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Abstract: The issue of Jeffrey nanofluid peristaltic flow in an asymmetric channel being affected by
an induced magnetic field was studied. In addition, mixed convection and viscous dissipation were
considered. Under the supposition of a long wave length and a low Reynolds number, the problem
was made simpler. The system and corresponding boundary conditions were solved numerically by
using the built-in package NDSolve in Mathematica software. This software ensures that the boundary
value problem solution is accurate when the step size is set appropriately. It computes internally
using the shooting method. Axial velocity, temperature distribution, nanoparticle concentration, axial
induced magnetic field, and density distribution were all calculated numerically. An analysis was
conducted using graphics to show how different factors affect the flow quantities of interest. The
results showed that when the Jeffrey fluid parameter is increased, the magnitude of axial velocity
increases at the upper wall of the channel, while it decreases close to the lower walls. Increasing
the Hartmann number lads to increases in the axial velocity near the channel walls and in the
concentration of nanoparticles. Additionally, as the Brownian motion parameter is increased, both
temperature and nanoparticle concentration grow.

Keywords: peristalsis; induced magnetic field; Jeffrey nanofluid; viscous dissipation; mixed convection

1. Introduction

Peristaltic flows are flow patterns in tubes or channels that are caused by the walls of
an oscillating channel. Peristaltic flows are widely observed in physiology and engineering.
This is because of all the practical uses they have, such as when food is swallowed through
the esophagus, when lymph is transported in lymphatic vessels, when the ureter transports
urine from the kidney to the bladder, when chyme and ovaries are moved through the
gastrointestinal tract, when eggs are moved through the fallopian tube, when blood pumps
are used in heart–lung machines, when toxic fluid is transported through the peristaltic
method in the nuclear industry, etc.

A fluid is called a nanofluid if it contains particles smaller than one nanometer. These
fluids are composed of nanoparticles in engineered colloidal suspensions inside a base fluid.
The most popular materials for the nanoparticles used in nanofluids include metals, oxides,
carbides, or carbon nanotubes. Water, oil, and ethylene glycol are the basic fluids. Nanoflu-
ids have unique features that might make them beneficial for a range of uses, including heat
transfer, fuel cells, medicine, and hybrid engines. They have been extensively employed
in engineering equipment for engine cooling and vehicle thermal management, as well as
for home refrigerators, chillers, heat exchangers, and nuclear reactors. Additionally, they
are quite stable and do not have any additional issues like erosion, sedimentation, higher
pressure drops, etc.
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The study of MHD examines how highly conductive fluids move when a magnetic
field is present. The MHD flow of nanofluids in a channel with peristalsis is of relevance
regarding many difficulties related to the movement of conductive physiological nanoflu-
ids. For example, hemoglobin, intercellular protein, and cell membranes combine to make
blood a biomagnetic fluid. Hydromagnetic peristaltic flow has applications in the fields
of magnetic resonance imaging (MRI), magnetic devices, and in magnetic particles em-
ployed as drug carriers. Mekheimer [1,2] investigated how an induced magnetic field
affected the conducting, coupled magneto–micropolar stress of a fluid under peristaltic
flow. Hayat et al. [3] spoke about the effect of an induced magnetic field on the peristaltic
transport of a third-order fluid. Hayat et al. have also investigated how an induced mag-
netic field affects a Carreau fluid’s peristaltic flow [4]. The effect of induced magnetic
field on the peristaltic flow in an annulus was further studied by Abd Elmaboud [5]. In
the presence of an induced magnetic field, the peristaltic flow of a Williamson fluid was
solved analytically and numerically by Akram et al. [6]. The effects of an induced magnetic
field and heat transfer on the peristaltic flow of a Jeffrey fluid were examined by Akram
and Nadeem [7]. Using a vertical channel, Mustafa et al. [8] examined how an induced
magnetic field affected the mixed convection peristaltic flow of nanofluid. In a channel with
wall characteristics, Hayat et al. [9] address the magnetohydrodynamic peristaltic motion
of nanofluid. Theoretical model for the modern drug delivery system by taking Hall and
Joule heating into account is developed by Abbasi et al. [10]. The influence of radiation and
a magnetic field on the peristaltic transport of nanofluids via a porous area in a tapered
asymmetric channel was theoretically examined by Kothandapani and Prakash [11]. Hall
effects in a curved channel were used by Abbasi et al. [12] to analyze the effects of magnetic
field on the peristalsis of Carreau-Yasuda fluid. In an inclined channel under convective
circumstances, Hayat et al. [13] studied the impact of an inclined magnetic field on the peri-
staltic flow of Williamson fluid. Hayat et al. [14] studied the Soret and Dufour influences
on peristaltic motion with a radial magnetic field and convective circumstances in a curved
channel. The effect of a magnetic field on Sisko nanofluid flow in three dimensions under
convective conditions was studied by Hayat et al. [15]. In their study on the peristaltic
transport of a Jeffrey nanofluid with Joule heating, Hayat et al. [16] looked at the effects
of Hall and ion slip. Nowar [17] addressed the closed-form solution to study the impact
of an induced magnetic field on the peristaltic transport of a nanofluid in an asymmetric
channel. Recently, Kavya et al. [18] investigated the changing properties of a laminar,
stable, incompressible, two-dimensional, non-Newtonian pseudoplastic Williamson hybrid
nanofluid along a stretched cylinder in terms of both fluid momentum and thermal energy.

A Jeffrey fluid is a non-Newtonian viscoelastic fluid model that effectively illustrates
retardation and relaxation times. Jeffrey nanofluids have several practical applications
in various fields, for example, heat transfer enhancement due to their enhanced thermal
conductivity; biomedical applications, particularly in drug delivery and hyperthermia
treatment for cancer; energy storage; lubrication and friction reduction. By adding Jeffrey
nanofluids to lubricants, it can improve their lubricating properties and reduce friction
in various mechanical systems. The transformation of mechanical energy into heat as a
result of internal friction in a moving fluid is known as viscous dissipation. In the case
of peristaltic flow of a Jeffrey nanofluid under the influence of an induced magnetic field,
viscous dissipation plays a role in the energy balance of the system. Mixed convection can
enhance or suppress heat transfer rates depending on the relative strengths of the natural
and forced convection components.

It has been noted that the peristaltic flows of nanofluids with an induced magnetic
field have not gained much attention, despite several attempts by researchers to study
MHD peristaltic transport in the presence of a uniform magnetic field. With these reasons
in mind, the current study’s objective was to look at how an induced magnetic field affects
the peristaltic flow of a Jeffrey nanofluid inside an asymmetric channel that has both mixed
convection and viscous dissipation. In summary, understanding the importance of viscous
dissipation and mixed convection effects in the induced magnetic field peristaltic flow of a
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Jeffrey nanofluid is crucial for predicting and optimizing the behavior of the fluid in various
applications. Graphs of the data are displayed for evaluating the impacts of pertinent vari-
ables on temperature, axially induced magnetic field, nanoparticle concentration, velocity,
and current density distribution. For more generality, in case of 2D or 3D geometries, we
can use the lattice Boltzmann method [19,20] as an alternative method to solve the obtained
system of partial differential equations.

2. Problem Formulation

Our goal was to analyze the peristaltic motion of a Jeffrey nanofluid that is incom-
pressible and viscous and electrically conducts in a two-dimensional, infinitely asymmetric
channel of width d1 + d2. Assuming sinusoidal wave trains traveling along the channel
walls, as depicted in Figure 1, with constant speed c cause asymmetry in the channel. As
opposed to the top wall, which is kept at temperature T0 and nanoparticle concentration C0,
the bottom wall of the channel is kept at T1 and C1. The channel walls’ forms are displayed
in the following equations:

H1(X, t) = d1 + a1 cos[
2π

λ
(X − ct)], at upper wall (1)

H2(X, t) = −d2 − a2 cos[
2π

λ
(X − ct) + ϕ], at lower wall (2)

where a1 and a2 are the amplitudes of the top and bottom waves, the wave length is λ, c is
the propagation velocity, the time is denoted by t, X is the wave propagation direction, ϕ is
the difference of phase, and its range is 0 ≤ ϕ ≤ π. Keep in mind that ϕ = 0 characterizes
an asymmetric channel with out-of-phase waves, whereas ϕ = π illustrates the situation
when waves are in-phase. Additionally, d1, d2, a1, a2, and ϕ fulfill the inequality below.

a2
1 + a2

2 + 2a1a2 cos ϕ ≤ (d1 + d2)
2 (3)

in order to prevent intersections between the walls.

Figure 1. The problem’s geometry.

With X running parallel to the channel’s center line and Y running transverse to
it, we adopt a Cartesian coordinate system for the channel. An induced magnetic field
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H(hx(X, Y, t), hY(X, Y, t), 0) is produced when a magnetic field of constant intensity H0
acts transversely. Thus, the whole magnetic field is H+(hx(X, Y, t), H0 + hY(X, Y, t), 0). The
velocity field is denoted by V = (U(X, Y, t), V(X, Y, t), 0), where U and V stand for the X
and Y directions and U and V, respectively. The following equation converts the laboratory
frame of reference (X, Y) to the wave frame of reference (x, y)

x = X − ct, y = Y, u = U − c, v = V, and p(x) = P(x, t) (4)

where (u, v), p and (U, V), P are, respectively, the velocity and pressure components in the
wave and fixed frames of reference.

The expression of Cauchy stress tensor τ for Jeffrey fluid is given by the following equation:

τ = −pI + S, S =
µ

1 + λ1

(
γ̇ + λ2

dγ̇

dt

)
, γ̇ = ∇V + (∇V)T (5)

Here, S stands for extra-stress tensor, λ1 is a measure of the relaxation-to-retardationt-
times ratio, λ2 is the retardation time, p is the pressure, I is the identity tensor, µ is the
viscosity coefficient, γ̇ is the shear rate, V is the velocity vector, and d

dt is the substan-
tial derivative.

For the current flow, the governing equations of motion are (see [2,8,9,17]) as follows:
(I) The Maxwell’s equations are

∇.H = 0, ∇.E = 0 (6)

∇× H = J, J = σ[E + µe(V × H)] (7)

∇× E = −µe
∂H
∂t

(8)

(II) The continuity equation is
∇.V = 0 (9)

(III) The momentum equation is

ρ f
dV
dt

= −∇P + divS − µe(H+.∇)H+ − µe

2
∇H+2+

(1 − C0)ρ f gα(T − T0) + (ρp − ρ f )gβ(C − C0) (10)

(IV) The equation of nanofluid temperature is

(ρc′) f
dT
dt

= k∇2T + (ρc′)p[DB∇C∇T + (DT/T0)∇T∇T] + S.L (11)

(V) The nanoparticle volume fraction phenomena equation is

dC
dt

= DB∇2C + (DT/T0)∇2T (12)

(VI) The induction equation is

∂H+

∂t
= ∇× (V × H+) +

1
ζ
∇2H+ (13)

where E is the strength of the electric field, L = ∇V, µe is the permeability of magnetism,
ρ f is the fluid density, ∇2 is the Laplacian operator, t is time, (ρc′) f is the base fluid’s
heat capacity, (ρc′)p is the particle material’s intrinsic heat capacity, c′ is the coefficient
of the volumetric volume expansion, C is the volume fraction of nanoparticles, T is the
dimensional temperature of the nanofluid, DB is the coefficient of Brownian diffusion, DT
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is the coefficient of the thermophoretic diffusion, and ζ is the inverse of magnetic diffusivity.
To describe the fluid flow in a nondimensional form, we define the following quantities [16]:

x∗ =
x
λ

, y∗ =
y
d1

, u∗ =
u
c

, v∗ =
v
c

, h1 =
H1

d1
, h2 =

H2

d1
, δ =

d1

λ
, Re =

ρ f d1c
µ

, t∗ =
c
λ

t,

ν =
µ

ρ f
, p∗ =

pd2
1

cλµ
, b =

a2

d1
, d =

d2

d1
, a =

a1

d1
, α =

k
(ρc′) f

, θ =
T − T0

T1 − T0
, Ω =

C − C0

C1 − C0
,

Nb =
ρc′pDB(c1 − c0)

(ρc′) f α
, Nt =

ρc′pDT(T1 − T0)

(ρc) f αT0
, Gr =

αg(T1 − T0)d2
1

νc
, S =

H0

C

√
µe/ρ f ,

Qr =
αg(C1 − C0)d2

1
νc

, Pr =
ν

α
, Φ =

Φ
H0d1

, pm = p +
1
2

Reδ
µe H+2

ρ f c2 , Rm = σµecd1,

hX = ΦY, hY = −ΦX , Sij =
d1

µc
S∗

ij, Ec =
c2

c f (T1 − T0)
(14)

where δ is the dimensionless wave number, Re is the Reynolds number, ν is the dynamic
viscosity parameter, α is a thermal expansion parameter, Nb is the Brownian motion param-
eter, Nt is the thermophoresis parameter, Gr is the local temperature Grashof number, S is
Stommer’s number, Qr is the local nanoparticle Grashof number, Pr is the Prandtl number,
Rm is the magnetic Reynolds number, and Ec is the Eckert number.
After entering Equations (4) and (14) into Equations (9) to (13), we obtain

δ
∂u
∂x

+
∂v
∂x

= 0 (15)

δReu
∂u
∂x

+ Rev
∂u
∂y

= −∂pm

∂x
+ δ

∂Sxx

∂x
+

∂Sxy

∂y
+ δReS2(Φy

∂Φy

∂x
− Φx

∂Φy

∂y
)

+ReS2 ∂Φy

∂y
+ GrΘ + QrΩ (16)

δ2Reu
∂v
∂x

+ δRev
∂v
∂y

= −∂pm

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy

∂y
−

δ3ReS2(Φy
∂Φx

∂x
− Φx

∂Φx

∂y
)− δ2ReS2 ∂2Φ

∂x∂y
(17)

RePr(δu
∂θ

∂x
+ v

∂θ

∂y
) = δ2 ∂2θ

∂x2 +
∂2θ

∂y2 + Nb(δ
2 ∂Ω

∂x
∂θ

∂x
+

∂Ω
∂y

∂θ

∂y
) + Nt(δ

2(
∂θ

∂x
)2 + (

∂θ

∂y
)2)+

Br[δSxx
∂u
∂x

+ Sxy(
∂u
∂y

+ δ
∂v
∂x

) + Syy
∂v
∂y

] (18)

δcλ

DB
(δ

∂Ω
∂x

+
∂Ω
∂y

) = δ2 ∂2Ω
∂x2 +

∂2Ω
∂y2 +

Nb
Nt

(δ2 ∂2θ

∂x2 +
∂2θ

∂y2 ) (19)

E = u − δu
∂Φ
∂x

− v
∂Φ
∂y

+
1

Rm
(

∂2ϕ

∂y2 + δ2 ∂2ϕ

∂x2 ) (20)

where,

Sxx =
2δ

1 + λ1
[1 + λ∗

2(δu
∂

∂x
− v

∂

∂y
)]

∂u
∂x

(21)

Sxy =
1

1 + λ1
[1 + λ∗

2(δu
∂

∂x
− v

∂

∂y
)](

∂u
∂y

− δ
∂v
∂x

) (22)

Syy =
2δ

1 + λ1
[1 + λ∗

2(δu
∂

∂x
− v

∂

∂y
)]

∂u
∂x

. (23)
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Under the assumptions of a long wavelength and a low Reynolds number and after
the stars are dropped, the dimensionless form of the flow equations for this model in terms
of the stream function ψ(x, y) (considering u = ∂ψ/∂y and v = −δ∂ψ/∂x) produce the
following equations:

∂pm

∂x
=

∂Sxy

∂y
+ ReS2 ∂2Φ

∂y2 + Grθ + QrΩ (24)

∂pm

∂y
= 0 (25)

∂2θ

∂y2 + Nb
∂θ

∂y
∂Ω
∂y

+ Nt(
∂θ

∂y
)2 + BrSxy

∂2Ψ
∂y2 = 0 (26)

∂2Ω
∂y2 +

Nt

Nb

∂2θ

∂y2 = 0 (27)

E =
∂ψ

∂y
+

1
Rm

∂2Φ
∂y2 . (28)

Using Equations (22) and (28) in Equation (24) and eliminating the pressure between
Equations (24) and (25), we have

1
1 + λ1

∂4ψ

∂y4 − M2 ∂2ψ

∂y2 + Gr
∂θ

∂y
+ Qr

∂Ω
∂y

= 0, (29)

∂2θ

∂y2 + Nb
∂θ

∂y
∂Ω
∂y

+ Nt(
∂θ

∂y
)2 +

Br
1 + λ1

(
∂2ψ

∂y2 )
2 = 0, (30)

where M2 = ReS2Rm is the Hartmann number, and Br = PrEc is the Brinkman number.
The corresponding boundary conditions are given by the following equations:

ψ =
F
2

,
∂ψ

∂y
= −1, θ = 0, Ω = 0, Φ = 0, at y = h1(x) = 1 + a cos 2πx (31)

ψ = − F
2

,
∂ψ

∂y
= −1, θ = 1, Ω = 1, Φ = 0, at y = h2(x) = −d − b cos(2πx + ϕ) (32)

where F is the flux in the wave frame; a, b, ϕ, and d satisfy the following inequality

a2 + b2 + 2ab cos ϕ ≤ (1 + d2).

3. Numerical Solutions and Discussion

We now investigate the effects of physical quantities on axial velocity, temperature
distribution, nanoparticles’ concentration distribution, axial-induced magnetic field, and
current density distribution.

3.1. Validation of the Model

The above-mentioned nonlinear Equations (27) to (30), subject to boundary conditions
expressed by Equations (31) and (32), are extremely challenging to handle analytically.
Hence, we computed the graphical solutions by using the built-in package NDSolve in
Mathematica software. This software ensures that the boundary value problem solution is
accurate when the step size is set appropriately. It computes internally using the shooting
method technique. In the shooting method, the PDE is transformed into a system of
ordinary differential equations (ODEs) by considering the spatial variables as parameters.
This allowed us to solve the problem as an initial value problem (IVP) rather than as a
boundary value problem (BVP). The shooting method is an iterative process that requires
adjusting the initial guess until the desired accuracy is achieved. It is widely used in various
fields of science and engineering to solve nonlinear PDEs, such as in fluid dynamics, heat
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transfer, and quantum mechanics. The obtained results are in very good agreement with
those in [7,8,16] (see Table 1).

Table 1. Comparison of velocity profile from this study with that of a previously published article.

y Current Study Akram et al. [7]

−1 0.48996 0.03

−0.5 1.32663 0.6

0 1.49879 0.8

0.5 1.3595 0.82

1 0.842943 0.72

Note that the velocity profile in both studies has the same parabola shape. The
variations in velocity values result from the usage of different values for other factors. The
subsequent subsections deal with plots of velocity u, temperature distribution function Θ,
nanoparticle concentration distribution function Ω, axial-induced magnetic field hx, and
current density distribution Jz.

3.2. Axial Velocity Profile

Axial velocity is shown in Figure 2 in relation to the Hartmann number M, the local
temperature Grashof number Gr, the local nanoparticles’ Grashof number Qr, and the
Jeffrey fluid parameter λ1. According to Figure 2a, the velocity field’s magnitude rises close
to the channel wall, while it reduces in the middle of the channel and is the largest for low
values of M there. Physically, this result is consistent with the well-known Hartmann result
that states “increasing the magnetic field strength causes a decay in the velocity”. As seen
in Figure 2b, when Gr rises, the magnitude of velocity rises in the center of the channel,
where buoyant forces resulting from the temperature gradient exceed the viscous forces,
while it leads to a decrease in velocity near the channel’s walls, where viscous forces are
dominant. Figure 2c demonstrates that the velocity rises as Qr grows at the lower wall
side and falls as Qr increases at the higher wall side. Figure 2d shows the impact of the
Jeffrey fluid parameter λ1 on axial velocity. The relaxation-to-retardation-time ratio for a
Jeffrey fluid is λ1. Fluids with a significant relaxation time distinguishe them as viscoelastic
fluids. It appears that the velocity rises in a region closed to the lower wall and decreases
in another region closer to the higher wall with an increase in λ1. In actuality, when λ1
is increased, the flow resistance reduces in the bottom portion of the channel owing to
the short retardation time and increases in the top section of the channel due to the long
retardation time. It indicates that it takes a lot longer for fluid particles to return from a
disturbed system to an equilibrium system. As a result, the fluid’s velocity drops.
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Figure 2. Variations in velocity profile u with y for various values of Hartmann number M
(a), local Grashof number Gr (b), nanoparticles’ Grashof number Qr (c), and Jeffrey fluid
parameter λ1 (d). The other parameters chosen are F = 2.5, x = 0.1, d = 2, a = 0.7, b = 1.2,
Nb = 0.8, Nt = 0.4, ϕ = π

2 , Gr = 1.5, Br = 1.7, E = 1, λ1 = 0.5, Qr = 1, Rm = 4 (panel a);
F = 2.5, x = 0.1, d = 2, a = 0.7, b = 1.2, Nb = 0.8, Nt = 0.4, ϕ = π

2 , M = 1, Br = 1.7, E = 1,
λ1 = 0.5, Qr = 1, Rm = 4 (panel b); F = 2.5, x = 0.1, d = 2, a = 0.7, b = 1.2, Nb = 0.8, Nt = 0.4,
ϕ = π

2 , Gr = 1.5, Br = 1.7, E = 1, λ1 = 0.5, M = 1, Rm = 4 (panel c); F = 2.5, x = 0.1, d = 2, a =

0.7, b = 1.2, Nb = 0.8, Nt = 0.4, ϕ = π
2 , Gr = 1.5, Br = 1.7, E = 1, M = 1, Qr = 1, Rm = 4 (d).

3.3. Temperature Distribution Profile

Figure 3 shows the influences of Hartmann number M, thermophoresis parameter
Nt, Brownian motion parameter Nb, and local temperature Grashof number Gr on the
temperature distribution profile. It is obvious from Figure 3a that temperature decreases by
increasing the magnitude of M. Physically, magnetic force acts as a retarding force, and
so it slows down the motion of fluid particles. As a result, the kinetic energy decreases,
and thus temperature decreases. Figure 3b,c show opposite behaviors of Nt and Nb. We
see that temperature decreases with an increase in Nt and increases if Nb is increased.
Increasing Nb leads to increased the kinetic energy of the nanoparticles and transforms it
into internal energy that raises the nanofluid temperature. However, when Nt increases,
more nanoparticles migrate from hot to cold locations inside the nanofluid, lowering the
temperature of the nanofluid. The fact that thermophoresis operates against a temperature
gradient is obviously supported by this result. The effect of Gr on temperature profile is
considered in Figure 3d. It is obvious that when Gr rises, the temperature rises as well.
This is because increasing the Grashof number causes the buoyant forces to increase, which
in turn increases temperature and fluid flow.
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Figure 3. Variations in a fluid’s local temperature θ with respect to y for different values of the
Hartmann number M, thermophoresis parameter Nt, Brownian motion parameter Nb, and local
temperature Grashof number Gr are shown in panels a through d. The other factors considered are
F = 3.5, x = 1, d = 1, a = 0.3, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π

2 , Gr = 1, Br = 2, E = 2, λ1 = 3,
Qr = 1, Rm = 4 (panel a); F = 3.5, x = 1, d = 1, a = 0.3, b = 0.7, Nb = 0.8, M = 1, ϕ = π

2 ,
Gr = 1, Br = 2, E = 2, λ1 = 3, Qr = 1, Rm = 4 (panel b); F = 3.5, x = 1, d = 1, a = 0.3, b = 0.7, M = 1,
Nt = 0.4, ϕ = π

2 , Gr = 1, Br = 2, E = 2, λ1 = 3, Qr = 1, Rm = 4 (panel c); F = 3.5, x = 1, d = 1,
a = 0.3, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π

2 , M = 1, Br = 2, E = 2, λ1 = 3, Qr = 1, Rm = 4 (d).

3.4. Nanoparticle Concentration Distribution Profile

Figure 4 illustrates the effects of the Hartmann number M, Brownian motion param-
eter Nb, thermophoresis parameter Nt, and local temperature Grashof number Gr on the
distribution profile of nanoparticle concentration. It is evident from Figure 4a that the
distribution of nanoparticle concentrations rises as M rises. Figure 4b,c reveal that the
nanoparticle concentration profile is an increasing function of Nb and is a decreasing func-
tion of Nt. Actually, the particles in a fluid are always moving due to Brownian motion. As
a result, particles are kept from settling and colloidal solutions remain stable and, hence, the
nanoparticle concentration increases as the Brownian motion parameter increases. Accord-
ing to Figure 4d, the distribution of nanoparticle concentrations diminishes as Gr increases.
This is because the buoyancy force due to spatial variation in fluid density (generated by
the temperature gradient) becomes more dominant than to the retarding (viscous) force
caused by viscosity force.
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Figure 4. Variations in nanoparticle concentration Ω with y for various values of Hartmann
number M (a), Brownian motion parameter Nb (b), thermophoresis parameter Nt (c), and
local temperature Grashof number Gr (d). The other parameters chosen are F = 3.5, x = 1,
d = 1, a = 0.3, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π

2 , Gr = 1, Br = 2, E = 2, λ1 = 3, Qr = 1, Rm = 4
(panel a); F = 3.5, x = 1, d = 1, a = 0.3, b = 0.7, M = 1, Nt = 0.4, ϕ = π

2 , Gr = 1, Br = 2,
E = 2, λ1 = 3, Qr = 1, Rm = 4 (panel b); F = 3.5, x = 1, d = 1, a = 0.3, b = 0.7, Nb = 0.8, M = 1,
ϕ = π

2 , Gr = 1, Br = 2, E = 2, λ1 = 3, Qr = 1, Rm = 4 (panel c); F = 3.5, x = 1, d = 1, a = 0.3, b =

0.7, Nb = 0.8, Nt = 0.4, ϕ = π
2 , M = 1, Br = 2, E = 2, λ1 = 3, Qr = 1, Rm = 4 (panel d).

3.5. Axially Induced Magnetic Field Profile

The magnetic field created along the direction of fluid flow as a result of the movement
of the nanofluid and the presence of an applied magnetic field is referred to as the axially
induced magnetic field. The relationships between the axially induced magnetic field hx
and the Hartmann number M, Jeffrey fluid parameter λ1, magnetic Reynolds number Rm,
and electric field intensity E are shown in Figure 5. It is clear that the profiles of hx have
one direction in the half-region (y > 0) and an opposite direction in the other half (y < 0).
Additionally, we notice that hx is symmetric about the channel and that it decreases in the
channel’s lower half and increases in the top half as M, λ1, and E rise (see Figure 5a,b,d).
Physical interpretations imply that either the fluid is more sensitive to the applied magnetic
field or that the fluid’s nanoparticles have stronger magnetic characteristics in the channel’s
upper half. On the other hand, when Rm rises, hx increases (see Figure 5c). In the world
of physics, as Rm grows, magnetic permeability also rises, which results in a rise in the
induced magnetic field.
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Figure 5. Variations in axial induced magnetic field hx against space variable y for different values
of Hartmann number M (panel a), Jeffrey fluid parameter λ1 (panel b), magnetic Reynolds number
Rm (panel c), and electric field intensity E (panel d). The other parameters chosen are F = 3, x = 0,
d = 2.2, a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5, Br = 0.7, E = 0.8, λ1 = 1.5, Qr = 0.6,
Rm = 0.5 (panel a); F = 3, x = 0, d = 2.2, a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5,
Br = 0.7, E = 0.8, M = 2, Qr = 0.6, Rm = 0.5 (panel b); F = 3, x = 0, d = 2.2, a = 0.7, b = 0.7,
Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5, Br = 0.7, E = 0.8, λ1 = 1.5, Qr = 0.6, M = 2 (panel c);
F = 3, x = 0, d = 2.2, a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5, Br = 0.7, M = 2,
λ1 = 1.5, Qr = 0.6, Rm = 0.5 (panel d).

3.6. Current Density Distribution Profile

Figure 6 illustrates the current density distribution function Jz versus the space variable
y for various Hartmann numbers, Jeffrey fluid parameters, magnetic Reynolds numbers,
and electric field intensities. Current density distribution refers to the spatial variations
in current density within a conductive material or medium. Current density is a measure
of the flow of electric charge per unit area and is expressed in amperes per square meter
(A/m2) in an SI system. In general, the physical significance of current density distribution
is that it offers crucial details on the movement of electric charges across various materials.
Figure 6a,b show that Jz grows near the channel walls and decreases in the channel middle
as M and λ1 increase. In Figure 6a, raising M results in lower fluid flow rates and tempera-
tures, and a drop in temperature enhances the possibility of raising the thermal insulation,
which lowers the current density distribution. In Figure 6b, as λ1 is increased, the velocity
distribution declines due to the rise in the boundary layer momentum thickness in the
middle of the channel, which in turn causes the current density distribution to drop. A rise
in Rm fundamentally changes the situation, as shown in Figure 6c. The rationale for this is
because stronger currents are frequently associated with greater Rm values. This suggests
that the magnetic field’s advection is more important than its diffusion. Figure 6d shows
that Jz is a decreasing function of E. This is because an electric field causes the suspended
nanoparticles in the nanofluid to align themselves, which raises the viscosity of the fluid.
Variations in viscosity can modify the fluid motion’s efficiency, which can have an indirect
impact on the current density’s distribution.
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Figure 6. Variations in the current density distribution Jz within y for different values of Hartmann
number M (panel a), Jeffrey fluid parameter λ1 (panel b), magnetic Reynolds number Rm (panel c),
and electric field intensity E (panel d). The other parameters chosen are F = 3, x = 0, d = 2.2,
a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5, Br = 0.7, E = 0.8, λ1 = 1.5, Qr = 0.6, Rm = 0.5
(panel a); F = 3, x = 0, d = 2.2, a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5, Br = 0.7, E = 0.8,
M = 2, Qr = 0.6, Rm = 0.5 (panel b); F = 3, x = 0, d = 2.2, a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4,
ϕ = π, Gr = 0.5, Br = 0.7, E = 0.8, λ1 = 1.5, Qr = 0.6, M = 2 (panel c); F = 3, x = 0, d = 2.2,
a = 0.7, b = 0.7, Nb = 0.8, Nt = 0.4, ϕ = π, Gr = 0.5, Br = 0.7, M = 2, λ1 = 1.5, Qr = 0.6, Rm = 0.5
(panel d).

4. Conclusions

The current work investigated the impact of an induced magnetic field on the peri-
staltic flow of a mixed convection and viscous dissipation Jeffrey nanofluid. Under the
presumptions of a long wave length and a low Reynolds number, the problem was made
simpler. Graphs were used to describe the results. Future works can be carried out in this
direction to analyze the impact of some other parameters such as Hall and ion-slip currents,
slip conditions, chemical reactions, etc., to be able to predict the behavior of such important
fluids in various applications. The following is a summary of the key findings:

(a) With an increase in M, the axial velocity increases close to the channel wall while
decreasing toward the channel’s center.

(b) The axial velocity magnitude increases toward the upper wall of the channel as λ1
increases, while it decreases close to the lower wall.

(c) The effects of Nt and Nb on the temperature profile are opposite to each other.
(d) When M is raised, the concentration of nanoparticles rises; when Gr is raised, the

concentration falls.
(e) The axially induced magnetic field is increasingly influenced as Rm increases.
(f) The distribution of current density decreases as E increases.
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Nomenclature

a traveling wave amplitude of upper wave Rm magnetic Reynolds number
a1, a2 amplitudes of upper and lower waves S Stommer number
b traveling wave amplitude of lower wave S extra-stress tensor
Br Brinkman number t time
c speed of peristaltic wave T temperature of the fluid
c′ volumetric volume expansion coefficient T0, T1 temperatures at the upper and lower walls, respectively
C volume fraction of nanoparticles u, v dimensionless velocities in the moving frame
C0, C1 mass concentration at the upper and lower walls U, V velocity components in the fixed frame
Cp specific heat under constant pressure V velocity vector
d dimensionless width of the channel x, y coordinate system in the moving frame
DB coefficient of Brownian motion parameter X, Y coordinate system in the fixed frame
DT coefficient of thermophoretic diffusion parameter α thermal expansion parameter
E electric field strength vector λ wavelength
Ec Eckert number λ1 relaxation-to-retardation-times ratio
g acceleration λ2 retardation time
Gr local Grashof number ϕ phase difference
h1, h2 dimensionless upper and lower walls, respectively Φ magnetic force function
hx, hy components of induced magnetic field ρ f density of the fluid
H+ whole magnetic field vector µ viscosity coefficient
H induced magnetic field vector µe permeability of magnetism
H0 constant intensity of magnetic field ν dynamic viscosity parameter
H1, H2 upper and lower walls, respectively δ dimensionless wave number
I identity tensor θ dimensionless temperature
M Hartmann number γ̇ shear rate
Nb Brownian motion parameter τ Cauchy stress tensor for Jeffrey fluid
Nt thermophoresis parameter ζ inverse of magnetic diffusivity
P pressure Ω mass concentration
Pr Prandtl number (ρc′) f heat capacity of base fluid
Qr local nanoparticle Grashof number (ρc′)p intrinsic heat capacity of particles
Re Reynolds number
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