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Abstract: We demonstrate a symmetry condition for the mixed partial derivatives of measured data
when performing a coherent diffraction imaging (CDI) experiment for differentiable samples under
scientific investigation. The proposed condition can be used as a physical restriction to improve
real data measurements and has been used within the most celebrated phase-retrieval inversion
algorithms as an ad hoc constraint without proof. The symmetry relies on John’s ultrahyperbolic
equation for the X-ray transform, which is also demonstrated to be valid in the imaging regime for
CDI. The obtained conditions are easy to implement and can be used as a constraint by computational
imaging methods.
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1. Introduction

Coherent diffractive imaging (CDI) has been steadily developing over the past 20 years [1],
and its variants greatly benefit from the high coherence of fourth-generation light
sources [2–4]. These techniques, in principle, allow experiments to achieve resolutions on
the order of a few nanometers, greatly increasing the potential for scientific exploration in
biological and materials science. Nonetheless, data acquisition is only one of the challenges
in CDI. Since these techniques rely on computational methods for phase retrieval, which is
generally an ill-posed problem, the quality of the measured data becomes a bottleneck for
successful image reconstruction.

Usually, careful pre-processing of measured diffraction data is required prior to feeding
it to phase-retrieval algorithms such as error reduction (ER), hybrid input–output (HIO) [5],
and oversampling smoothness (OSS) [6]. For instance, flat-field correction and masking
of dead and hot pixels are crucial for phase-retrieval algorithms to converge, especially
when bad pixels alter the information in the low-frequency region of diffraction patterns [7].
Detection of these bad pixels is usually performed manually with the aid of visualization
software, which is a time-consuming and cumbersome process. Hence, the development of
methods to automatically detect corrupted pixels not only helps increase the data quality
but also expedites the processing pipelines for obtaining high-resolution images. We also
emphasize that pixel detection is a conventional task that can be solved with conventional
image processing tools [8]. However, these tools normally make use of the hypothesis that
outlier pixels have constant intensity, which is not the case with diffraction patterns in the
applications presented and discussed in this manuscript. Here, we classify outlier pixels as
"hot" and "warm" in the sense that there exists photon counting in these pixels, which varies
randomly and must be automatically corrected. For this, we use the symmetry condition
satisfied by the measured image, as demonstrated in this manuscript. Further imaging
modalities in different imaging regimes, as is the case of infrared holography [9], can also
present errors in background intensity measurement, which also need to be corrected.
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2. X-ray Transform

The X-ray projection for an absorbing sample can be approximately described by the
Beer–Lambert (BL) absorption law [10]. Under certain physical circumstances, imaging
practitioners deal with a function F : R3 ×R3 → R that is theoretically determined by the
so-called X-ray transform [11]

F(x, y) =
∫
R

f (x + t(y − x))dt, (1)

where x, y ∈ R3 are points outside the support of function f , usually defined as the linear
absorption coefficient that determines the inverse problem the experiment is investigating.
Under an appropriate change of coordinates, F denotes the so-called Radon transform,
and whenever parameterized at a constant surface, F is denoted as a frame, a radiography,
or a projection, which includes several experimental artifacts as well as noise. Some
of these artifacts are extremely problematic, leading to reconstruction artifacts in the
inverse problem. Function F is a solution of John’s equation [11], an ultrahyperbolic partial
differential equation, which is given by

∂2F
∂xi∂yj

− ∂2F
∂yi∂xj

= 0, i, j = 1, 2, 3 (2)

In practice, F is measured for a collection of source and receiver pairs y, x ∈ R3 such
that the vector x − y is parallel to the X-ray wavefront propagation (see Figure 1). At the
end of this process, one can obtain a two-dimensional discretization of F on an m × n grid
on the receiver plane, where m and n depend on the number of scanning points or the
size of the detector being used. For most imaging techniques using X-rays, the practical
measurements are the functions I(x) (direct transmission) and I0(y) (incident transmission)
in such a way that F(x, y) satisfies I(y) = I0(y) exp[−F(x, y)].

x-raysy x

Wave propagation

d D

Figure 1. Scanning measurements for all points y, x ∈ R3 such that y − x is parallel to the X-ray
direction, generating a radiographic projection F. After wave propagation for long distances D, the
measurement becomes |F̂|.

Regardless of the imaging technique used, F is corrupted, and a fast and stable
algorithm must be used to identify the points (or pixels) where the projection is corrupted.
A numerical framework for this task was recently obtained for conic projections [12] or
using source helicoidal trajectories [13]. A more theoretical and generalized analysis can
be found in [14]. Nonetheless, for a parallel beam, a numerical analysis is lacking in the
literature. In the next sections, we demonstrate a symmetry condition that must be satisfied
by the X-ray transform and the equivalence of such a condition to a numerical operator.
The direct application of this operator to corrupted projections or diffraction data turns
out to be an efficient tool for identifying bad pixels, which we demonstrate with CDI data
acquired from the CATERETÊ beamline at SIRIUS.
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3. Symmetry Condition

Our main result is based on Lemma 1, which states that the projection image, parame-
terized as a function of α, β in the detector plane, should satisfy the Schwartz symmetry
condition (or Young’s theorem). Since this is a weak condition to impose on a function of
two variables, an alternative condition on the parameterized function is proposed based on
the characteristic polynomial of its associated Hessian matrix.

Lemma 1. Let h : R2 → R be an arbitrary C2(R2) function. The X-ray transform F defined
in (1), parametrized on the imaging plane α × β and considering a parallel beam, determines a
function u(α, β) = F(x(α, β), y(α, β)) that must satisfy the symmetry condition for mixed second
derivatives

J (u) :=
∂2u

∂β∂α
− ∂2u

∂α∂β
= 0 (3)

Throughout this work, and whenever necessary, the notation uα,β is used to indicate
the mixed second derivative, first with respect to β, followed by a derivative with respect
to α.

The detection surface used in Lemma 1 could be any differentiable function of two
variables. In practice, one can consider it a plane since we are dealing with an ideal X-ray
transmission. The three-dimensional point source y and the detector point x, which define
the X-ray transform, belong to different planes separated by a distance d greater than the
object being illuminated. Taking x on a three-dimensional surface h = h(α, β), we consider
that x = (α, β, h(α, β)) and y = (α, β, 0) ∈ R3. Now, the X-ray transform F becomes a
function only of (α, β), denoted as u(α, β), i.e.,

u(α, β) = F((α, β, h(α, β)︸ ︷︷ ︸
x

, (α, β, 0)︸ ︷︷ ︸
y

) (4)

From the chain rule, we can immediately obtain the mixed second derivative of u with
respect to β, that is,

∂2u
∂β∂α

=

(
∂2F

∂x2∂x1
+

∂2F
∂x2∂x3

hα +
∂2F

∂x2∂y1

)
+

(
∂2F

∂x3∂x1
+

∂2F
∂x3∂x3

hα +
∂2F

∂x3∂y1

)
hβ +

(
∂2F

∂y2∂x1
+

∂2F
∂y2∂x3

hα +
∂2F

∂y2∂y1

)
(5)

and also the mixed second derivative of u with respect to α,

∂2u
∂α∂β

=

(
∂2F

∂y1∂x2
+

∂2F
∂y1∂x3

hβ +
∂2F

∂y1∂y2

)
+

(
∂2F

∂x3∂x2
+

∂2F
∂x3∂x3

hβ +
∂2F

∂x3∂y2

)
hα +

(
∂2F

∂x1∂x2
+

∂2F
∂x1∂x3

hβ +
∂2F

∂x1∂y2

)
(6)

Therefore, using (5) and (6), the following result is obtained

J (u) = 2
(

∂2F
∂x2∂y1

− ∂2F
∂y1∂x2

)
+ hβ

(
∂2F

∂x3∂y1
− ∂2F

∂y1∂x3

)
+ hα

(
∂2F

∂y2∂x3
− ∂2F

∂x3∂y2

)
, (7)

which should vanish for all possible values of α, β as an immediate consequence of John’s
Equation (2), concluding the proof for Lemma 1.

The practical case: Let I and I0 denote the transmitted and incident photon counts on
the pixel camera, respectively, parameterized by the point (α, β) and for a particular angle
θ. If the sample is placed between the source and detector surface in such a way that the
projection image I is well determined by the Beer–Lambert (BL) law (8), we expect that
I < I0 for all possible points (α, β) on the detector surface. Unfortunately, sometimes this
is not true in real measurements due to several physical properties (e.g., the paraxial wave
propagation inside the object could carry information from nearby voxels through the ideal
propagated X-ray, causing a large photon count that is greater than the expected incoming
measurement); hence, the logarithm cannot be applied in points where I > I0. Under
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physical assumptions that are beyond the scope of this work, the photon propagation
through a sample obeys the BL law [10]

I(α, β) = I0(α, β)e−um(α,β) (8)

where um is an idealization of F (see Equation (1)). Considering (8), a simple calculation
provides the following result

J (um) = J (I)/I + e−umJ (I0)/I (9)

where J is the operator described in Lemma 1. Here, we can clearly see that J (um) = 0
only if J (I) = J (I0) = 0 (smooth functions), which is a strong condition to be guaranteed
due to several artifacts arising from the physical experiment.

4. Equivalent Symmetry Condition

We consider that all frames (or projections) u = u(α, β) belong to a functional Hilbert
space U (a second-order Sobolev space on a bounded domain [−1, 1]2), with inner product
⟨u, u⟩ and inducing a norm ∥u∥2 = ⟨u, u⟩. As a first attempt, we search for the best
functional approximation of the measured frame um on the subspace of functions satisfying
John’s condition. In this case, we want to solve the optimization problem{

min ϕ(u) = 1
2∥u − um∥2

s.t. J u = 0
(10)

where J : U → U is the linear functional describing John’s consistency condition from
Lemma 1. The first-order necessary conditions [15] for problem (10) guarantee the existence
of a Lagrange multiplier λ ∈ U such that ⟨ϕ′(u), q⟩ + ⟨λ,J ′(u)q⟩ = 0, ∀q ∈ U. Using
inner-product properties, we obtain

⟨ϕ′(u), q⟩+ ⟨J ′(u)∗λ, q⟩ = 0, ∀q ∈ U (11)

Here, J ′(u) is the Frechét derivative of the functional form J . The same applies
to ϕ′(u). After realizing that ϕ′(u) = u − um and J ′(u) = J , Equation (11) becomes
(u − um) + J (u)∗λ = 0. By imposing consistency, i.e., applying operator J , it follows that
J (um)−JJ ∗λ = 0. Since J is a differential operator, it is easy to see (using integration by
parts) that J ∗ = J . Hence, J (um −J λ) = 0. As J is not invertible (the kernel contains
many functions different from the trivial solution), we have infinitely many solutions for
this problem, which is a partial differential equation for the Lagrange multiplier λ. This
comes from the fact that the set of functions satisfying J = 0 is not closed on U. Hence,
John’s PDE does not provide any useful information with respect to the Lagrange multiplier
λ, so we need another approach to compute an approximate solution.

To this aim, we denote Hu as the Hessian matrix of function u and define the nonlinear
operator T by

T[u] = Im
(√

∆[u]
)

(12)

where ∆[u] is the discriminant of the associated characteristic polynomial p(µ) = det(Hu −µI)
of the Hessian matrix Hu of function u. As is easy to note, p is a monic polynomial given by

p(µ) = µ2 − µ tr(u) + det(u) (13)

= µ2−µ(uαα + uββ) + (uααuββ − uβαuαβ) (14)

where tr(u) denotes the trace of the matrix Hu and det(u) is the determinant of Hu. The
discriminant of p becomes

∆[u] = (uαα + uββ)
2 − 4(uααuββ − uβαuαβ). (15)
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In this sense, we are replacing John’s condition J (u) = 0 with T(u) = 0. The following
result indicates that both conditions are, in fact, the same.

Theorem 1. If B and C are the sets defined by B = {u ∈ U : J (u) = 0} and C = {u ∈
U : T(u) = 0}, then B = C.

Proof. The inclusion B ⊂ C follows from the definitions. Let u ∈ B, and then J (u) = 0.
The consistency condition determined by John’s Equation (1) indicates that u must have
all second derivatives everywhere in R2 and a symmetrical Hessian matrix. Therefore, Hu
only has real eigenvalues {µ1, µ2}, i.e., the discriminant ∆[u] of p should be positive for all
possible values of z = (α, β). The discriminant is non-negative if and only if the square
root of the imaginary part of the discriminant is zero (i.e., x > 0 iff Im

√
x = 0. Necessity

is straightforward, whereas sufficiency comes from taking x = |x|eiθ = |x|(cos θ + i sin θ).
The imaginary part of

√
x is

√
|x| sin θ

2 , which is zero when θ = 2nπ for n ∈ N, i.e.,
x = |x| > 0). Then, T(u) = 0 and B ⊂ C.

Conversely, if u ∈ C, then T(u) = 0. The Schwartz theorem requires u to be a C2

function to verify J (u) = 0, a property that we do not have here for function u. However,
all partial derivatives uαα, uαβ, uβα and uββ must exist everywhere to have T(u) = 0. An
elegant result in [16] weakens the C2 condition by requiring only the existence of all second
derivatives, as is the case for u to have J (u) = 0. Thus, C ⊂ B.

5. Smoothness Constraint for Coherent Diffraction Imaging

For coherent diffraction imaging (CDI) experiments, the wave hitting the sample
propagates over long distances D (see Figure 1), with D much larger than the sample
size. In this case, the measured data become the absolute squared value of the Fourier
transform of the X-ray transform F. There are two main types of CDI experiments: the first
is ptychography [17] and the second is plane-wave CDI [18] (among others, e.g., Bragg CDI).
For both experiments, we aim to recover the X-ray transform image F, with the difference
in the techniques being the number of shots used to illuminate the sample: one shot for
plane-wave CDI and multiple shots for ptychography. The inversion algorithms are beyond
the scope of this work but are widely discussed in the literature [19].

Ptychographic reconstructions can benefit from the overlapping data between adjacent
measurements. In this sense, warm/hot pixels do not pose a significant challenge to
the reconstruction scheme. In the CDI experiment, the measured data are represented by
ρ(wα, wβ) = |F̂(wα, wβ)| (after taking the square root), where .̂ denotes the two-dimensional
Fourier transform,

F̂(wα, wβ) =
∫
R2

u(α, β)e−2πi(αwα+βwβ)dαdβ (16)

and u is defined by (4). Due to the fact that function u is a C2 function (see Lemma 1), we
can interchange the derivative with respect to wα and wβ and the Fourier integral symbol,
making it easy to demonstrate the following implication

J (u) = 0 ⇒ J (F̂) = 0, (17)

where each J is computed in the respective domains of functions u and F̂. Taking
ρϵ =

√
F̂2 + ϵ for an arbitrarily small ϵ > 0, it is easy to see that

J (ρ) = lim
ϵ→0

J (ρϵ) = lim
ϵ→0

1√
F̂2 + ϵ

F̂

[
∂2 F̂

∂wβ∂wα
− ∂2 F̂

∂wα∂wβ

]
= lim

ϵ→0

F̂√
F̂2 + ϵ

J (F̂) = 0 (18)

Hence, the diffraction pattern data also satisfy the symmetry condition imposed by the
commutator J . In this sense, we can also apply the operator T to the coherent diffraction
image data ρ, i.e., T(ρ) = 0, as indicated in Theorem 1.
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Inversion and smoothness: One of the most celebrated phase-retrieval strategies is the
HIO (hybrid input–output [5]) method, which uses a shrink-wrap strategy. Typically, it
builds a Gaussian blurred version of the iterates in order to shrink the support of the sample,
making the convergence of the iterations easier. The same shrink-wrap strategy can be
used with the RAAR (relaxed averaged alternating reflections [20]) algorithm. The OSS

(oversampling smoothness [6]) algorithm enforces smoothness via Gaussian blurring on
the iterates outside the support of the sample, compensating for high frequencies and
noise in the data. Without going into the details of these methods, we observe that the
symmetry condition demonstrated by Equation (18) naturally requires smoothness in the
data, which implies imposing smoothness on the sample. Using the notation provided in
the introduction, if f is the sample, then

J (ρ) ̸= 0 ⇒ f ̸∈ C2 (19)

The above negation justifies why smoothness is typically used in inversion schemes
for phase recovery. Also, as far as we know, the operator T (Equation (12)) has not been
previously used in any inversion scheme. Since the development of inversion algorithms
for the phase is beyond the scope of this work, we only point out that T can be used in
either the object domain (as used in the celebrated algorithms) or the data domain.

Correcting measured data: The symmetry condition J (ρ) = 0 (or, equivalently, T(ρ) = 0)
can be used to find numerical inconsistencies in the measured data. In fact, some outliers
are present in the measured diffraction pattern due to the photon-counting nature of the
detector. These outliers are typically known as hot/warm pixels and can strongly affect
the convergence of the aforementioned phase-retrieval strategies; hence, they have to be
masked out from the original data. These outliers are introduced in the data as a rectangular
function supported within one pixel, thus removing differentiability from the (expected)
C2 diffraction data. We can mask the outliers from a smooth image using the conventional
strategy

ρ∗(t) = a ⇐⇒ |ρ(t)− µ[ρ]| > m σ[ρ], (20)

for all pixels t, where µ[ρ] and σ[ρ] are the mean and standard deviation of the image ρ,
respectively. The choice of m can be defined previously for the image ρ. The value of a can
be chosen arbitrarily, for instance, as a negative constant, to distinguish between measured
and unknown values. For large arrays defining the measured data ρ, a splitting strategy
can be used to apply (20) throughout small domain batches of ρ. We denote by Bn the batch
strategy for cleaning ρ with n × n regular subdomains and using the constant m, as defined
in (20). The composition of Bn, that is,

ρ∗ = Bc
n[ρ], 1 ≤ c ∈ Z (21)

provides us with the corrected data, which can be used as input for different imaging
techniques.

In practice, due to hardware instrumentation, it is also important to know the exact
location of outliers prior to removing them. This can help us better understand the hardware
specifications and improve them. Since ρ must be a smooth function, we use T(ρ) = 0 as
an indicator to identify outliers by setting a mask function M in the following manner

M(t) =
{

1, |T(ρ)(t)− T(ρ∗)(t)| > 0
0, otherwise

(22)

where T(ρ) = Im
(√

∆[ρ]
)

, as defined in (12). The above support function can be updated
at each application of Bn, as some outliers are eventually not detected.
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In order to use an iterative method to improve the global image function u, which
does not satisfy T(u) = 0, we can use a Newton strategy applied within a Hilbert space
setting, i.e., we look for a sequence {uk} defined by

uk+1 = uk + qk, T′(uk) · qk = −T(uk) (23)

where T′ is the Fréchet derivative of T at the point uk acting on the step function qk, as
described in the following Lemma.

Lemma 2. The nonlinear functional T, defined in (12), is Fréchet differentiable. The first Fréchet
derivative T′(u) acting on q ∈ U is the linear operator

T′(u) · q = − T(u)
|Z(u)|2

[
tr(u)tr(q)− 2

(
uα,αqβ,β + qα,αuβ,β − uβ,αqα,β − qβ,αuα,β

)]
(24)

where tr(u) denotes the trace for the Hessian matrix of u, ∆ represents the discriminant in (15), and
Z(u) =

√
∆(u).

Proof. For simplicity, let us denote det(u) = det(Hu), where Hu is the Hessian of u. It
follows that

T(u + q) = Im
√

∆[u + q]

= Im
{
[tr(u) + tr(q)]2 − 4Q1

}1/2

= Im{tr(u)2 + 2tr(u)tr(q) + tr(q)2 − 4Q1}1/2 (25)

Here, Q1 is defined as

Q1 = (uα,α + qα,α)(uβ,β + qβ,β)− (uβ,α + qβ,α)(uα,β + qα,β)

= uα,αuβ,β + uα,αqβ,β + qα,αuβ,β + qα,αqβ,β (26)

− uβ,αuα,β − uβ,αqα,β − qβ,αuα,β − qβ,αqα,β

Returning to (25), we obtain T(u + q) = Im{∆[u] + Q2 + Q3}1/2, with Q2 given by{
Q2 =

[
2tr(u)tr(q)− 4{uα,αqβ,β + qα,αuβ,β − uβ,αqα,β − qβ,αuα,β}

]
Q3 =

[
tr(q)2 − 4 det(Hq)}

] (27)

where Hq is the Hessian matrix of function q. We use the fact that Im(1/z) = −Im(z)/|z|2
for any complex number z= 0. Also, since Q2 and Q3 are real numbers, we can use the
first-order expansion

√
x + h =

√
x + 1

2
√

x h + O(h2) to obtain

T(u + q) = Im

{√
∆[u] +

1
2
√

∆[u]
(Q2 + Q3) + O([Q2 + Q3]

2)

}
(28)

= Im
√

∆[u]− Im
√

∆[u]
|
√

∆[u]|2

(
Q2

2
+

Q3

2

)
+ O([Q2 + Q3]

2) (29)

Thus, taking M(u) = −T(u)/2|
√

∆(u)|2, it follows that

T(u + q)− T(u)− M(u)Q2 − M(u)Q3 = O([Q2 + Q3]
2) (30)

Since u is a smooth function on a compact set Ω, we can assume that its second-order
partial derivatives are bounded, and a simple application of the Plancherel theorem shows
that ∥Q3∥/∥q∥ → 0 and ∥(Q2 + Q3)

2∥/∥q∥ → 0 as ∥q∥ → 0. Hence, M(u)Q2 is the first
Fréchet derivative of T.
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From (24), we know that for functions u not satisfying T(u) = 0, we can find the
Newton direction qk from (23), solving the following parabolic partial differential equation

tr(u)tr(q)− 2
(
uα,αqβ,β + qα,αuβ,β − uβ,αqα,β − qβ,αuα,β

)
= |Z(u)|2 (31)

or, equivalently,

uα,α[qβ,β − qα,α] + 2[uβ,αqα,β + qβ,αuα,β] = |Z(u)|2 (32)

Finding an appropriate finite-element strategy for the above partial differential equa-
tion is beyond the scope of this work. Appropriate boundary conditions can be imposed
on this problem in order to find a numerical solution for function qk [21]. For instance, we
can impose Dirichlet conditions on the neighborhood of each pixel. This can be achieved
using different functions, such as a Gaussian kernel with an appropriate full width at half
maximum (FWHM).

6. Discussion

To illustrate our methodology, we present a radiographic projection recovered using
the ptychography technique [22] with data collected at the fourth-generation Brazilian
Synchrotron beamline CATERETE [23]. The measurements were taken at a distance of
14m with an energy of 3.8 KeV. The phase image recovered through ptychography from a
sequence of diffraction patterns is presented in Figure 2a. Here, the projection is expected
to be an X-ray transform, as defined in Equation (1), and thus should be sufficiently smooth.
This particular sample refers to a small glass sphere with an approximate diameter of 8.5
µm, where the jump from one phase to another (e.g., air to material) is not sharp but is
twice differentiable. Hence, we expect to obtain T numerically close to zero. In order to
compute the operator T in (12) on a digital grid, a central finite difference scheme is used
for uαα and uββ, a forward-forward scheme is used for uαβ, and a backward-backward
scheme is used for uβα. Figure 2b presents the effect of operator T on the imaging grid,
where points with T = 0 are shown in yellow and those with other values are shown in
blue.

(a) (b)

73% / T = 0 27% / T > 0

Figure 2. An example of parallel X-ray projections (a) and the action of operator T (b). The X-ray
projection was recovered from the sequence of diffraction patterns using a ptychographic technique.

The outlier analysis of a diffraction pattern has to take into account the fact that
the intensity tends to zero for high frequencies, as predicted by the Riemman–Lebesgue
Lemma [24]. Therefore, when analyzing small portions of the diffraction pattern, we must
consider the sparsity of the selected subimage to avoid mistaking outliers for the signal
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itself. For this, we use the Hoyer sparsity measure [25], i.e., we use the following function s
as the sparsity indicator

s(z) =

√
k − ∥z∥1

∥z∥2√
k − 1

, m(z) =
{

5, s(z) ≤ 0.6
8, s(z) > 0.6

, z ∈ Rk, (33)

where the value of s ≤ 0.6 indicates the need for the outlier removal procedure (20), as deter-
mined by m in the above equation. Figure 3 presents two examples of 256 × 256 subimages
extracted from a single original 3072 × 3072 diffraction pattern, indicated in (a.1) and (b.1).
As discussed, there are several outliers in the selected original subimages, which disrupt
the smoothness of the data. We can observe in Figure 3a.1,a.2 that hot/warm pixels do
not have the same intensities and are not considered defective pixels in the sense that they
contain recorded information. The circles marked by dotted circles in image (a.1) highlight
outlier pixels with different recorded intensities (low and high). Using an 8 × 8 grid, we
compute the sparsity using (33) and the masks from (20) to identify outliers, presented
in (b.1) and (b.2), from which clean images are straightforwardly obtained, as shown in
(a.3) and (b.3)). Null values in the colormap visually identify outlier pixels in the original
dataset.

(a.1) (a.2) (a.3)

(b.1) (b.2) (b.3)

1e7

1

0.0

0.6

0.06

0.0

(c.1) (c.2)
Figure 3. Two examples of a real diffraction pattern are presented in (a.1) and (b.1), with several
outliers indicated by white dotted circles. Figures (a.2) and (b.2) present the sparsity map using
a 8 × 8, where the mask function from Equation (22) is applied. Figures (a.3) and (b.3) show the
corrected diffraction patterns.

A numerical example of CDI is presented in Figure 4, where a coherent diffraction
pattern of a compactly supported two-dimensional square function is shown. The diffrac-
tion dataset was corrupted with a low (i.a) and high (ii.a) number of hot/warm pixels.
The application of the aforementioned removal strategy yields the results presented in
Figure 4i.b,ii.b , where hot/warm pixels are clearly identified and masked by white values.
The reconstructions—obtained through shrink-wrap HIO—are presented in Figure 4i.c
without correction and Figure 4i.d with correction, respectively. It is clear that for a low
number of hot/warm pixels, conventional HIO can still converge to a feasible solution,
even though this solution has much more noise in the background compared to the recon-
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struction obtained after cleaning the input dataset using the proposed strategy. The same
strategy is presented in (ii.c) and (ii.d). Now, the HIO was not able to properly converge to
a reconstructed solution, whereas the cleaned input dataset (ii.b) could be used to obtain
an optimal reconstruction (ii.d).

(i)

(a) (b)

(c) (d)

(ii)

(c) (d)

(a) (b)

(c) (d)

Figure 4. Simulated example for the diffraction pattern of a compactly supported two-dimensional
square function. A low (i.a) and high (ii.a) number of hot/warm pixels are corrupting the original
dataset. The cleaned dataset, using the methodology proposed in this manuscript, is presented in
(i.b,ii.b) (white values surrounding problematic pixels). The reconstructed dataset using the HIO

algorithm is presented in (i.c)/(ii.c) (without corrected data) and (i.d)/(ii.d) (with corrected data).

7. Conclusions and Further Research

Experiments that deal with the projection of a sample represent an important portion
of scientific cases in X-ray imaging research. Often, projections are not measured directly
but are obtained after phase-retrieval algorithms are applied to the measured data. These
algorithms solve an inverse problem that strongly depends on the quality of the measured
data, which can be corrupted by noise and defective pixels. In this work, we have demon-
strated the existence of an operator that enforces the smoothness for both the data and
the phase-retrieved projections. In this manner, we are able to easily identify pixels that
should be ignored for violating such smoothness conditions. The method can not only
qualitatively indicate image quality but also aid scientists in quickly preparing their data
for phase-retrieval algorithms.
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