health
signals can be used to denoise the fault signals and screen out the sensitive components
that reflect the fault characteristics. Suppose that P and Q samples of normal signal and
fault signal are collected and the corresponding sample sets are denoted as {xH}P and
{xF}Q, respectively. Furthermore, the normalized Fourier spectrum set of the healthy and
faulty signal sets can be calculated, which can be expressed as {NFSH}P and {NFSF}Q.
Based on the aforementioned two sets, OWS can be obtained in the following ways. First, a
sum of weighted normalized Fourier spectrum (SWNFS) [38] is defined as follows:

SWNFS = ωT NFS + b = 0 (2)

where ω is a weights vector, and b is a bias. The SWNFS can be conceptualized as a
hyperplane in a high-dimensional space, where {NFSH}P and {NFSF}Q represent two
point clusters. The primary purpose of the hyperplane is to optimize the separation
between the two point clusters. By utilizing maximum logarithmic likelihood estimation,
an objective function to achieve the maximum distance is defined as follows:

minL(ξ) = 1
2(P+Q)

λξTξ

+ 1
2(P+Q)

P+Q
∑

i=1

[
−yiξ

Tρi + log(1 + exp(ξTρi))
] (3)
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where ξ =
[
ωTb

]T , ρi =
[
(NFSi)

T 1
]T

; λ is the coefficient of the regularization item, yi

is label variable, if NFSi ∈ {NFSH}P, yi = 0; if NFSi ∈ {NFSF}Q, yi = 1. The objective
function in Equation (3) can be easily solved by using the gradient descent method, and
the obtained optimal weights ω∗ is named optimized weights spectrum (OWS) [39].

Based on OWS, the optimal weight spectrum index (OWSI) is defined as follows:

OWSI(SCG) = (ω∗)T FSSGC, where FSSGC = | f f t(SGC)| (4)

where SGC is the component decomposed by SGMD, and the specific form is explained in
Section 2.2. Reference for specific properties of OWSI can be found in [40].

2.2. The Theory of SGMD

SGMD is a new mode decomposition method which applies the symplectic geometric
QR decomposition method to the Hamilton matrix, obtains corresponding eigenvalues and
eigenvectors, and finally reconstructs the SGCs by diagonal averaging [38]. The advantage of
symplectic transformation is that it can keep the phase space of the data structure unchanged
and ensure the integrity of the decomposed signal. Suppose a one-dimension time-series
vibration signal x = [x1, x2, . . . , xn], where n represents the length of the data, and using the
Takens embedding theorem, construct the trajectory matrix X, expressed as follows:

X =


x1 x1+τ . . . x1+(d−1)τ
x2 x2+τ . . . x2+(d−1)τ
...

...
. . .

...
xm xm+τ . . . xm+(d−1)τ

 (5)

where d represents the embedding dimension, τ represents the delay time and has m =
n − (d − 1)τ , according to reference [33]; the PSD of the original signal x is calculated
and the frequency fmax at the maximum peak is found, and the other frequency fmax is
compared with the sampling frequency fs, when the ratio is less than the set threshold,
d = n/3. Otherwise, d = 1.2 × ( f s/ f max), τ = 1.

Autocorrelation analysis was performed on X to obtain the covariance matrix A.

A = XTX (6)

The equation between the Hamilton matrix M is established using the covariance
matrix A as follows:

M =

[
A 0
0 −AT

]
(7)

Then, construct the Sin-geometry matrix G according to Equation (3), which can be
expressed as follows:

QTGQ =

[
B R
0 −BT

]
(8)

where G = M2, the matrices Q and B are the sinusoidal and upper triangular matrices,
respectively.

Calculate the eigenvalue λ1, λ2, . . . , λd of the upper triangular matrix B, which can be
obtained from the properties of the Hamilton matrix, and the eigenvalue of matrix A is
σi =

√
λi (i = 1, 2, . . . , d), Qi (i = 1, 2, . . . , d) is the eigenvector of matrix A corresponding

to the eigenvalue σi. The symplectic geometric spectrum will be arranged according to
the characteristic values from the largest to the smallest, and the smaller the characteristic
value, the less the characteristic information it contains and the greater the noise.
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Decomposition of the matrix A using QR decomposition leads to the eigenvector
matrix Q. The coefficient matrix S is constructed using the eigenvector matrix Q and the
original trajectory matrix X.

Si = QT
i X (9)

Furthermore, the reconstruction matrix Z is obtained using the eigenvector matrix Q
and the coefficient matrix S:

Zi = QiSi (10)

where Zi (i = 1, 2, . . . , d) is the initial single component reconstruction matrix. At this
point, the original phase space reconstruction matrix Z consisting of d sets of reconstruction
matrices can be written as Z = Z1 + Z2 . . . + Zd .

The Zi obtained by single geometric similarity transformation is an m × d reconstruc-
tion matrix. Since the reconstructed single component matrix is a non-one-dimensional
vibration signal, it is necessary to convert the single component matrix Zk(1 ≤ k ≤ d) into
a vibration signal of length n. The diagonal averaging method, as a common conversion
algorithm, has the ability of accurate information conversion. Therefore, in this section, the
single component reconstruction matrix Zi is transformed into a one-dimensional single
component time series of length n by using the diagonal average method. Thus, a single
component signal with d group length is obtained, and the sum of these single component
signals is the original signal. Suppose the element in Zi is zij(1 ≤ i ≤ m, 1 ≤ j ≤ d). Set
d∗ = min(m, d), m∗ = max(m, d) and 1 ≤ i ≤ m, 1 ≤ j ≤ d, if m < d, then there is z∗ij = zij,
otherwise z∗ij = zji; according to the literature [23], the expression of the diagonal averaging
transformation is as follows:

yk =



1
k

k
∑

p=1
z∗p,k−p+1 1 ≤ k ≤ d∗

1
d∗

d∗

∑
p=1

z∗p,k−p+1 d∗ ≤ k ≤ m∗

1
n−k+1

n−m∗+1
∑

p=k−m∗+1
z∗p,k−p+1 m∗ < k ≤ n

(11)

Equation (11) enables the conversion of the initial single-component reconstruction
matrix Zi into a one-dimensional time-series Yi. The diagonal averaging of each initial
single-component reconstruction matrix results in a one-dimensional time-series, which
further yields d sets of initial single-component signals, denoted as Y1, Y2, . . . , Yd.

The single-component signals obtained by constructing trajectory matrix and matrix
decomposition are not independent, and the components may have the same periodic
and frequency components. Therefore, it is necessary to reconstruct each initial single
component. In this paper, periodic similarity is used as the evaluation index, and compo-
nent recombination is carried out for the obtained components. The matrix Y is a d × n
matrix. Since the main components are distributed in the front of the matrix, the periodic
similarity between Y1 and the other components is compared. The component with higher
similarity is reconstructed and the first component SGC1 is obtained. The components
participating in SGC1 reconstruction are removed from the matrix Y, the matrix of the
remaining components can be represented as R1, and the sum of the matrices gives the
residual signal ri. The normalized mean square error (NMSE) between the original signal
and the remaining signal can be expressed as follows:

NMSEh =

n
∑

i=1
rh(i)

n
∑

i=1
x(i)

(12)
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where h is the number of iterative decomposition times. The decomposition process termi-
nates when the NMSE falls below the specified threshold. If it exceeds the threshold, we
employ the residual term matrix as the iterative original matrix and repeat the aforemen-
tioned iteration process until meeting the termination condition. The resulting outcome of
decomposition after optimization is presented as follows:

x(n) =
T

∑
h=1

SGCh(n) + r(T+1)(n) (13)

where T is the number of decomposition components obtained.

3. The Process of the Proposed Method

To mitigate the impact of noise on the diagnosis of fault signals, this study employs
the Optimal Weight Spectrum Index (OWSI) to quantify the characteristics of both fault
and interference components. It strategically selects components that are indicative of fault
characteristics from the Symplectic Geometric Modal Decomposition (SGMD) output. The
methodology proposed in this article is elucidated through a systematic process, graphically
represented in Figure 1, and encompasses four distinct steps:
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Figure 1. The flow chart of proposed method.

Step 1: Decomposition of the Fault Signal: The initial step involves applying SGMD to
the fault signal under analysis. This decomposition yields a series of Symplectic Geometry
Components (SGCs), effectively segregating the fault signal into its constituent modal
components.

Step 2: Generation of the Optimal Weight Spectrum: Subsequently, the optimal weight
spectrum is generated by leveraging both normal and fault signals. This process involves
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analyzing these signals to derive an optimal weight spectrum index, which serves as a
quantitative measure for distinguishing between healthy and faulty signal characteristics.

Step 3: Calculation and Application of the Optimal Weight Spectral Index: For each
SGC obtained from the decomposition, the optimal weight spectral index is calculated. This
index is then used to guide the reconstruction of the signal, focusing on those components
that are most reflective of fault characteristics based on their weighted significance.

This structured approach aims to enhance the precision and reliability of fault signal
diagnosis by effectively reducing noise interference and emphasizing the signal components
most relevant to fault detection.

4. Experimental Verification and Discussion
4.1. Experimental Setup

To validate the efficacy of the proposed methodology, an experimental test bench
was constructed, as depicted in Figure 2a. This bench comprises several key components
essential for simulating bearing faults: a DC motor, transmission shaft support, coupling,
rotating disc, loader, and test bearings. These test bearings are designed to be interchange-
able, allowing for the simulation of various fault conditions, including inner and outer
ring faults, as illustrated in Figure 2b,c. The faults within the bearings were meticulously
introduced through precision wire cutting to replicate real-world bearing failure scenarios
accurately. The fault width and depth of the inner and outer rings are both 1 mm. Fault
length is 4 mm.
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The bearing model utilized in this study is the NU205EM/PS, with specific parameters
listed in Table 1. The experimental setup was configured with a sampling frequency of
12,800 Hz, a sampling duration of 1 s, and a rotational speed of 1200 revolutions per
minute (r/min), to ensure that the collected data accurately reflect the dynamics of bearing
operation under fault conditions. Figure 3a,b show the data obtained from the test bench,
showing the health data and fault data of the bearing vibration signal, respectively. Data
collection using LabVIEW edited the collection program.
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Table 1. Bearing dimension table.

Bearing Type NU205EM/PS

Inner race diameter (mm) 25
Outer race diameter (mm) 52

Rolling element diameter (mm) 7.5
Pitch diameter (mm) 39

Roller number 13
Contact angle α (◦) 0

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

rotating disc, loader, and test bearings. These test bearings are designed to be interchange-
able, allowing for the simulation of various fault conditions, including inner and outer 
ring faults, as illustrated in Figure 2b,c. The faults within the bearings were meticulously 
introduced through precision wire cutting to replicate real-world bearing failure scenarios 
accurately. The fault width and depth of the inner and outer rings are both 1 mm. Fault 
length is 4 mm. 

 

 
(b) 

 
(a) (c) 

Figure 2. Experimental platform diagram: (a) QPZZ-II experimental platform, (b) inner ring fault 
bearing, (c) outer ring fault bearing. 

The bearing model utilized in this study is the NU205EM/PS, with specific 
parameters listed in Table 1. The experimental setup was configured with a sampling fre-
quency of 12,800 Hz, a sampling duration of 1 s, and a rotational speed of 1200 revolutions 
per minute (r/min), to ensure that the collected data accurately reflect the dynamics of 
bearing operation under fault conditions. Figure 3a,b show the data obtained from the test 
bench, showing the health data and fault data of the bearing vibration signal, respectively. 
Data collection using LabVIEW edited the collection program. 

  
(a) (b) 

Figure 3. Time-domain diagram of bearing signal: (a) healthy bearing signal, (b) outer ring faulty 
bearing signal. 

Table 1. Bearing dimension table. 

Bearing Type NU205EM/PS 
Inner race diameter (mm) 25 
Outer race diameter (mm) 52 

Am
pl

itu
de

(m
/s

2 )

Time （s）
Am

pl
itu

de
(m

/s
2 )

Figure 3. Time-domain diagram of bearing signal: (a) healthy bearing signal, (b) outer ring faulty
bearing signal.

With the operating parameters of the bearing firmly established, this study proceeds to
calculate the characteristic failure frequencies of the bearing’s inner ring. These calculations
are critical for identifying the specific frequencies associated with different types of bearing
faults and are detailed in Table 2. This comprehensive approach, combining a practical
test bench setup with detailed analytical calculations, aims to rigorously evaluate the
performance and reliability of the proposed fault diagnosis method under controlled, yet
realistic, conditions.

Table 2. The bearing failure characteristic frequency formula.

Failure Name Fault Characteristic Frequency Calculation Formula Failure Frequency

inner ring failure fi =
r

120 n
(

1 + d
D cos α

)
155 Hz

outer ring failure fo = r
120 n

(
1 + d

D cos α
)

105 Hz

4.2. Outer Ring Fault Analysis

Firstly, at a constant speed of 1200 rpm, collect signals from some normal bearings
and some faulty outer ring bearings. The time-domain diagram is shown in Figure 3. Then,
collect the signal of the outer ring faulty bearing and use the method proposed in this
article for analysis.

The process of verifying the proposed method’s effectiveness involved generating an
optimal weight spectrum from collected normal and fault signals, as illustrated in Figure 4.
Subsequently, the signal under scrutiny was decomposed using Symplectic Geometric
Modal Decomposition (SGMD), with the decomposition parameters set based on empirical
values. The outcomes of this decomposition are presented in Figure 5a, while Figure 5b
displays the normalized frequency spectrum associated with each component. The next step
entailed calculating the optimal weight spectral index for each of the SGMD components,
as depicted in Figure 6. Through this analysis, the component with the highest optimal
weight spectrum index was identified as the fault-sensitive component, pinpointing the
fourth SGMD component as the one most reflective of fault characteristics. Its time-domain
waveform is shown in Figure 7a, and the envelope spectrum of this sensitive component is
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exhibited in Figure 7b. From the envelope spectrum of the sensitive components screened
by the proposed method, the fault frequency fo and the frequency doubling of the outer
ring 2 fo, 3 fo, 4 fo, 5 fo, 6 fo caused by local fault can be seen, and the characteristics are clearly
visible, indicating that the outer ring fault in the bearing has been accurately diagnosed.
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Figure 5. SGMD decomposition results: (a) time-domain signal of SGCs, (b) frequency spectrum of
SGCs.
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Figure 7. Diagnostic results of the proposed method: (a) sensitive component, (b) envelope spectrum
of sensitive components.

To underscore the superiority of the proposed method, a comparative analysis was
conducted with alternative approaches such as Feature Mode Decomposition (FMD),
Variational Mode Decomposition (VMD), and spectral kurtosis. For FMD, the filter length
was set to L = 30, and the number of decomposed modes for fault detection was fixed at
n = 1, with other parameter settings adhering to the guidelines provided in reference [34].
The results, showcased in Figure 8, did not reveal the outer ring fault feature frequency or
its correlation frequency. This outcome suggests that the principle of FMD, which aims to
identify the component with the highest correlation kurtosis, may not be effective in cases
where the fault component is obscured by noise across the spectrum, leading to the selection
of an unrelated component as having the highest correlation kurtosis. Consequently, the
diagnostic performance, following the parameter selection recommended in reference [34],
was found to be suboptimal.
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Figure 8. Results of FMD decomposition: (a) FMD final component, (b) envelope spectrum of FMD
final component.
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VMD is the decomposition of the signal into a series of IMFs according to different
center frequencies. The number of decomposition layers is set as the default K = 5, and the
decomposition result of VMD is shown in Figure 9. As can be seen from the figure, the
VMD method breaks down the signal into a series of narrow-band components. Then, the
kurtosis index of each component signal is calculated, as shown in Figure 10a. The signal
with the highest kurtosis is treated as a sensitive component, and the final result is shown
in Figure 10b. The VMD method divides the signal according to the spectrum, which can
easily truncate the signal features. From the final result, no fault information was extracted.
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Figure 9. VMD decomposition results: (a) time-domain signal of IMFs, (b) frequency spectrum of IMFs.
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Figure 10. Analysis results of VMD: (a) the kurtosis of each component in VMD, (b) envelope
spectrum of VMD sensitive components.

Figure 11a shows the spectral kurtosis results, and Figure 11b shows the envelope
spectrum after spectral kurtosis filtering. From the final result, we can see the peak value
related to the rotation frequency, but there seems to be no fault component related to the
fault frequency, and the diagnostic effect is not ideal.



Symmetry 2024, 16, 408 13 of 19
Symmetry 2024, 16, x FOR PEER REVIEW 14 of 21 
 

 

  
(a) (b) 

Figure 11. Analysis results of spectral kurtosis: (a) spectral kurtosis, (b) envelope spectrum after 
spectral kurtosis filtering. 

4.3. Inner Ring Failure Analysis 
Firstly, the signals of some normal bearings and some inner ring faulty bearings are 

collected at a constant speed of 1200 rpm. The time-domain diagram is shown in Figure 
12. Then, the signals of the inner ring faulty bearings are collected and analyzed using the 
proposed method in this paper. 

  
(a) (b) 

Figure 12. Time-domain diagram of bearing signal: (a) healthy bearing signal, (b) inner ring faulty 
bearing signal. 

Utilizing the collected normal and faulty signals, this study crafted an optimal weight 
spectrum, illustrated in Figure 13. Following this, the signal designated for analysis un-
derwent decomposition via Symplectic Geometric Modal Decomposition (SGMD), with 
the decomposition’s parameters determined based on empirical evidence. The outcomes 
of this decomposition process are captured in Figure 14a, while Figure 14b delineates the 
normalized spectrum associated with each of the decomposition’s components. Subse-
quent to this, the optimal weight spectrum index for each of the Symplectic Geometry 
Components (SGCs) was computed, as depicted in Figure 15. Among these components, 
the 6th SGC was identified as bearing the highest optimal weight spectral index, marking 
it as the fault-sensitive component; the time-domain diagram is shown in Figure 16a. An 
envelope spectrum analysis of this fault-sensitive signal, presented in Figure 16b, revealed 

the fault characteristic frequency if  along with the multiplicative frequency of the inner 
ring. When the inner ring is damaged, because the relative position of the damage point 
and the load changes periodically, the vibration amplitude changes periodically when the 
collision occurs, showing an amplitude modulation phenomenon. This modulation is re-
lated to the speed of the rotating shaft. The failure frequency of the bearing and the side 
frequency of the rotating speed can be clearly seen in the envelope spectrum of Figure 16b. 
These results are used in the diagnosis of a fault within the bearing’s inner ring, 

Frequency (Hz)

Am
pl

itu
de

(m
/s

2 )

Time （s） Time （s）

Am
pl

itu
de

(m
/s

2 )

Figure 11. Analysis results of spectral kurtosis: (a) spectral kurtosis, (b) envelope spectrum after
spectral kurtosis filtering.

This comparative analysis shows that the proposed method can select the sensitive
component of the fault component from the test signal even in the presence of noise, and
accurately identify the fault characteristics through envelope analysis, highlighting its
potential advantages over existing techniques in the field of fault diagnosis.

4.3. Inner Ring Failure Analysis

Firstly, the signals of some normal bearings and some inner ring faulty bearings are
collected at a constant speed of 1200 rpm. The time-domain diagram is shown in Figure 12.
Then, the signals of the inner ring faulty bearings are collected and analyzed using the
proposed method in this paper.
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Figure 12. Time-domain diagram of bearing signal: (a) healthy bearing signal, (b) inner ring faulty
bearing signal.

Utilizing the collected normal and faulty signals, this study crafted an optimal weight
spectrum, illustrated in Figure 13. Following this, the signal designated for analysis un-
derwent decomposition via Symplectic Geometric Modal Decomposition (SGMD), with
the decomposition’s parameters determined based on empirical evidence. The outcomes
of this decomposition process are captured in Figure 14a, while Figure 14b delineates the
normalized spectrum associated with each of the decomposition’s components. Subse-
quent to this, the optimal weight spectrum index for each of the Symplectic Geometry
Components (SGCs) was computed, as depicted in Figure 15. Among these components,
the 6th SGC was identified as bearing the highest optimal weight spectral index, marking
it as the fault-sensitive component; the time-domain diagram is shown in Figure 16a. An
envelope spectrum analysis of this fault-sensitive signal, presented in Figure 16b, revealed
the fault characteristic frequency fi along with the multiplicative frequency of the inner
ring. When the inner ring is damaged, because the relative position of the damage point
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and the load changes periodically, the vibration amplitude changes periodically when
the collision occurs, showing an amplitude modulation phenomenon. This modulation
is related to the speed of the rotating shaft. The failure frequency of the bearing and
the side frequency of the rotating speed can be clearly seen in the envelope spectrum of
Figure 16b. These results are used in the diagnosis of a fault within the bearing’s inner ring,
confirming the effectiveness of the proposed methodology in identifying and diagnosing
fault characteristics accurately.
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Figure 14. SGMD decomposition results: (a) time-domain signal of SGCs, (b) frequency spectrum of
SGCs.

This process underscores the proposed method’s capability to discern and highlight
fault-sensitive components through SGMD, guided by an optimal weight spectrum derived
from historical data. The ability to isolate and analyze these components further enables the
precise identification of fault types, such as those occurring in the inner ring of a bearing,
facilitating accurate fault diagnosis. The methodology’s success in pinpointing the fault
characteristic frequency and its multiplicative frequencies demonstrates its potential as a
robust tool for fault analysis in mechanical systems.
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Figure 16. Diagnostic results of the proposed method: (a) sensitive component, (b) envelope spectrum
of sensitive components.

To highlight the efficacy of the proposed method, it is contrasted with other prevalent
fault diagnosis techniques, namely Feature Mode Decomposition (FMD), Variational Mode
Decomposition (VMD), and spectral kurtosis, referred to here as spectral kurtosis for its
ability to identify peaks in the frequency spectrum.

For the application of FMD, a filter length of L = 30 was chosen, and the number of
modes to be decomposed was set to equal the number of identified faults, n = 1, with
additional parameter settings adhering to those outlined in the referenced literature [34].
The outcomes, depicted in Figure 17, failed to reveal the eigenfrequency of the outer
ring fault and its corresponding correlation frequency. This discrepancy suggests that the
FMD principle, which aims to isolate the component with the highest correlation kurtosis,
might not effectively discern fault components when they are submerged within the noise
across the entire spectrum. Consequently, the component identified as having the highest
correlation may not be related to the fault, leading to unsatisfactory diagnostic results when
following the parameter selection recommended in the literature [34].

This comparison underscores the advantages of the proposed SGMD-based method,
which guided by the optimal weight spectrum demonstrates superior capability in accu-
rately identifying fault-sensitive components amidst noise. Unlike FMD, which relies on
the correlation kurtosis principle and may inadvertently highlight irrelevant components,
the proposed method utilizes a targeted approach to discern fault characteristics, thereby
offering a more reliable diagnostic tool. This distinction highlights the importance of select-
ing an appropriate diagnostic methodology that can adeptly navigate the challenges posed
by noise and other interferences in the signal analysis.

The decomposition result of VMD is shown in Figure 18 below, and then the kurtosis
index of each component signal is calculated as shown in Figure 19a, and the signal with
the largest kurtosis is treated as the sensitive component, and the final result is shown in
Figure 19b. From the final result, no fault information is extracted.
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Figure 17. Results of FMD decomposition: (a) FMD final component, (b) envelope spectrum of FMD
final component.
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Figure 19. Analysis Results of VMD: (a) the kurtosis of each component in VMD, (b) envelope
spectrum of VMD sensitive components.
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Figure 20a shows the spectral kurtosis result and Figure 20b shows the envelope
spectrum after spectral kurtosis filtering. From the final results, both the transconductance
and its multiplicative frequency are derived, but the conclusion is not reliable.
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In order to demonstrate the advantages of this article more intuitively, the results of
comparing the proposed method with other methods are shown in Table 3 (

√
indicates

successful diagnosis, × is the opposite).

Table 3. Comparison of results from different methods.

Methods Inner Ring Failure Outer Ring Failure

Proposed method
√ √

FMD × ×
VMD × ×

Spectral kurtosis × ×

5. Conclusions

This study introduces a fault diagnosis methodology that utilizes Symplectic Ge-
ometric Modal Decomposition (SGMD) guided by an optimal weight spectrum. This
optimal weight spectrum is obtained through convex optimization of normal and fault
signals, allowing for a clear differentiation between fault and interference components. This
framework effectively guides the SGMD process in selecting fault-sensitive components,
ensuring a targeted approach to fault diagnosis. Experimental validations demonstrate
the robust performance and superiority of the method compared to established techniques
such as Feature Mode Decomposition (FMD), Variational Mode Decomposition (VMD),
and spectral kurtosis. The proposed method’s ability to accurately identify fault-sensitive
components suggests its potential as a powerful tool in fault diagnosis. However, the
methodology presented here operates under the assumption of constant speed conditions
when generating the optimal weight spectrum. This limitation indicates that the current
approach may not fully consider the complexities associated with variable speed conditions,
which are common in real-world scenarios and can significantly impact the diagnosis of
mechanical faults. Future research will focus on extending the method’s applicability to
variable speed conditions in order to refine the diagnostic process further and ensure its
effectiveness across a wider range of operational scenarios, thereby increasing its utility
and relevance in practical applications.
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Abbreviations

SGMD Symplectic geometry mode decomposition
OWSI Optimal weight spectrum index
SGCs Symplectic geometric modal components
VMD Variational Mode Decomposition
FMD Feature Mode Decomposition
SK Spectral Kurtosis
TFA Time-frequency analysis
EMD Empirical mode decomposition
WT Wavelet transform
SVD Singular value decomposition
TET Transient-extraction transform
DD-ACMD Data-driven adaptive chirp mode decomposition
EEMD Ensemble Empirical Mode Decomposition
MED Minimum Entropy Deconvolution
MCKD Maximum Correlated Kurtosis Deconvolution
SGST Symplectic Geometric Similar Transform
AWSGD Adaptive Weighted Piezometric Decomposition

References
1. Zhou, P.; Chen, S.; He, Q.; Wang, D.; Peng, Z. Rotating machinery fault-induced vibration signal modulation effects: A review

with mechanisms, extraction methods and applications for diagnosis. Mech. Syst. Signal Process. 2023, 200, 110489. [CrossRef]
2. Kong, X.; Li, X.; Zhou, Q.; Hu, Z.; Shi, C. Attention Recurrent Autoencoder Hybrid Model for Early Fault Diagnosis of Rotating

Machinery. IEEE Trans. Instrum. Meas. 2021, 70, 2505110. [CrossRef]
3. Hong, Y.; Kim, M.; Lee, H.; Park, J.J.; Lee, D. Early Fault Diagnosis and Classification of Ball Bearing Using Enhanced Kurtogram

and Gaussian Mixture Model. IEEE Trans. Instrum. Meas. 2019, 68, 4746–4755. [CrossRef]
4. Li, Y.; Yang, Y.; Wang, X.; Liu, B.; Liang, X. Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy

and binary tree support vector machine. J. Sound Vib. 2018, 428, 72–86. [CrossRef]
5. Qin, Y. A New Family of Model-Based Impulsive Wavelets and Their Sparse Representation for Rolling Bearing Fault Diagnosis.

IEEE Trans. Ind. Electron. 2018, 65, 2716–2726. [CrossRef]
6. Li, Z.; Gao, J.; Li, H.; Zhang, Z.; Liu, N.; Zhu, X. Synchroextracting transform: The theory analysis and comparisons with the

synchrosqueezing transform. Signal Process. 2020, 166, 107243. [CrossRef]
7. Yu, G.; Huang, X.; Lin, T.; Dong, H. A non-linear time–frequency tool for machinery fault diagnosis under varying speed

condition. Mech. Syst. Signal Process. 2023, 186, 109849. [CrossRef]
8. Dong, H.; Yu, G.; Lin, T.; Li, Y. An energy-concentrated wavelet transform for time-frequency analysis of transient signal. Signal

Process. 2023, 206, 108934. [CrossRef]
9. Yu, G. A Concentrated Time-Frequency Analysis Tool for Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2019, 69, 371–381.

[CrossRef]
10. Miao, Y. Automatic instantaneous frequency estimator for multicomponent signals with the variable number of components.

Signal Process. 2022, 197, 108541. [CrossRef]
11. Wang, H.; Chen, S.; Zhai, W. Data-driven adaptive chirp mode decomposition with application to machine fault diagnosis under

non-stationary conditions. Mech. Syst. Signal Process. 2023, 188, 109997. [CrossRef]
12. Zhang, Y.; Xing, K.; Bai, R.; Sun, D.; Meng, Z. An enhanced convolutional neural network for bearing fault diagnosis based on

time–frequency image. Measurement 2020, 157, 107667. [CrossRef]

https://doi.org/10.1016/j.ymssp.2023.110489
https://doi.org/10.1109/TIM.2021.3051948
https://doi.org/10.1109/TIM.2019.2898050
https://doi.org/10.1016/j.jsv.2018.04.036
https://doi.org/10.1109/TIE.2017.2736510
https://doi.org/10.1016/j.sigpro.2019.107243
https://doi.org/10.1016/j.ymssp.2022.109849
https://doi.org/10.1016/j.sigpro.2023.108934
https://doi.org/10.1109/TIM.2019.2901514
https://doi.org/10.1016/j.sigpro.2022.108541
https://doi.org/10.1016/j.ymssp.2022.109997
https://doi.org/10.1016/j.measurement.2020.107667


Symmetry 2024, 16, 408 19 of 19

13. Xia, S.; Zhang, J.; Ye, S.; Xu, B.; Xiang, J.; Tang, H. A mechanical fault detection strategy based on the doubly iterative empirical
mode decomposition. Appl. Acoust. 2019, 155, 346–357. [CrossRef]

14. Lazhari, M.; Sadhu, A. Decentralized modal identification of structures using an adaptive empirical mode decomposition method.
J. Sound Vib. 2019, 447, 20–41. [CrossRef]

15. Zhao, H.W.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adaptive Data
Anal. 2009, 1, 1–41.

16. Lei, Y.; He, Z.; Zi, Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process.
2009, 23, 1327–1338. [CrossRef]

17. Li, H.; Liu, T.; Wu, X.; Li, S. Research on test bench bearing fault diagnosis of improved EEMD based on improved adaptive
resonance technology. Measurement 2021, 185, 109986. [CrossRef]

18. Yan, R.; Gao, R.X.; Chen, X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014, 96,
1–15. [CrossRef]

19. Chen, J.; Li, Z.; Pan, J.; Chen, G.; Zi, Y.; Yuan, J.; Chen, B.; He, Z. Wavelet transform based on inner product in fault diagnosis of
rotating machinery: A review. Mech. Syst. Signal Process. 2016, 70–71, 1–35. [CrossRef]

20. Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 2011,
74, 1638–1645. [CrossRef]

21. Wang, Z.; Yang, N.; Li, N.; Du, W.; Wang, J. A new fault diagnosis method based on adaptive spectrum mode extraction. Struct.
Health Monit. 2021, 20, 3354–3370. [CrossRef]

22. Wang, Z.; Du, W.; Wang, J.; Zhou, J.; Han, X.; Zhang, Z.; Huang, L. Research and application of improved adaptive MOMEDA
fault diagnosis method. Measurement 2019, 140, 63–75. [CrossRef]

23. Sun, Y.; Jian, M.; Zhang, X.; Dong, J.; Shen, L.; Chen, B. Reconstruction of normal and albedo of convex Lambertian objects by
solving ambiguity matrices using SVD and optimization method. Neurocomputing 2016, 207, 95–104. [CrossRef]

24. Zhang, Z.; Liu, B.; Liu, Y.; Zhang, H. Fault Feature-Extraction Method of Aviation Bearing Based on Maximum Correlation Re’nyi
Entropy and Phase-Space Reconstruction Technology. Entropy 2022, 24, 1459. [CrossRef] [PubMed]

25. Yang, M.; Xu, Y.; Zhang, K.; Zhang, X. Singular component decomposition and its application in rolling bearing fault diagnosis.
Meas. Sci. Technol. 2024, 35, 015120. [CrossRef]

26. Wang, Y.; Markert, R.; Xiang, J.; Zheng, W. Research on variational mode decomposition and its application in detecting
rub-impact fault of the rotor system. Mech. Syst. Signal Process. 2015, 60–61, 243–251. [CrossRef]

27. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [CrossRef]
28. Lian, J.; Liu, Z.; Wang, H.; Dong, X. Adaptive variational mode decomposition method for signal processing based on mode

characteristic. Mech. Syst. Signal Process. 2018, 107, 53–77. [CrossRef]
29. Li, J.; Yao, X.; Wang, H.; Zhang, J. Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage

denoising and its application in rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2019, 126, 568–589. [CrossRef]
30. Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [CrossRef]
31. Endo, H.; Randall, R.B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum

entropy deconvolution filter. Mech. Syst. Signal Process. 2007, 21, 906–919. [CrossRef]
32. McDonald, G.L.; Zhao, Q.; Zuo, M.J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault

detection. Mech. Syst. Signal Process. 2012, 33, 237–255. [CrossRef]
33. Lyu, X.; Hu, Z.; Zhou, H.; Wang, Q. Application of improved MCKD method based on QGA in planetary gear compound fault

diagnosis. Measurement 2019, 139, 236–248. [CrossRef]
34. Miao, Y.; Zhang, B.; Li, C.; Lin, J.; Zhang, D. Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery

Fault Diagnosis. IEEE Trans. Ind. Electron. 2023, 70, 1949–1960. [CrossRef]
35. Miao, Y.; Zhang, B.; Lin, J.; Zhao, M.; Liu, H.; Liu, Z.; Li, H. A review on the application of blind deconvolution in machinery fault

diagnosis. Mech. Syst. Signal Process. 2022, 163, 108202. [CrossRef]
36. Lee, J.; Liu, Y.; Yu, L. SGST: An Open Source Semantic Geostreaming Toolkit. In Proceedings of the 2011 ACM SIGSPATIAL

International Workshop on GeoStreaming, IWGS 2011, Chicago, IL, USA, 1 November 2011; Volume 1, pp. 17–20.
37. Cheng, J.; Yang, Y.; Hu, N.; Cheng, Z.; Cheng, J. A noise reduction method based on adaptive weighted symplectic geometry

decomposition and its application in early gear fault diagnosis. Mech. Syst. Signal Process. 2021, 149, 107351. [CrossRef]
38. Pan, H.; Yang, Y.; Li, X.; Zheng, J.; Cheng, J. Symplectic geometry mode decomposition and its application to rotating machinery

compound fault diagnosis. Mech. Syst. Signal Process. 2019, 114, 189–211. [CrossRef]
39. Hou, B.; Wang, D.; Kong, J.; Liu, J.; Peng, Z.; Tsui, K. Understanding importance of positive and negative signs of optimized

weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring.
Mech. Syst. Signal Process. 2022, 174, 109094. [CrossRef]

40. Hou, B.; Wang, D.; Peng, Z.; Tsui, K. Adaptive Fault Components Extraction by Using an Optimized Weights Spectrum Based
Index for Machinery Fault Diagnosis. IEEE Trans. Ind. Electron. 2024, 71, 985–995. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apacoust.2019.05.027
https://doi.org/10.1016/j.jsv.2019.01.049
https://doi.org/10.1016/j.ymssp.2008.11.005
https://doi.org/10.1016/j.measurement.2021.109986
https://doi.org/10.1016/j.sigpro.2013.04.015
https://doi.org/10.1016/j.ymssp.2015.08.023
https://doi.org/10.1016/j.neucom.2011.01.021
https://doi.org/10.1177/1475921720986945
https://doi.org/10.1016/j.measurement.2019.03.033
https://doi.org/10.1016/j.neucom.2016.03.064
https://doi.org/10.3390/e24101459
https://www.ncbi.nlm.nih.gov/pubmed/37420479
https://doi.org/10.1088/1361-6501/acfe2e
https://doi.org/10.1016/j.ymssp.2015.02.020
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1016/j.ymssp.2018.01.019
https://doi.org/10.1016/j.ymssp.2019.02.056
https://doi.org/10.1016/j.ymssp.2010.07.017
https://doi.org/10.1016/j.ymssp.2006.02.005
https://doi.org/10.1016/j.ymssp.2012.06.010
https://doi.org/10.1016/j.measurement.2019.02.071
https://doi.org/10.1109/TIE.2022.3156156
https://doi.org/10.1016/j.ymssp.2021.108202
https://doi.org/10.1016/j.ymssp.2020.107351
https://doi.org/10.1016/j.ymssp.2018.05.019
https://doi.org/10.1016/j.ymssp.2022.109094
https://doi.org/10.1109/TIE.2023.3243282

	Introduction 
	Methodological Theory 
	Optimal Weight Spectrum Theory 
	The Theory of SGMD 

	The Process of the Proposed Method 
	Experimental Verification and Discussion 
	Experimental Setup 
	Outer Ring Fault Analysis 
	Inner Ring Failure Analysis 

	Conclusions 
	References

