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Abstract: Two systems of mathematical physics are defined by us, which are the first-order differential
system (FODS) and the second-order differential system (SODS). Basing on the conventional Legendre
transformation, we obtain a new kind of canonical equations of Hamilton (CEH) with some kind
of symmetry. We show that the FODS can only be expressed by the new CEH, but do not by the
conventional CEH, while the SODS can be done by both the new and the conventional CEHs, on
basis of the same conventional Legendre transformation. As an example, we prove that the nonlinear
Schrödinger equation can be expressed with the new CEH in a consistent way. Based on the new
CEH, the approximate soliton solution of the nonlocal nonlinear Schrödinger equation is obtained,
and the soliton stability is analysed analytically as well. Furthermore, because the symmetry of a
system is closely connected with certain conservation theorem of the system, the new CEH may be
useful in some complicated systems when the symmetry considerations are used.

Keywords: canonical equations of Hamilton; nonlinear Schrödinger equation

1. Introduction

The Hamiltonian viewpoint offers a theoretical framework in lots of physical fields.
In classical mechanics, it constitutes the basis for further developments, including the
Hamilton-Jacobi theory, the perturbation approaches and the chaos [1]. The canonical
equations of Hamilton (CEH) in the field of classical mechanics are expressed as [1]

q̇i =
∂H
∂pi

, − ṗi =
∂H
∂qi

(i = 1, · · · , n) (1)

where qi and pi are respectively the generalized coordinate and momentum, while
q̇i = dqi/dt is the generalized velocity. The generalized momentum pi is defined as
pi =

∂L
∂q̇i

with L being the Lagrangian. By the Legendre transformation H = ∑n
i=1 q̇i pi − L,

the Hamiltonian H is then obtained.
The CEH (1) can be extended to the continuous system [1]

q̇s =
δh
δps

, − ṗs =
δh
δqs

, (s = 1, · · · , N) (2)

where the subscript s indicates the components of the quantity of the continuous system [1],
δh
δqs

= ∂h
∂qs

− ∂
∂x

∂h
∂qs,x

and δh
δps

= ∂h
∂ps

− ∂
∂x

∂h
∂ps,x

denote the functional derivatives of h with

respect to qs and ps with qs,x = ∂qs
∂x and ps,x = ∂ps

∂x , qs and ps are respectively the generalized
coordinate and momentum, and h is the Hamiltonian density. The generalized momentum
ps is defined as

ps =
∂l

∂q̇s
. (3)
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The Hamiltonian density h is acquired by the following Legendre transformation

h =
N

∑
s=1

q̇s ps − l, (4)

where l is the Lagrangian density. But it is significantly different for the continuous system
that qs and ps are now the functions of both the time coordinate t and the spatial coordinate
x. It should be noted that the spatial coordinate x is not the generalized coordinate, but is
only the continuous index replacing the discrete i in Equation (1). To avoid confusion, we
refer to time t as the evolution coordinate. h is a function of qs, ps and qs,x but not ps,x [1],
so δh

δps
= ∂h

∂ps
, then the first equation of Equation (2) can be also expressed by

q̇s =
∂h
∂ps

. (5)

To our knowledge, the CEH in all current literatures are of the form (2), which are
constructed on the basis of the second-order differential system (SODS). Besides the SODS,
there are a lot of the first-order differential systems (FODS) to describe physical phenomena.
Among them, the nonlinear Schrödinger equation (NLSE) is just the universal FODS. A
question is raised in the nature of things: what is the form of the CEH applicable for the
FODS? Are the conventional CEH, Equation (2), still valid for the FODS? In this paper, we
gain a new CEH of the formal symmetry valid for the FODS, from which the NLSE can
be expressed in a consistent manner. We also prove that the symmetric CEH is equivalent
to the conventional CEH for the SODS. However, the conventional CEH can not model
the FODS.

It is well known that the symmetry plays an important role in theoretical physics [2].
The search for and the discovery of new symmetries promote the exploration of funda-
mental laws of physics. Based on the idea, the CEH with the symmetry found by us,
although this symmetry is only formal, might find their appropriate position in modern
theoretical physics.

2. The CEH for the FODS

The Newton’s second law, the base of the Hamiltonian formulation, is modeled by a
second-order differential equation of the evolution coordinate (the time coordinate). Here,
we define the system governed by second-order partial differential equations of evolution
coordinates as the SODS. Similarly, the FODS is the system governed by the first-order
partial differential equations of evolution coordinates. The Lagrangian density of the SODS
of the continuous systems is expressed in general as [1]

l =
N

∑
s=1

N

∑
k=1

Ask q̇s q̇k +
N

∑
s=1

Bs q̇s + C, (6)

where Ask, Bs, C depend on not only qs but also qs,x in general. The generalized momentum
can be obtained by the definition (3) as

ps =
N

∑
k=1

(Ask + Aks)q̇k + Bs, (7)

which is the function of qs, q̇s and qs,x. Equation (7) in fact have N equations and contain
4N variables, which are qs, q̇s, ps and qs,x. So the degree of freedom of Equation (7) is 3N.
Then we take qs, ps and qs,x as independent variables, and express the generalized velocities
q̇s by these independent variables.

Besides the SODSs, there are a number of the FODSs. The nonlinear Schrödinger
equation (NLSE)
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i
∂φ

∂t
+

1
2

∂2 φ

∂x2 + |φ|2 φ = 0 (8)

is just a universal model that can be applied to hydrodynamics [3], nonlinear optics [4–6],
nonlinear acoustics [7], Bose-Einstein condensates [8]. In nonlinear optics [4–6], the NLSE (8)
governs the propagation of the slowly-varying light-envelope with the evolution coordinate
t being the propagation direction coordinate. The light-envelope φ is a cw paraxial beam
in a planar waveguide [5] or a narrow spectral-width pulse in optical fibers [4,6]. x is a
transverse space coordinate for the beam and a frame moving at the group velocity (the
so-called retarded frame) for the pulse, respectively.

For the FODS, the Lagrangian density should be a linear function of the generalized
velocities q̇s. If the Lagrangian density is a quadratic function of the generalized velocities
like Equation (6), the equation of motion, i.e., the Euler-Lagrange equation

∂

∂t
∂l

∂q̇s
− δl

δqs
= 0 (9)

will be the second-order partial differential equation of the evolution coordinate t, which is
in contradiction with the definition of the FODS. Therefore, the Lagrangian density of the
FODS can only be expressed as

l =
N

∑
s=1

Fs(qs)q̇s + Q(qs, qs,x). (10)

Besides, Fs in Equation (10) is not the function of qs,x. If Fs is also the function of qs,x,
there will be such terms as qs,x q̇s appearing in Equation (10). Substitution of Equation (10)

into Equation (9) leads to the appearance of the mixed partial derivative terms ∂2qs
∂x∂t . Via

the coordinate rotation transform, terms ∂2qs
∂t2 and ∂2qs

∂x2 will appear instead. Therefore, the
Euler-Lagrange equation (9) expressed with the canonical form of the second-order partial
differential equation [9] is the second-order partial differential equation about the evolution
coordinate t. According to our definition, the system is the SODS. Consequently, the
generalized momentum ps, obtained by definition (3)

ps = Fs(qs), (11)

is only a function of qs. This is of significant difference from the case of the SODS, where
the generalized momentum ps is the function of not only qs, but also q̇s and qs,x, as shown
in Equation (7). Equation (11) have N equations, but contain 2N variables, qs and ps.
Therefore, the degree of freedom of the system described by Equation (11) is N. We can
take q1, · · · , qν and p1, · · · , pµ as the independent variables, where ν + µ = N. The rest
of generalized coordinates and momenta can be expressed by the independent variables
qα = fα(q1, · · · , qν, p1, · · · , pµ)(α = ν + 1, · · · , N), and pβ = gβ(q1, · · · , qν, p1, · · · , pµ)
(β = µ + 1, · · · , N).

We now derive the CEH for the FODS. The total differential of the Hamiltonian density
h can be obtained by using Equation (4)

dh =
N

∑
s=1

psdq̇s +
µ

∑
η=1

q̇ηdpη +
N

∑
β=µ+1

q̇β

(
ν

∑
λ=1

∂gβ

∂qλ
dqλ +

µ

∑
η=1

∂gβ

∂pη
dpη

)
− dl, (12)

while the total differential of the Lagrangian density l(qs, q̇s, qs,x) with respect to its argu-
ments is

dl =
ν

∑
λ=1

∂l
∂qλ

dqλ +
N

∑
α=ν+1

∂l
∂qα

(
ν

∑
λ=1

∂ fα

∂qλ
dqλ +

µ

∑
η=1

∂ fα

∂pη
dpη

)
+

N

∑
s=1

∂l
∂q̇s

dq̇s +
N

∑
s=1

∂l
∂qs,x

dqs,x. (13)
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Substitution of Equation (13) into Equation (12) yields

dh =
ν

∑
λ=1

(
N
∑

β=µ+1
q̇β

∂gβ

∂qλ
−

N
∑

α=ν+1

∂l
∂qα

∂ fα

∂qλ
− ∂l

∂qλ

)
dqλ

+
µ

∑
η=1

(
q̇η +

N
∑

β=µ+1
q̇β

∂gβ

∂pη
−

N
∑

α=ν+1

∂l
∂qα

∂ fα

∂pη

)
dpη −

N
∑

s=1

∂l
∂qs,x

dqs,x.
(14)

Since the total differential of h(q1, · · · , qν, p1, · · · , pµ, qs,x) with respect to its arguments
can be written as dh = ∑ν

λ=1
∂h

∂qλ
dqλ + ∑

µ
η=1

∂h
∂pη

dpη + ∑N
s=1

∂h
∂qs,x

dqs,x, by comparing this
equation with Equation (14), we obtain 2N equations

∂h
∂qλ

=
N

∑
β=µ+1

q̇β

∂gβ

∂qλ
−

N

∑
α=ν+1

∂l
∂qα

∂ fα

∂qλ
− ∂l

∂qλ
, (15)

∂h
∂pη

= q̇η +
N

∑
β=µ+1

q̇β

∂gβ

∂pη
−

N

∑
α=ν+1

∂l
∂qα

∂ fα

∂pη
, (16)

∂h
∂qs,x

= − ∂l
∂qs,x

, (17)

where λ = 1, · · · , ν, η = 1, · · · , µ, s = 1, · · · , N. From the Euler-Lagrange Equation (9), we
obtain ∂l

∂qs
= ∂

∂t
∂l

∂q̇s
+ ∂

∂x
∂l

∂qs,x
, substitution of which into Equations (15) and (16) yields

∂h
∂qλ

=− ṗλ +
N

∑
β=µ+1

q̇β

∂gβ

∂qλ
−

N

∑
α=ν+1

ṗα
∂ fα

∂qλ
−

N

∑
α=ν+1

∂

∂x
∂l

∂qα,x

∂ fα

∂qλ
− ∂

∂x
∂l

∂qλ,x
, (18)

∂h
∂pη

=q̇η +
N

∑
β=µ+1

q̇β

∂gβ

∂pη
−

N

∑
α=ν+1

ṗα
∂ fα

∂pη
−

N

∑
α=ν+1

∂

∂x
∂l

∂qα,x

∂ fα

∂pη
. (19)

Then substituting Equation (17) into Equations (18) and (19), we obtain N CEHs for
the FODS

δh
δqλ

=− ṗλ +
N

∑
β=µ+1

q̇β

∂gβ

∂qλ
−

N

∑
α=ν+1

ṗα
∂ fα

∂qλ
+

N

∑
α=ν+1

∂

∂x
∂h

∂qα,x

∂ fα

∂qλ
, (20)

δh
δpη

=q̇η +
N

∑
β=µ+1

q̇β

∂gβ

∂pη
−

N

∑
α=ν+1

ṗα
∂ fα

∂pη
+

N

∑
α=ν+1

∂

∂x
∂h

∂qα,x

∂ fα

∂pη
. (21)

To obtain Equation (21), we have used δh
δpη

= ∂h
∂pη

, because h is not a function of pη,x.
The CEH, Equations (20) and (21), can be expressed in a symmetric form as

δh
δqλ

=
N

∑
s=1

(
q̇s

∂ps

∂qλ
− ṗs

∂qs

∂qλ

)
+

N

∑
α=ν+1

∂

∂x
∂h

∂qα,x

∂ fα

∂qλ
, (22)

δh
δpη

=
N

∑
s=1

(
q̇s

∂ps

∂pη
− ṗs

∂qs

∂pη

)
+

N

∑
α=ν+1

∂

∂x
∂h

∂qα,x

∂ fα

∂pη
(23)

(λ = 1, · · · , ν, η = 1, · · · , µ, and ν+µ = N), because ṗλ = ∑ν
λ′=1 ṗλ′

∂qλ′
∂qλ

, q̇η = ∑
µ
η′=1 q̇η′

∂pη′
∂pη

,

∑
µ
η=1 q̇η

∂pη

∂qλ
= 0, and ∑ν

λ=1 ṗλ
∂qλ
∂pη

= 0. The CEH above can be extended to the discrete
system

∂H
∂qλ

=
N

∑
s=1

(
q̇s

∂ps

∂qλ
− ṗs

∂qs

∂qλ

)
,

∂H
∂pη

=
N

∑
s=1

(
q̇s

∂ps

∂pη
− ṗs

∂qs

∂pη

)
, (24)

where λ = 1, · · · , ν, η = 1, · · · , µ, and ν + µ = N.
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We will prove that the symmetric CEH (22) and (23) can also describe the SODS. In
Equations (22) and (23), if all the generalized coordinates qs and momenta ps are indepen-

dent, we can obtain that
∂gβ

∂qλ
= ∂ fα

∂qλ
=

∂gβ

∂pη
= ∂ fα

∂pη
= 0 (α = ν + 1, · · · , N, β = µ + 1, · · · , N),

then the CEH will be reduced to Equation (2). It does be the case of the SODS, where all the
generalized coordinates and momenta are independent. So, the symmetric CEH obtained
by us can express both the FODS and the SODS. In other words, the new CEH and the
conventional CEH are equivalent when describing the SODS, but the former are of some
formally symmetry. The conventional CEH, Equation (2), can only be used to expresses
the SODS.

3. Application of the Symmetric CEH for Continuous Systems to the NLSE

In this section, we will apply the new CEH with symmetry, Equations (22) and (23), to
the NLSE. The Lagrangian density for the NLSE is stated as [10] l = − i

2 (φ∗ ∂φ
∂t − φ

∂φ∗

∂t ) +
1
2 |

∂φ
∂x |

2 − 1
2 |φ|4. The NLSE is complex, so it is in fact an equation of two real functions,

one is of its real part and the other is of its imaginary part. Alternatively, we can take the
fields φ and φ∗ as two independent functions. In this sense, the components of the quantity
N for the NLSE is equal to two. In other words, for the NLSE there are two generalized
coordinates, q1 = φ∗ and q2 = φ, and two generalized momenta

p1 =
i
2

φ, p2 = − i
2

φ∗. (25)

By using Equation (4) [4], we can obtain the Hamiltonian density

h = −1
2

∣∣∣∣∂φ

∂x

∣∣∣∣2 + 1
2
|φ|4. (26)

If we take q1 and p1 as the independent variables, q2 and p2 can be expressed by the
relations (25) as q2 = −2ip1 and p2 = − i

2 q1, respectively. It also should be noted that
h is also the function of qs,x. Then, we can express the Hamiltonian density (26) with
independent variables q1, p1, q1,x and q2,x as

h = −1
2

q1,xq2,x − 2q2
1 p2

1. (27)

For the NLSE, ν = µ = 1 and N = 2, therefore the Equation (22) in fact have only one
equation. It is the same case for Equation (23). Consequently, for the NLSE, the CEH (22)
and (23) can produce two equations. From the left side of Equation (22), we can obtain
δh
δq1

= 1
2

∂2 φ
∂x2 + |φ|2 φ. From its right side, we can have − ṗ1 + q̇2

∂p2
∂q1

= −iφ̇. Then the NLSE
(8) is obtained. While, for the other CEH (23), the left side is

δh
δp2

= −4q2
1 p1 = −2i|φ|2 φ∗, (28)

and the right side is q̇1 − ṗ2
∂q2
∂p1

+ ∂
∂x

∂h
∂q2,x

∂q2
∂p1

= 2φ̇∗ + i ∂2 φ∗

∂x2 , which results in the generation
of the complex conjugate of the NLSE. As a result, the CEHs (22) and (23) are consistent.
From one of the two CEHs, the NLSE is expressed; from the other, the complex conjugate
of the NLSE is expressed.

We now demonstrate that the conventional CEH (2) can not be used to express the
NLSE. By Equation (3), we have pφ = ∂l/∂φ̇ = −i/2φ∗. Substituting the Hamiltonian density

(26) into the second equation of Equation (2) only yields i
2

∂φ
∂t + 1

2∇2
⊥φ + |φ|2φ = 0, which

does not be the NLSE (8). By substituting the Hamiltonian density (26) into Equation (5),
we can obtain the left side ∂φ∗

∂t , and the right side ∂h
∂pφ∗

= ∂h
∂φ

∂φ
∂pφ∗

= −2i|φ|2 φ∗, where
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pφ∗ = ∂l
∂φ̇∗ . Then the equation − i

2
∂φ∗

∂t + |φ|2 φ∗ = 0 can be obtained. It is surely not the
complex conjugate of the NLSE.

4. Application of the Symmetric CEH for Discrete Systems to Light-Envelope Propagations

In this section, we use the symmetric CEH for discrete systems, i.e., Equation (24), to
discuss light-envelope propagations in nonlocally nonlinear media, which is modeled by
the following (1+D)-dimensional nonlocal nonlinear Schrödinger equation (NNLSE) [11–14]

i
∂φ

∂z
+∇2

⊥φ + ∆nφ = 0. (29)

∆n(r, z) is the nonlinear refractive index, which can phenomenologically be expressed as a
convolution between the response function R(r) and the light intensity

∆n(r, z) =
∫ ∞

−∞
R(r − r′)|φ(r′, z)|2dDr′. (30)

When R is the Dirac delta function, the NNLSE (29) is reduced to the NLSE (8).
We assume the trial solution of Equation (29)

φ(r, z) = qA(z) exp
[
− r2

q2
w(z)

]
exp

[
iqc(z)r2 + iqθ(z)

]
, (31)

where qA, qθ are the amplitude and phase of the complex amplitude φ, respectively, qw
is the width, qc is the phase-front curvature, and they all vary with z. We consider the
response function

R(r) =
1

(
√

πwm)D exp
(
− r2

w2
m

)
. (32)

Substituting the trial solution (31) into the Lagrangian density l = i
2

(
φ∗ ∂φ

∂z − φ
∂φ∗

∂z

)
−

|∇⊥φ|2 + 1
2 |φ(r, z)|2∆n(r, z), and performing the integration L =

∫ ∞
−∞ ldDr, we have

L = −2−2−DπD/2q2
Aq−2+D

w (w2
m + q2

w)
−D/2[−2q2

Aq2+D
w + 2D/2(w2

m + q2
w)

D/2(4D

+4Dq2
c q4

w + Dq4
w q̇c + 4q2

w q̇θ)], (33)

which is the function of generalized coordinates qA, qw, qc and velocities q̇c, q̇θ .
Then the generalized momenta can be obtained

pA = pw = 0, pc = −2−2− D
2 DπD/2q2

Aq2+D
w , pθ = −

(π

2

)D/2
q2

AqD
w . (34)

By Legendre transformation, the Hamiltonian can be determined

H = 2−1−DπD/2q2
Aq−2+D

w (w2
m + q2

w)
−D/2[−q2

Aq2+D
w + 21+ D

2 D(w2
m + q2

w)
D/2(1 + q2

c q4
w)], (35)

which will be proved to be a constant, that is Ḣ = 0.
Four generalized coordinates and four generalized momenta are contained in the

four equations (34). It indicates that Equation (34) have four degrees of freedom. Here,
we can take qc, qθ , pc and pθ as independent variables. By solving Equation (34), we can
express the generalized coordinates qA and qw by generalized momenta pc and pθ as
qA = (−pθ)

1/2[Dpθ/(2πpc)]D/4 and qw = [4pc/(Dpθ)]
1/2. Then, the Hamiltonian (35) is

rewritten as

H = −
D2 p2

θ + 16p2
c q2

c
4pc

− 1
2

π−D/2(
4pc

Dpθ
+ w2

m)
−D/2. (36)

By using the CEH (24) with µ = ν = 2 and n = 4, we can obtain four equations as
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q̇c =
D2 p2

θ

4p2
c

− 4q2
c +

Dπ−D/2 p2
θ(

4pc
Dpθ

+ w2
m)

−D/2

4pc + Dpθw2
m

, (37)

q̇θ = −
(4+D)π−D/2 pc pθ(

4pc
Dpθ

+w2
m)−D/2

4pc+Dpθ w2
m

−D2 pθ
2pc

−
Dπ−D/2 p2

θ w2
m(

4pc
Dpθ

+w2
m)−D/2

4pc+Dpθ w2
m

,

(38)

ṗc = 8pcqc, (39)

ṗθ = 0. (40)

One can find that the generalized coordinate qθ does not appear in the Hamiltonian
(36), therefore qθ is a cyclic coordinate. Because the generalized momentum conjugate
to a cyclic coordinate is conserved [1], the generalized momentum pθ conjugate to the
generalized coordinate qθ is a constant, which can be confirmed by Equation (40). In fact,
this represents that the power P0 =

∫ ∞
−∞|φ|2dDr = q2

A(
√

π/2qw)D is conservative. Then
we can obtain

q2
A = P0(

√
π/2qw)

−D. (41)

Taking derivative with respect to z on two sides of the third equation of (34), then
comparing it with Equation (39) we obtain qc = q̇w

4qw
, the substitution of which into the

Hamiltonian (35) yields H = T + V, where

T =
1

16
DP0q̇2

w, V =
DP0

qw2 − 1
2

π−D/2P2
0

(
w2

m + q2
w

)
−D/2 (42)

are the generalized kinetic energy and potential, respectively.
From the Hamiltonian point of view, the dynamics of light-envelopes in nonlinear

media can be regarded as a problem of small oscillations of a Hamiltonian system about its
equilibrium position. The equilibrium state of the system described by the Hamiltonian H
corresponds to the soliton solutions of the NNLSE, which can be gained as the extremum
points of generalized potential V. The equilibrium position is stable if a small disturbance
from equilibrium leads to small bounded motion about the rest position. While, if an
infinitesimal disturbance produces unbounded motion, the equilibrium is unstable [1]. In
other words, the equilibrium must be stable when the extremum of the generalized potential
is a minimum, and unstable otherwise. In this sense, therefore, the viewpoint in a few
literatures [15–18], where solitons were taken for the extremum of the Hamiltonian rather
than the generalized potential, might be somewhat ambiguous. In these literatures [15–18]
the trial solution has an invariable profile (soliton profile), and the soliton state is the static
state in fact. In this case, the kinetic energy is zero, and the Hamiltonian is just equal to
the potential. In this connection, for the static system the extrema of the Hamiltonian and
the generalized potential are equal only in value. Although in such literatures [15–18] the
obtained soliton solutions are correct, it is more reasonable to regard the soliton solutions
as the extremum points of the generalized potentials rather than the Hamiltonian.

To find the equilibrium state (soliton solution), we let ∂V/∂qw = 0, then we obtain

− 32
q3

w
+ 8π−D/2P0qw

(
w2

m + q2
w
)−1− D

2 = 0. The critical power is then obtained as

Pc =
4πD/2(w2

m + q2
w
)1+ D

2

q4
w

, (43)

with which the light can propagate with a changeless profile. Besides, P0 = Pc also leads to
q̇c = qc = 0, which indicates that the soliton wavefront is a plane.
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Then we address the soliton stability by discussing the generalized potential V. Per-
forming the second-order derivative of V with respect to qw, and substituting Pc into it,
we have

Υ ≡ ∂2V
∂q2

w

∣∣∣∣
P0=Pc

=
64
q4

w

[
2 − 2 + D

2(1 + σ2)

]
, (44)

where σ = wm/qw represents the degree of nonlocality. When Υ > 0, generalized potential
V has a minimum, then the soliton is stable. From Equation (44) we can get the stability
criterion of solitons

σ2 >
1
4
(D − 2), (45)

which also agrees with the Vakhitov-Kolokolov criterion [19].

4.1. The Local Case

When wm → 0, R(r) → δ(r), and the NNLSE is reduced to the NLSE (8). Then,
Equations (43) and (44) will be reduced to Pc = 4πD/2qD−2

w , Υ = 32
q4

w
(2 − D). In the case

of D = 1, Pc = 4
√

π/qw, it is the same as Equation (42) of Ref. [10]. In the case of D = 2,
Pc = 4π, it is the same as Equation (16a) of Ref. [20]. We can obtain Υ > 0 if D < 2, Υ < 0 if
D > 2, and Υ = 0 if D = 2. Therefore, in the local case, the soliton is stable if D = 1, but
unstable if D > 2. In the case of D = 2, it needs further analysis because Υ = 0. In the case
of D = 2, the generalized potential V = (4π − P0)P0/2πq2

w, which does not have extreme
when P0 ̸= 4π. When P0 = Pc = 4π, we obtain that V = 0. It is the extreme rather than
the minimum. Hence, (1+2)-dimensional local solitons are always unstable. When P0 = Pc,
the potential V = 0 is constant, the light-envelope without the external disturbance will
stay in its initial state. But the ideal condition can not occur in experiment. If the external
disturbance makes P0 > Pc, the beam will become narrower and narrower, and the optical
beam will eventually collapse. If the external disturbance makes P0 < Pc, the optical beam
will diffract at last. These conclusions all agree with those of Refs. [21–23].

4.2. The Nonlocal Case

When wm ̸= 0 and D ≤ 2, the condition (45) is satisfied automatically. It means that
the (1+1)-dimensional and the (1+2)-dimensional solitons are always stable in nonlocally
nonlinear media of Gaussian response. It is consistent with the conclusion of Ref. [24].
When D > 2 the stabe solitons can exist when the degree of nonlocality should be strong
enough that satisfies the criterion (45), which is also the same as Ref. [24].

5. Conclusions

We obtain a new CEH with symmetry in form. It can express both the FODS and the
SODS, while the conventional CEH can only express the SODS but impossibly express the
FODS on basis of the same conventional Legendre transformation. By using the new CEH
we analytically obtain the approximate solution of the NNLSE and analytically discuss the
stability of the solitons. We will use the new CEH to analytically deal with two important
problems related to solitons in diverse nonlinear systems, that is, the existence and the
stability, which will save amounts of time for the numerical explorations.
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