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Abstract: Although robots have been widely used in a variety of fields, the idea of enabling them
to perform multiple tasks in the same way that humans do remains a difficulty. To solve this,
we investigate the learning from demonstration (LFD) system with our independently designed
symmetrical humanoid dual-arm robot. We present a novel action feature matching algorithm. This
algorithm accurately transforms human demonstration data into task models that robots can directly
execute, considerably improving LFD’s generalization capabilities. In our studies, we used motion
capture cameras to capture human demonstration actions, which included combinations of simple
actions (the action layer) and a succession of complicated operational tasks (the task layer). For the
action layer data, we employed Gaussian mixture models (GMM) for processing and constructing an
action primitive library. As for the task layer data, we created a “keyframe” segmentation method
to transform this data into a series of action primitives and build another action primitive library.
Guided by our algorithm, the robot successfully imitated complex human tasks. Results show its
excellent task learning and execution, providing an effective solution for robots to learn from human
demonstrations and significantly advancing robot technology.

Keywords: learning from demonstration; humanoid dual-arm robot; imitation learning;
behavior representation algorithm; Gaussian mixture model; robot self-learning; human demonstration
operation task

1. Introduction

In recent years, robotics and artificial intelligence have developed rapidly, and robots
now play an indispensable role in factory workshops or daily life [1–3]. Traditional in-
dustrial robotic arms are designed for heavy loads and huge operating spaces. Therefore,
they are typically quite large and unsuitable for human–robot collaborative service work.
To ensure the safety of human–robot interaction and workspace sharing, we adopt the
self-designed and built dual-arm robot with a bionic dual-arm structure that has six degrees
of freedom on both the left and right arms. The robot’s configuration and D-H parameters
have been slightly enhanced when compared with standard industrial robotic arms, and it
can replicate most of the limb movements demonstrated by human arms. Combined with
the Mecanum wheel mobile chassis at the bottom, the robot can flexibly achieve various
forms of planar motion. The whole machine is based on ROS (robot operating system) for
the development of the underlying control system, directly acquiring data from various
sensors and controlling the robot to perform various mobile and operation tasks.

In most industrial applications, experts design code to enable robots to execute highly
specialized and repetitive tasks. Programming by manual coding is time-consuming
and expensive, and the results frequently lack generalizability. Currently, an effective
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substitute technique exists, i.e., LFD, also known as programming by demonstration (PBD)
or imitation learning (IL). This method involves observing and recording human behavior
with visual devices or external motion capture systems, and then enabling the robot to
complete self-learning through artificial intelligence algorithms such as machine learning
and reinforcement learning. LFD is easy to operate and has strong robustness. Based
on these characteristics, robots can be taught and used by ordinary users, reducing the
professional requirement for computer programming. With the help of LFD, robots can act
as safer, more trustworthy, and more practical collaborators.

This study proposes an action feature matching algorithm and a motion segmentation
method based on “key frames”. According to the symmetry principle, the action feature
matching algorithm can accurately match the human demonstration data with the action
primitive and represent it as the task model that the robot can execute. Using the motion
segmentation method based on “key frames”, a complex operational task can be reasonably
segmented into action clips. Based on this, we have developed an efficient LFD system for a
humanoid dual-arm robot. The humanoid dual-arm robot has symmetry in structure design,
which ensures the symmetrical design of the length and joint position of the robot’s arms.
Symmetry is also guaranteed in the arrangement of sensors for humanoid dual-arm robots.
In addition to functional symmetry, through symmetrical appearance design, the robot
looks more in line with human aesthetics and increases affinity. Subsequently, we conducted
two experiments to demonstrate that this humanoid dual-arm robot demonstration learning
system can effectively perform various tasks, including but not limited to complex actions
such as grasping and manipulation. This will provide strong support for the application of
robots in industries, services, and other fields.

2. Related Work

In complex robotic systems, the manipulation tasks that robots face are difficult to
express using analytical formulas. And traditional control theory can achieve satisfactory
control results. LFD is one of the solutions, but the existing research still has certain
limitations. Particularly when it comes to converting human demonstration actions into
executable task models for robots, the current methods suffer from issues such as limited
generalization capabilities or high implementation complexity.

In the past two decades, a variety of trajectory-based demonstration learning methods
have been developed. These methods use various technical means to encode the teaching
data of manipulation tasks and generate optimal reproduction trajectories [4–6]. Many
studies on robotic demonstration learning focus on mapping and replicating human move-
ments, with the goal of maximizing the imitation of precise motion trajectories associated
with the set task [7–12]. For example, Fitzgerald et al. [13] used “kinesthetic teaching” to
complete the QR code block rearrangement task, and Wu et al. [14] marked benchmark
points on objects and the demonstrator’s arms and used visual motion tracking methods to
record the trajectory of the benchmark points.

In order to interpret complex manipulation behaviors into a more mathematically
tractable form [15–24], Calinon et al. [25] used GMM to establish a probabilistic represen-
tation of demonstration data and used Gaussian mixture regression (GMR) to generate
smooth trajectory curves. Evrard et al. [26] proposed a probabilistic framework based on
GMM and GMR for encoding and reconstructing robotic collaborative behavior.

Similar to GMM, Gaussian regression models can also generate a trajectory curve based
on existing teaching data [27,28]. However, Gaussian regression models have a higher
computational cost [29,30]. To address this issue, Schneider [31] proposed local Gaussian
regression, which incorporates some custom constraints into the skill teaching data.

Combining artificial intelligence and experience sharing in LFD is also one of the
research hotspots in this field in recent years [32–39]. Kehoe et al. [40] proposed an algo-
rithm based on deep neural networks. The CLEARN project, led by MIT’s Julie A. Shah’s
team [41], enables robots to learn multi-step operation tasks from a single demonstration,
and multiple robots can share operation skills. Ebert et al. [42] proposed a reinforcement
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learning algorithm based on visual models that predicts the manipulation of previously
unseen objects by the robotic arm.

3. Preliminaries

LFD is a robot self-learning method that extracts operational rules from observing
human demonstrations of operation tasks and then reproduces the operational tasks using
specific algorithms. LFD can be divided into three processes: behavior perception, behavior
representation, and behavior reproduction [43], which correspond to the acquisition of
teaching data, representation learning, and feature matching reproduction, respectively.

The operational behavior of humans performing tasks can be concretized as a collection
of basic movements. Cohen et al. [44] proposed a skill learning method based on action
templates: experimental state splitting (ESS). They constructed an action primitive library
(such as move, rotate, twist, push, etc.), and the combination of these action primitives can
present more complex actions. For example, the combination of “move to”, “contact”, and
“push” expresses the action of “pushing”. By constructing finite-state automata based on
action templates and composite actions, conditional transitions between different states
can be achieved, thereby enabling the evolution of robotic operational skills from simple
to complex.

4. Humanoid Dual-Arm Robot Demonstration Learning System

The method mentioned above is a commonly used template representation method in
demonstration learning research, but it has limited adaptability to complex scenarios and
weak generalization ability. Based on this method, this article improves the representation
form of action primitives. We believe there is still room for improvement in the current
action primitives. For example, the action primitive “move” can be further explained
as “from S through M, arriving at E with a large (small) range of arcs (curves)”. This
specific representation form transforms abstract task descriptions into easily processed
mathematical equations, reducing ambiguity among elements in the process of teaching
and skill learning.

This chapter introduces the underlying principles and research processes of the hu-
manoid dual-arm robot demonstration learning system. Kinect2, as the robot’s visual
sensor, can provide real-time feedback on the spatial location information of the manipu-
lated object. The NOKOV-MARS series of motion capture devices, as collection equipment
for human teaching data, can acquire both motion-level and task-level teaching trajectories.

At the motion level, GMMs are used to represent the trajectory data of taught actions,
formalizing human behaviors as mathematical models, and forming a library of motion
primitives. The robot is assisted to accomplish the critical step of breaking down a “task”
into “actions” at the task level by using a “keyframe marker” method. Finally, we pro-
pose a new action feature matching algorithm to enable the robot to achieve behavioral
understanding and reproduction.

4.1. The Framework of LFD System

Based on the existing hardware and software conditions, we propose a feasible LFD
system framework (Figure 1). This framework is divided into three parts:

(1) Motion Level Learning: Firstly, the composition members of the action primitive
library are predefined, and most complex operation tasks can be represented by com-
bining these members. Fourteen different types of preset action primitives (Table 1)
can be represented by three spatial pose points each in this project. The primitive
library can be dynamically added or subtracted based on needs at a later stage. Then,
for each action primitive, human demonstration data is collected. The features of the
demonstration data are extracted using behavioral representation algorithms to form
the action primitive library for subsequent program retrieval and matching.
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Figure 1. LFD system framework diagram.

Table 1. Action primitive library.

Action Primitive Movement Type Planning Type Range of Motion Remark

Get ready Terminal curve Joint space Large Origin pose → Ready pose
Back to origin Terminal curve Joint space Large End pose → origin position

Outcome/straight line Terminal curve Cartesian space Large Ready pose → Operating
front pose

Retraction/arc Terminal curve Cartesian space Large Ready pose → Operating
front pose

Pull back/straight line Terminal curve Cartesian space Large After position →End
position

Retraction/arc Terminal curve Cartesian space Large After position → End
position

Small operation/straight
line Terminal curve Cartesian space Small Operating front pose →

Operating back pose

Small operation/arc Terminal curve Cartesian space Small Operating front pose →
Operating back pose

Large operation/straight
line Terminal curve Cartesian space Large Operating front pose →

Operating back pose

Large operation/arc Terminal curve Cartesian space Large Operating front pose →
Operating back pose

Operation/Euler angle Terminal curve Cartesian space Small Attitude change
Opening jaw None None Small Loose item
Closing jaw None None Small Grab

Key frame flag None None Small The task is divided into
action keyframes

(2) Task Level Learning: Since an operating task is typically composed of multiple
basic actions. One of the challenges in demonstration learning is figuring out how
to segment complex tasks into reasonable action segments [45,46]. Currently, task
segmentation algorithms rarely achieve satisfactory processing results. Therefore,
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this article proposes the following solution: introducing human decision making into
task-level learning. The task data is segmented during the acquisition by manually
inserting keyframe markers into the task, which means that the system just needs to
represent the ordered combination of which action segments correspond to a task. The
keyframe marker process is as follows: the demonstrator marks a keyframe by closing
their middle finger from open to closed and then back to open. The demonstration
process of keyframe markers is shown in Figure 2a, and Figure 2b shows the change
in the angle between the middle finger and thumb.
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of the object was given. It is worth mentioning that the detection accuracy of the NOKOV 
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Figure 2. (a) Teaching demonstration process of the “keyframe marker” action primitive diagram;
(b) angle between the middle finger and the thumb changes diagram.

(3) Behavior Reproduction: We propose a new action feature matching algorithm. This
algorithm represents the input unknown action segment and the system’s action
primitive library as three distinct spatial pose locations, with the goal of completing
similarity matching between them. When a set of task data is input, the algorithm
encodes the task into a combination of certain elements in the action primitive library
in temporal order. Finally, these encoded data are input into the robot controller to
realize behavior reproduction.

4.2. Creation of Action Primitives Library

In this study, we used the NOKOV-MARS series of motion capture devices to collect
demonstration data on human arms, and we utilized Kinect2 along with the open-source
find_object_2d function package to identify the manipulated object. To help assess the
level of task accomplishment, real-time input on the category and geographical posi-
tion of the object was given. It is worth mentioning that the detection accuracy of the
NOKOV motion capture device can reach the sub-millimeter level, while Kinect2 pro-
vides millimeter-level precision in spatial position feedback. These high-precision data
provide more accurate operation task information, enhancing the accuracy and stability of
robot behavior reproduction.

As shown in Figure 3a, the demonstrator sported 18 retroreflective marker spots on
their body during the teaching process to optimize the reflection of human body movement
information in all arm dimensions. The experimental platform of the capture system is
shown in Figure 3b, using a total of 8 NOKOV-MARS capture cameras. Researchers can
conduct experiments within a range of 5–20 m2.

After considering the types of motion planning, end-effector range, end-effector trajec-
tory, and robot state, the action primitive library of this topic is divided into 14 categories
of components, as shown in Table 1. One by one, the demonstrator performs each reference
motion form of the action primitives, and as each group of movements is completed, the
motion capture system records the spatial position data of each marker point on the hu-
man body. After preprocessing such as deletion and denoising, the data are provided for
subsequent algorithms for behavior representation.



Symmetry 2024, 16, 396 6 of 24

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

As shown in Figure 3a, the demonstrator sported 18 retroreflective marker spots on 
their body during the teaching process to optimize the reflection of human body move-
ment information in all arm dimensions. The experimental platform of the capture system 
is shown in Figure 3b, using a total of 8 NOKOV-MARS capture cameras. Researchers can 
conduct experiments within a range of 5–20 m2. 

  
(a) (b) 

Figure 3. (a) Light marker paste position diagram; (b) motion capture device layout diagram. 

After considering the types of motion planning, end-effector range, end-effector tra-
jectory, and robot state, the action primitive library of this topic is divided into 14 catego-
ries of components, as shown in Table 1. One by one, the demonstrator performs each 
reference motion form of the action primitives, and as each group of movements is com-
pleted, the motion capture system records the spatial position data of each marker point 
on the human body. After preprocessing such as deletion and denoising, the data are pro-
vided for subsequent algorithms for behavior representation. 

For example, a single action primitive’s demonstration data collection is referred to 
as “small operation/straight line”. The action class primitives are the most important com-
ponent of the demonstration learning system. Through their ordered combination, most 
operation tasks can be constructed, as shown in Figure 4. The term “small opera-
tion/straight line” defines the process of performing the end operation with small-range 
straight-line motion in Cartesian space. This type of action primitive is included in the 
composite action primitives since it also needs to work with the end effector’s gripping 
operation. The teaching process of this action primitive is shown in Figure 4, and the data 
visualization is shown in Figure 5. 

 
Figure 4. Teaching demonstration process of the “small operation/straight line” action primitive (a) 
before operation pose; (b) in operation; (c) after operation pose.  

 

Figure 3. (a) Light marker paste position diagram; (b) motion capture device layout diagram.

For example, a single action primitive’s demonstration data collection is referred to
as “small operation/straight line”. The action class primitives are the most important
component of the demonstration learning system. Through their ordered combination,
most operation tasks can be constructed, as shown in Figure 4. The term “small opera-
tion/straight line” defines the process of performing the end operation with small-range
straight-line motion in Cartesian space. This type of action primitive is included in the
composite action primitives since it also needs to work with the end effector’s gripping
operation. The teaching process of this action primitive is shown in Figure 4, and the data
visualization is shown in Figure 5.
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4.3. Action Layer of LFD

The purpose of the LFD at the action level is to enable the robot to understand the
underlying characteristics of each action primitive. In this topic, we use GMM to complete
this step. Firstly, we perform filtering on the demonstration trajectories. Then, we fit
these trajectories with multiple Gaussian distributions using ellipses. Finally, we select the
optimal path from the generalized trajectories as the reference standard for each action
primitive. The implementation block diagram is shown in Figure 6. Following the action-
level demonstration learning, we create an action primitive library in which the attributes
of every primitive can be expressed as particular mathematical models. Next, we will
introduce the research steps of demonstration learning at the action level in detail.

Figure 6. Action layer demonstration learning implementation framework.

We use GMM to optimize the captured demonstration data. In this paper, the motion
trajectory of the robotic arm’s end-effector in the base coordinate system is represented by
a GMM made up of K SGM components. Assuming that there is a set of captured data
X = {x1, x2, . . . , xn}, with N data points, let P(xi) represent the probability distribution
of xi and p(k) represent the prior probability of the kth Gaussian kernel. The following
formula is used:

p(k) = πk (1)

P(xi) = ΣK
k=1 p(k)p(xi|k) (2)

p(xi|k) =
1√

(2π)D|Σk|
exp
(
−1

2
(xi − µk)

TΣ−1
k (xi − µk)

)
(3)

For each demonstration data point xi, the probability that it is generated by the kth
Gaussian kernel is:

γ(i, k) =
πk p(xi|k)

ΣK
j=1πj p(xi|j)

(4)

πk, µk, Σk in p(xi|k) is the value we want to estimate. Since each Gaussian kernel is a
standard Gaussian distribution, it is easy to find the parameter value corresponding to the
maximum likelihood.

πk =
ΣN

i=1γ(i, k)
N

(5)

µk =
1

ΣN
i=1γ(i, k)

N
Σ

i=1
γ(i, k)xi (6)

Σk =
1

ΣN
i=1γ(i, k)

N
Σ

i=1
γ(i, k)(xi − µk)(xi − µk)

T (7)
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The K-means clustering algorithm is utilized to obtain a more ideal initial value based
on the maximum likelihood algorithm [47]. The mentioned iterative algorithm is then used
to complete the parameter estimation. In addition, in this paper, the number of Gaussian
kernels K is manually selected according to the actual fitting situation. After calculating
the model parameters, further regression processing must be performed by using the GMR
algorithm. Its function is to estimate the spatial position xv, corresponding to a time step
sequence in trajectory X based on the GMM. The formulas for the expectation xv and
variance of distribution are Formulas (8) and (9).

µ′
υ =

K
Σ

k=1

p(xt|k)
Σk

i=1 p(xt|i)
µ′

υ,k (8)

Σ′
υ =

K
Σ

k=1

(
p(xt|k)

ΣK
i=1 p(xt|i)

)2

Σ′
υ,K (9)

After derivation, we can obtain the optimal teaching trajectory point x = {µ′
υ, xt} after

generalization processing. Under the constraint of variance Σ′
υ, it can generate a relatively

smooth teaching trajectory. The regression function of the Gaussian mixture model is:

F(xt) = E(xυ|xt) =
K
Σ

k=1

p(xt|k)
ΣK

i=1 p(xt|i)
µ′

υ,k = µ′
υ (10)

According to the GMR algorithm, further processing is performed on the teaching
data. For example, the action primitive “large operation/arc” in the XOZ plane is shown in
Figure 7.
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Since the trajectory points are three-dimensional data, they need to be processed from
the perspectives of the XOZ, YOZ, and XOY planes, respectively. The detailed steps are
as follows:

(1) Select 10 sets of filtered teaching trajectory data.
(2) Use the iterative method to estimate the parameters of the GMM. Once the model

converges, it can be used to represent the teaching trajectory data. The GMM can be
represented in space as a “mountain range” with K sections as ellipses. The height
of the section corresponds to the probability of the teaching data distribution in
this model.
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(3) Project the GMM onto the trajectory plane in the form of contour lines (Gaussian
ellipses).

(4) Perform further processing on the Gaussian ellipses to determine the center of the
ellipses, thereby fitting the teaching data.

(5) Use the GMR algorithm to generalize the model and obtain a smooth optimal teach-
ing trajectory.

(6) Reconstruct the action primitive by selecting the start point S, intermediate point M,
and end point E from an optimal teaching trajectory, putting pose information, and
then putting each point into the trajectory planning algorithm.

By repeating the above steps and fitting the teaching data of each action primitive
in Table 1, we can establish a library of action primitives. Through the processing of the
action-level demonstration learning model, each action primitive is ultimately represented
by two key mathematical evaluation indicators: the straight-line distance from point S to

point E and the radius of the circular arc
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. The former is used to distinguish the size
of the operation range, and the latter is used to define the type of action planning (straight
line or circular arc).

4.4. Task Layer of LFD

The purpose of LFD at the task level is to enable the robot to recognize complex human
manipulation tasks, segment the tasks into more fundamental action primitives, and use a
matching algorithm to find the most suitable action primitives from the library of action
primitives to describe these action primitives. A task can then be represented in temporal
sequence as a set of action primitives. Finally, the robot’s dual arms are used to replicate
the human demonstration task in the form of a PVT instruction set. The implementation
diagram of demonstration learning at the task level is shown in Figure 8.
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In this paper, the way to express tasks as action layers is to artificially add key frame
actions to the teaching data at the task level. When the algorithm detects the existence
of key frames, it performs segmentation operations at that position. Therefore, human
subjective judgment is the main decision-making component during the expression stage
of tasks. Through the overall execution framework of “human decision making as the
mainstay, algorithm recognition as the supplement”, a complex demonstration task can
ultimately be explained as basic action primitives. Here, we use an example of a desktop
object classification task to introduce this expression principle, and the demonstration
process is shown in Figure 9.
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Figure 9. Demonstration process of the desktop item classification operation task (a) initial state;
(b) move A; (c) move B; (d) move C and D simultaneously.

Example: There are two cylinders and two cubes in the middle of the desktop. Now,
we need to put the cylinders on the top left corner of the desktop and the cubes on the top
right corner. During the demonstration of the classification operation, first, maintain the
angle between the middle finger and the thumb at a constant angle (80 ± 10)◦, lift cylinder
A in a straight-line motion, then swing the middle finger to insert a “key frame”, as shown
in Figure 2a, and move cylinder A towards the top left corner in a straight-line motion.
After the movement is completed, insert another “key frame”. Finally, place cylinder A on
the desktop in a straight-line motion and swing the middle finger to insert a “key frame”.
This completes the movement of cylinder A. Similarly, move cube B to the designated
position in an arcuate motion, and after the movement is completed, swing the middle
finger to insert a “key frame”. Finally, using both hands to move the remaining C and D
simultaneously, the teaching process for C is like A, and the teaching process for D is like B.

The task-level teaching trajectory in the example is shown in Figure 10a. Before being
processed by the task expression algorithm, these trajectories are too complex for the robot
to understand the operational logic, and the robot cannot properly replicate the task-level
demonstration. By searching for “key frames”, the task-level data are segmented into
small action-level trajectories. Finally, as shown in Figure 10b, the action feature matching
algorithm interprets and expresses the action-level trajectories further, turning them into
symbolic patterns that the robot can understand and replicate.

When humans perform complex operational demonstrations, most current algorithms
cannot achieve good skill learning effects, partially due to the inability to reasonably
segment the entire operational task into action clips. There are many methods for state
segmentation, such as clustering, PCA, and ICA. These methods can categorize data points
with similar features into one category to achieve state segmentation. ESS (experimental
state splitting) uses heuristic methods to find the threshold of the feature f to segment the
states, i.e., when several state variables change more simultaneously, the state will change.
However, for complex operational tasks such as desktop item classification, it can be seen
from Figure 10a that the original teaching data are widely distributed in space with few
similar characteristics, and some trajectories are composed of multiple movements. It is
difficult to effectively segment using the above methods. The “key frame” method for
state segmentation can reasonably segment complex operational tasks into action clips, as
shown in Figure 10b. Moreover, the “key frame” method can ensure that the accuracy of
the segmentation reaches 100%.
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4.5. Action Feature Matching Algorithm

Task reproduction is the process of describing the teacher’s demonstrated operation
task as a set of action primitives and then transforming them into control code that the
robot’s hardware can execute. This enables the robot to repeat the operation task that a
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human has demonstrated. Based on the current software and hardware conditions, this
article proposes a new action feature matching algorithm. The purpose of this algorithm is
to achieve similarity matching with the action primitive library after segmenting the task
into action primitives. Then, each action primitive is described using parameterized action
primitives. Finally, the overall representation of the entire operation task is completed, as
shown in Figure 11.
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To ensure that the action feature matching algorithm can accurately represent human
demonstration data as task models executable by robots, we took the following measures:
(1) Data preprocessing: the collected human demonstration data were preprocessed to
eliminate noise and outliers. (2) Selection of appropriate features to represent the key
attributes of demonstration actions. We selected features such as action amplitude, action
type, motion trajectory, and posture changes, which comprehensively reflect the character-
istics of human actions when performing tasks. By matching these key attributes, robots
can accurately replicate human demonstration actions. (3) To account for differences and
variations among different demonstration data, we used regularization to improve the
generalization ability of the model. (4) In the feature matching stage, we matched the
extracted action features with the action primitives in the action primitive library. The
algorithm considered multiple factors, such as feature similarity and timestamps, to ensure
the accuracy and stability of the matching results.

After training and organizing using GMM and GMR algorithms, we constructed an
action primitive library, whose members are shown in Table 1. Taking action primitive A as
an example, it can be characterized by the following four parameters: the spatial position
of the start point AS, the spatial position of the midpoint AM, the spatial position of the
endpoint AE, and the arm end pose Apose. Similarly, the action segment X to be matched
also has these four parameters. The execution flow of the feature matching algorithm is
as follows:

(1) Calculate the straight-line distance
∣∣∣∣ →
XSXE

∣∣∣∣ from the start point to the end point of

action segment X. This distance determines the magnitude of the action of X.
(2) Three points in space can determine a circular arc. Using XS, XM, and XE to calculate

the radius RX of the circular arc, the radius of the circular arc determines the subse-
quent planning type. We stipulate that if RX > 5000 mm satisfies certain conditions
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(not specified in the question), then use S and E to directly plan the straight-line
trajectory, otherwise plan the circular arc trajectory.

(3) Detect whether the attitude XZ undergoes large changes during the process. If there
are large changes, use joint space planning, otherwise use Cartesian space planning.

(4) Calculate the differences between
∣∣∣∣ →
XSXE

∣∣∣∣ and RX calculated in (1) and (2) and each

member of the action primitive library. Select the action primitive that has the smallest
deviation to represent action segment X. Finally, output the matching result with
pose parameters.

5. Experiments

Firstly, to evaluate the motion execution ability of the humanoid dual-arm robot, a
motion experiment in the robot’s joint space was conducted. The experiment evaluated
the robot’s ability to execute the planned motion operations at the start and end points
of the movement. It also used comprehensive position errors and comprehensive pose
errors to assess the errors between the dual arms’ initial and final motion trajectories and
the planned trajectories. The comprehensive position error and comprehensive pose error
were the average errors of the manipulator at all planned points throughout the entire
operational task, with values of 0.364 mm and 0.218◦, respectively. The experimental results
indicate that the robot can maintain good operational precision and has excellent motion
execution capabilities during the motion execution process.

Then, to evaluate the performance of the humanoid dual-arm robot’s LFD algorithm,
we designed two experiments—the robot’s Cartesian space circle drawing experiment and
the robot’s object picking experiment—to investigate the reproducibility of both action-level
and task-level demonstrations.

5.1. Experiment of Robot Drawing a Circle in Cartesian Space
5.1.1. Experimental Process

The experiment involves teaching the dual-arm robot to draw circles in space with a
constant posture. After capturing the key data of the movement using a motion capture
system, the Cartesian space trajectory planning algorithm processes the data and drives
the humanoid robot to replicate the spatial circle drawing operation. The experiment is
divided into four sections: preparation, demonstration and data processing, robotic arm
trajectory planning, and experiments, as shown in Figure 12.
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During the preparation stage, the NOKOV-MARS series of motion capture systems
are calibrated to ensure that there are no other interference light sources or reflecting
objects in the experimental area. Standard reflecting markers are then attached to both the
demonstrator and the humanoid dual-arm robot.

During the experiment, the movement process of the demonstrator is shown in
Figure 13a. Simultaneously, the motion capture system collects the position and attitude
information of the demonstrator at the beginning and end of the movement, obtaining the
teaching trajectory, as shown in Table 2.
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Table 2. Matching the action characteristics of spatial circle drawing demonstration data.

Teaching Data
Points of the

Left Arm

Spatial Point Position (XYZ Space, mm) Pose (Euler Angles ZYX, ◦)

Start A (556.348, −550.542, −99.134) (1.282, 0.967, 134.922)
Mid B (306.235, −601.328, 105.782) (2.764, 0.167, 135.434)
End C (556.623, −550.246, −101.667) (0.235, 1.115, 132.671)

Processing
Distance

∣∣∣∣ →AC
∣∣∣∣ (mm) Radius
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Conclusion Teaching data of the left arm belong to the “big operation/arc” in the action primitive library, and the
reproduction algorithm uses the “Cartesian space trajectory planning algorithm”

Using the motion feature matching algorithm, the demonstration trajectory is rep-
resented as a parameterized action primitive. For this action primitive, Cartesian space
circular trajectory planning is performed to obtain the circular trajectory. We input the pose
data of A, B, and C spatial points into the Cartesian space trajectory planning algorithm,
and solve the joint angle variation curves over time, as shown in Figure 14a,b. The horizon-
tal axis(step) represents the step number in the time sequence, with each step being 250 ms.
The vertical axis represents the joint angles, and the red and green colors distinguish the
positive and negative values of joint scheduling. As can be seen from the figures, each joint
angle can continuously change smoothly without sudden jumps, and the robotic arm’s
end-effector maintains a stable state during motion.

The planned trajectory data are converted into PVT data that can be executed by the
reducer joint module, driving the physical robot to replicate the spatial circle drawing
operation demonstrated by the teacher, as shown in Figure 13b. The position and attitude
information of the robot during motion is collected using the motion capture system, as
shown in Table 3. Finally, the error between the teaching trajectory and the actual running
trajectory is analyzed as the evaluation criterion for the experimental effect.
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Figure 14. (a) Circle trajectory planning in the left arm space/joint angle. (b) Circle trajectory planning
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Table 3. Experimental data of robot drawing a circle in Cartesian space.

Robotic Arm Spatial Point Position (XYZ Space, mm) Pose (Euler Angles ZYX, ◦)

Left arm
Start A (557.142, −550.153, −100.034) (0.246, 0.167, 135.022)
Mid B (305.735, −600.068, 105.482) (1.964, 0.101, 136.433)
End C (559.193, −550.145, −102.647) (−0.235, 0.172, 134.614)

Right arm
Start A (−556.901, −553.239, −99.013) (1.446, 0.106, 136.126)
Mid B (−305.128, −600.142, 100.024) (0.024, 0.132, 135.307)
End C (−555.989, −551.653, −101.315) (−1.225, 1.072, 135.144)

5.1.2. Analysis of Results

At first, the demonstrator demonstrates the arm’s end-effector’s motion in drawing a
circle in space. The robot’s back-end program matches the demonstration data with the
action primitive library using feature matching. The demonstration data are expressed and
interpreted using existing action primitives, and the action-level motion is then reproduced
on the physical robot platform.

Taking the left arm as an example, after the experiment, a comparison of the teaching
trajectory and the actual robotic trajectory can be obtained, as shown in Figure 15. The
human demonstration trajectory is not a standard circle, but after filtering and trajectory
optimization, the robot’s replicated motion trajectory is basically a standard circle. Using
reference Formulas (11) and (12), the comprehensive position error and comprehensive
attitude error between the planned trajectory and the actual running trajectory can be
calculated, as shown in Table 4.

Table 4. End-effect analysis of robot Cartesian space circle drawing experiment.

Robot Arm Comprehensive Position Error (mm) Comprehensive Pose Error (◦)

Left arm ∆P = 1.392 ∆O = 0.683

Based on the results of the comprehensive position error and comprehensive pose
error presented in Figure 15 and Table 4, we can observe that the robot and its LFD system
have nearly completely and accurately replicated the human demonstration actions at the
motion level, achieving a very high task success rate and learning efficiency. Through this
experiment, it has been proven that the humanoid dual-arm robot demonstration learning
system can reproduce human demonstration actions with excellent accuracy.



Symmetry 2024, 16, 396 16 of 24
Symmetry 2024, 16, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 15. Teaching trajectory and actual running trajectory of robot. 

Table 4. End-effect analysis of robot Cartesian space circle drawing experiment. 

Robot Arm 
Comprehensive Position Er-

ror (mm) Comprehensive Pose Error (°) 

Left arm   

Based on the results of the comprehensive position error and comprehensive pose 
error presented in Figure 15 and Table 4, we can observe that the robot and its LFD system 
have nearly completely and accurately replicated the human demonstration actions at the 
motion level, achieving a very high task success rate and learning efficiency. Through this 
experiment, it has been proven that the humanoid dual-arm robot demonstration learning 
system can reproduce human demonstration actions with excellent accuracy. 

 (11)

Figure 15. Teaching trajectory and actual running trajectory of robot.

∆PA1 = ∆XA1+∆YA1+∆ZA1
3

∆PA2 = ∆XA2+∆YA2+∆ZA2
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∆PB1 = ∆XB1+∆YB1+∆ZB1
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∆PB2 = ∆ ∆XB2+∆YB2+∆ZB2
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∆P = ∆PA1+∆PA2+∆PB1+∆PB2
4

(11)



∆OA1 = ∆RollA1+∆PitchA1+∆YawA1
3

∆OA2 = ∆RollA2+∆PitchA2+∆YawA2
3

∆OB1 = ∆RollB1+∆PitchB1+∆YawB1
3

∆OB2 = ∆RollB2+∆PitchB2+∆YawB2
3

∆O = ∆OA1+∆OA2+∆OB1+∆OB2
4

(12)

5.2. Robot Object Picking Experiment

The previous experiments mainly focused on the ability of the robot demonstration
learning system to learn and replicate human demonstration data at the action level. To
comprehensively evaluate the ability of the humanoid dual-arm robot to perform more
complex manipulation tasks, we designed this experiment.

5.2.1. Experimental Process

In this experiment, the demonstrator demonstrates a picking operation for desktop
items, and the motion capture system records the demonstrator’s behavior. Then, the
backend demonstration learning system can interpret the picking operation as a set of
action primitives. Finally, the humanoid dual-arm robot executes these action primitives
one by one to complete the learning and reproduction of human demonstration data
at the task level. The experiment is divided into the following six parts: preparation,
demonstration and data processing, robot movement, visual recognition, robotic arm
trajectory planning, and experiments, as shown in Figure 16.
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Figure 16. Experimental process of robot object picking (a) preparation; (b) teaching and data
processing; (c) robot movement; (d) recognizing objects through computer vision; (e) robot execution
operation; (f) planning and simulation.

During the demonstration process, the demonstrator enters the working area of the
motion capture system and demonstrates the picking operation of desktop items in its
entirety. The demonstrator’s left arm palm is used as a container to receive the picked items,
while the right arm end simulates the robot’s mechanical gripper. During the demonstration,
the right arm picks up two items (cubic and cylindrical blocks) from the desktop and places
them into the palm of the left arm. Additionally, as previously mentioned, with the aim
to increase the success rate of the system’s comprehension of the demonstration data, the
task-level demonstration learning necessitates the manual introduction of certain action
segmentation markers utilizing the “keyframe” segmentation method. “Picking up two
items on the desktop” is a complete operation task that requires multiple basic actions from
both arms. The demonstration process is shown in Figure 17a, where 12 key demonstration
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clips are selected. These clips show the three key points in time for each basic action: “start”,
“midpoint”, and “end”. Taking Figure 17a as an example, when the right arm performs
a grasping action, B1 represents the start of the action, B2 represents the midpoint of the
action execution, and B3 represents the end of the action.
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After dividing the task layer into temporal combinations of action layers, the action
feature matching algorithm proposed by us matches the captured teaching data from the
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action capture instrument with each element in the action primitive library, expressing the
teaching data as action primitives with parameters, as shown in Table 5.

Table 5. Demonstration data for item picking task.

Spatial Point Position (XYZ Space, mm) Pose (Euler Angles ZYX, ◦) Action Primitive

Left arm
A1 Start (250.050, −399.583, −360.214) (0.031, −44.721, 90.434) “Small

operation/arc”A2 Mid (300.257, −299.746, −350.120) (−0.488, −45.163, 89.662)
A3 End (301.068, −250.424, −340.446) (−0.334, −44.898, 89.763)

Right arm
B1 Start (−250.260, −400.377, −280.316) (−35.131, 44.611, 135.280)

“Reaching out/arc”B2 Mid (−215.260, −415.083, −300.450) (−35.404, 44.632, 135.442)
B3 End (−179.597, −429.555, −480.009) (−35.265, 44.853, 135.321)

Right arm
C1 Start (−179.755, −430.311, −479.813) (−35.053, 44.806, 135.009)

“Big operation/arc”C2 Mid (−100.316, −415.132, −179.874) (−34.856, 44.879, 135.312)
C3 End (−4.720, −400.419, −179.571) (−34.624, 45.050, 135.122)

Left arm
D1 Start (301.087, −250.292, −340.199) (−0.389, −45.242, 89.909) “Big

operation/straight
line”

D2 Mid (299.971, −300.270, −349.656) (0.211, −45.278, 89.617)
D3 End (134.695, −410.274, −360.329) (0.008, −45.414, 89.762)

Left arm
E1 Start (135.592, −410.803, −360.476) (0.488, −45.000, 89.960) “Big

operation/straight
line”

E2 Mid (299.671, −299.641, −350.727) (0.719, −44.389, 90.153)
E3 End (301.442, −250.786, −339.692) (−0.943, −45.020, 89.336)

Right arm
F1 Start (−5.012, −399.442, −179.570) (−34.191, 45.220, 135.235)

“Big operation/arc”F2 Mid (−49.193, −414.218, −180.332) (−35.634, 44.480, 135.773)
F3 End (−99.603, −430.604, −480.939) (−34.043, 45.425, 135.001)

Right arm
G1 Start (−99.555, −430.700, −479.681) (−35.021, 44.679, 135.903) “Big

operation/straight
line”

G2 Mid (−49.963, −414.054, −299.702) (−35.462, 44.846, 135.096)
G3 End (−4.399, −400.092, −180.135) (−35.397, 45.402, 135.333)

Left arm
H1 Start (300.942, −250.881, −339.636) (−0.788, −45.255, 89.396) “Big

operation—straight
line”

H2 Mid (299.085, −300.857, −349.957) (0.841, −45.895, 90.476)
H3 End (134.193, −409.364, −359.365) (0.885, −45.165, 90.966)

Left arm
I1 Start (135.651, −410.833, −360.734) (0.078, −44.604, 90.333) “Withdrawing

hand/straight line”I2 Mid (191.347, −405.218, −359.337) (−0.658, −45.935, 90.122)
I3 End (250.607, −400.879, −360.201) (−0.262, −45.079, 90.963)

Right arm
J1 Start (−4.946, −400.166, −179.686) (−35.644, 44.256, 135.998) “Withdrawing

hand/straight line”J2 Mid (−174.744, −400.416, −230.137) (−34.236, 45.338, 134.381)
J3 End (−250.969, −399.032, −280.666) (−35.687, 45.711, 135.290)

In the visual recognition stage, we used Kinect2 as a visual sensor to detect objects
within a certain field of view and provide feedback on their spatial coordinate information.
This information is processed and transformed to provide spatial point inputs for various
motion planning algorithms such as the starting and placement points for the picking
operation. As shown in Figure 18, the ultimately recognized items to be picked up are one
cubic block and one cylindrical block model. The spatial coordinate information of the
items to be picked up in the dual-arm base coordinate system is shown in Table 6.

During the demonstration and data processing stage, through the processing of the
task-level demonstration learning-related program, the composition of action primitives
for the picking operation of items in temporal order is obtained. The execution steps and
purposes of these action primitives are shown in Table 7, and the ultimately planned path is
shown in Figure 19a. Next, the Cartesian space circular or linear planning algorithm is used
to sequentially plan the trajectories for these action primitives, obtaining the reproduced
trajectory of the operation task. It should be noted that the positions of closing the gripper
(B3 and F3) need to be adjusted, and these two spatial points are changed to the spatial
positions of the cubic and cylindrical blocks, as shown in Table 7.
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Figure 18. Kinect2 recognizes the items to be picked up.

Table 6. Space coordinate information of items to be picked.

Items to Be Picked Position (XYZ Space, mm)

Cube (−183.142, −431.314, −481.442)
Cylinder (−100.632, −427.953, −481.192)

Table 7. Composition Form of Action Primitives for Item Picking Operations.

Steps Action Primitive Spatial Point Robotic Arm Objective

1 “Small operation/arc” A1, A2, A3 Left arm Clear workspace for the right arm
2 “Reaching out/arc” B1, B2, B3 Right arm Gripper approaches the cube
3 “Close the gripper” B3 Right arm Gripper grasps the cube
4 “Big operation/arc” C1, C2, C3 Right arm Right arm picks up the cube

5 “Big operation/straight line” D1, D2, D3 Left arm The container at the end of the left
arm is in position

6 “Open the gripper” C3 Right arm Place the cube into the container
7 “Big operation/straight line” E1, E2, E3 Left arm Clear workspace for the right arm
8 “Big operation/arc” F1, F2, F3 Right arm Gripper approaches the cylinder
9 “Close the gripper” F3 Right arm Gripper grasps the cylinder
10 “Big operation/straight line” G1, G2, G3 Right arm Right arm picks up the cylinder

11 “Big operation/straight line” H1, H2, H3 Left arm The container at the end of the left
arm is in position

12 “Open the gripper” G3 Right arm Place the cylinder into the
container

13 “Withdrawing hand/straight line” I1, I2, I3 Left arm Left arm returns to the end pose
14 “Withdrawing hand/straight line” J1, J2, J3 Right arm Right arm returns to the end pose

The planned trajectory data are converted into PVT data that can be executed by the
joint modules of the reducer, and the physical robot is driven to replicate the demonstration
operation task demonstrated by the demonstrator, as shown in Figure 17b. Through the
combined operation of the above steps, the cubic and cylindrical blocks on the desktop are
picked up by the right arm’s gripper and placed into the container at the end of the left
arm. During the experiment, the robotic arms operate smoothly without any interference,
and the picking operations are successfully completed.

The experiment is repeated 20 times, and the spatial trajectory information of the
robotic arms’ end effector is recorded, as well as the successful pick-up and placement of
the items by the end gripper. This information is used for subsequent quantitative analysis
of the position and orientation errors of the experiment and the operational success rate of
the end effector.
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Figure 19. (a) Track planning results of item picking experiment; (b) actual running trajectory of the
robot’s two arms.

5.2.2. Analysis of Results

The end-effector trajectory data captured by the motion capture system are plotted
in a three-dimensional coordinate system, as shown in Figure 19b. When compared with
Figure 19a, the actual operating trajectory of the robotic arms’ end effector is basically
consistent with the planned trajectory. To assess the differences between the actual and
planned trajectories, we evaluate them through the comprehensive position error and the
comprehensive pose error of the robotic arms.

Using reference Formulas (11) and (12), the comprehensive position and orientation
errors between the actual and planned trajectories of the left and right robotic arms in
this experiment can be calculated, as shown in Table 8. These comprehensive errors
are the average errors of each robotic arm over the 251 planned points throughout the
entire operation task. The comprehensive position error of the left arm is 2.624 mm, and
the comprehensive pose error is 1.893◦. The comprehensive position error of the right
arm is 0.943 mm, and the comprehensive pose error is 0.537◦. Both the comprehensive
position error and the comprehensive pose error of the dual-arm robot are relatively small,
demonstrating that the robot can maintain good operational precision during motion
execution, exhibit high accuracy and stability in the process of action execution, and satisfy
the standards for motion execution capabilities. For the 20 pick-and-place experiments,
the number of successful pick-ups and placements by the gripper is recorded, and the
operational success rate is calculated for each, as shown in Table 9. For this experiment,
successful grasping of objects by the robot refers to the robot’s ability to accurately pick up
the target object. Successful placement of objects means that the robot places the grasped
target objects in the designated location. The entire process requires that the target object
not fall off or tilt. Experimental results demonstrate that the robot and its LFD system
can effectively learn operational skills through human demonstrations and successfully
complete assigned tasks. The high success rates in grasping and placement indicate that
the robot and the LFD system possess high precision and stability in action execution, as
well as strong generalization and learning capabilities in task learning. The robot and the
LFD system satisfy the standards for task-learning capabilities.
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Table 8. End-error analysis of robot’s item picking experiment.

Robotic Arms Comprehensive Position
Error (mm) Comprehensive Pose Error (◦)

Left arm ∆P = 2.624 ∆O = 1.893
Right arm ∆P = 0.943 ∆O = 0.537

Table 9. Operation data statistics of the robotic pick-up experiment.

Grasping
Times

Successful
Grasping

Times

Grasping
Success Rate

Placement
Times

Successful
Placement

Times

Placement
Success Rate

40 39 97.5% 40 40 100%

6. Conclusions

There are many research achievements in obtaining robotic operational skills from
human demonstration data, and one of them is the trajectory-based demonstration learning
method. In this paper, the humanoid dual-arm robot experimental platform is used to
explore the relevant theories of the demonstration learning system, and a motion feature
matching algorithm is proposed. The complex operation tasks (task layer) are decom-
posed into combinations of basic movements (action layer), which are effectively expressed
as executable task models for robots, improving the generalization ability of demonstra-
tion learning.

The experimental results show that the demonstration learning system proposed in
this paper has basic task-learning capabilities. After simulation and real-machine verifica-
tion, the control algorithm can calculate effective control data for the robot according to
different requirements, and the algorithm can drive the robot to replicate simple to complex
demonstration operations.

With further expansion and in-depth research to enable robots to independently learn
and complete tasks assigned by humans in more complex environments in the future, we
are prepared to carry out research in these areas. Firstly, further optimizing the algorithms
of the demonstration learning system will improve the speed and accuracy of robots in
learning new tasks. Secondly, expanding the action primitive library and integrating it with
autonomous navigation will explore the application of the demonstration learning system
to a wider range of tasks, such as achieving autonomous navigation and interaction in
complex environments and completing more complex tasks. Finally, we plan to investigate
how to combine demonstration learning with other machine learning methods, such as
deep reinforcement learning, to overcome the limitations of a single approach.
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