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Abstract: This paper introduces the concept of proper 2-dominating sets in graphs, providing a
comprehensive characterisation of graphs that possess such sets. We give the necessary and sufficient
conditions for a graph to have a proper 2-dominating set. Graphs with proper dominating sets can
have a symmetric structure. Moreover, we estimate the bounds of the proper 2-domination number in
the graphs with respect to the 2-domination and 3-domination numbers. We show that the cardinality
of γ2-set is greater by one at most than the cardinality of γ2-set.
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1. Introduction and Preliminary Results

In general, we use the standard notation of graph theory; see [1]. We consider simple,
undirected, connected graphs G = (V(G), E(G)), where V(G) denotes the set of vertices
and E(G) the set of edges of the graph. The order of a graph refers to the number of its
vertices, and its size corresponds to the number of its edges. We say that a vertex x ∈ V(G)
is a neighbour of a vertex y ∈ V(G) in a graph G if there is an edge xy ∈ E(G). The set
of all neighbours of x ∈ V(G) is called a neighbourhood of the vertex x and is denoted
by NG(x). We also denote NG[x] = NG(x) ∪ {x}. Generally for U ⊆ V(G), the vertices of
V(G) \ U that are adjacent to the vertices of U are called neighbours of U and their set is
denoted by NG(U). By dG(x) we mean the degree of the vertex x in G. A vertex of degree
one is called a leaf, every neighbour of a leaf is called a support vertex. If a support vertex
is adjacent to at least two leaves, it is said to be a strong support vertex and a weak support
vertex otherwise. For a graph G, by S(G) we mean the set of support vertices of G and by
L(G) the set of leaves of G.

We use Pn, Cn, Kn, Kn,m, and Nn to denote a path, a cycle, a complete graph, a bipartite
graph, and an edgeless graph, respectively.

A subset B ⊆ V(G) is called a dominating set of graph G if every vertex outside this
set has at least one neighbour in the set B. The parameter γ(G) denotes the cardinality of
the smallest dominating set in graph G. Similarly, a subset I ⊆ V(G) is an independent set
of graph G if any two vertices in the set I are not adjacent to each other. An empty set and a
set containing only one vertex are also independent. An independent set that is not a proper
subset of any other independent set is called a maximal independent set. The independence
number of a graph G, denoted by α(G), is the maximal size of an independent set in G.

1.1. Background

The idea of domination appears in chessboard problems described in 1862 by De
Jaenisch [2] and it was formalised by C. Berge [3] and then by O. Ore [4] in 1962 who
was the first who used the terms dominating set and dominating number. In 1977, the
survey of E.J. Cockayne and S.T. Hedetniemi [5] collected results related to domination
and also used the notation γ(G) as the domination number. Since then, much has been
written about dominating sets and dominating numbers. Over the following decades, the
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theory of domination was extended, and a huge development of this theory is still being
observed. Dominating sets are studied not only from a purely theoretical point of view,
but also interesting applications are considered. A review of the literature shows that
dominating sets and domination parameters can be found in different fields, ranging from
health care technology, through peer-to-peer messaging, location problems, and robotics,
to crisis management and air/land/naval defence; see [6]. For these reasons, the concept of
dominating sets and their variants is relevant in modern graph theory. Dominating sets
combined with the property of independence as an additional restriction can be used to
model some mathematical objects, winning strategies in certain games played on graphs,
or optimal sets of decisions. In the literature, we can find a number of variants and
generalisations of dominating sets in graphs. In [7], more than 70 types of dominating sets
and domination parameters were described and new types of dominating sets still appear.

The study of dominating sets has also led to various specialised types of dominating
sets, either by introducing additional restrictions or by generalising the classical domi-
nation concept. Some of these types are described in [7–9]. F. Harary and T.W. Haynes
in [10,11] introduced double domination, which generalises domination in graphs, and
more generally, the concept of k-tuple domination, which has been studied in [12,13] too.
Let k be a positive integer. The subset S ⊆ V(G) is said to be a k-tuple dominating set if
|S ∩ N[v]| ≥ k for every vertex v ∈ V(G). The parameter γxk(G) is equal to the minimum
cardinality of a k-tuple dominating in the graph G. For k = 2, the k-tuple domination
coincides with the double domination, which was also studied by M. Blidia, M. Chellali,
and T.W. Haynes [14–16]. A set S ⊆ V(G) is a double dominating set of G if each vertex
v ∈ V(G) is dominated by at least two vertices in S. D.W. Bange, A.E. Barkauskas, and
P.J. Slater [17], and F. Harary and T.W. Haynes [10] defined and studied the concept of an
efficient doubly dominating set. M. Chellali, A. Khelladi, and F. Maffray also considered
these sets in [18], but they referred to them as exact doubly dominating sets. A set S ⊆ V(G)
is an exact dominating set of G if each vertex v ∈ V(G) is dominated by exactly two vertices
of S.

1.2. Definitions of Multiply Domination and Proper 2-Domination

Another of the extensively researched types of dominating sets is the concept of
multiple dominating sets, which was introduced by J.M. Fink and M.S. Jacobson in [19].
For any integer p ≥ 1, a subset S ⊆ V(G) is referred to as a p-dominating set if every vertex
outside of S has at least p neighbours within S. For p = 1, the p-dominating set coincides
with the classical dominating set. When p = 2, we obtain the concept of 2-dominating sets,
which has been studied in [20,21]. The parameter γp(G) represents the cardinality of the
smallest p-dominating set in the graph G. We say that vertex v ∈ V(G) \ S is called exactly
p-dominated if |NG(x) ∩ S| = p.

As we mentioned, 2-dominating sets are intensively studied. However, for p ≥ 3
the literature survey shows that p-dominating sets are not a very popular topic. This
follows from the fact that large p vertices not belonging to p-dominating sets must have
large degrees, and this restriction limits classes of graphs with nontrivial (i.e., different
from V(G)) p-dominating sets. Furthermore, a set J ⊆ V(G) is termed a kernel if it is
both independent and dominating. The concept of kernels in graph theory originated in
the field of digraphs and was introduced by J. von Neumann and O. Morgerstern in the
context of game theory [22]. Over the years, this topic has been extensively studied for
various purposes, including list coloring, perfectness, and location problems. C. Berge,
a renowned mathematician, made significant contributions to the study of kernels in
digraphs and applied them to solve various mathematical problems [23,24]. Numerous
variants and generalisations of kernels have been proposed in the literature, with works
such as [23–27] exploring different aspects of this concept. For example, if we consider a set
that is both independent and 2-dominating, we obtain a 2-dominating kernel. The concept
of a 2-dominating kernel ((2-d)-kernel in short) was introduced by A. Włoch (see [28])
and was intensively studied over the following years; see [29–33]. In 2020, T. Haynes, S.T.
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Hedetniemi, and M.A. Henning in [8] included a section written by A. Hansberg and L.
Volkman that collected and classified results related to multiply domination. Contributing
to this research, in this paper, we study a special subclass of 2-dominating sets.

From the definition of a p-dominating set, it follows that for any graph G,
γ(G) ≤ γ2(G) ≤ γ3(G). By definition, any p-dominating set is also a k-dominating set
for k < p. Thus, any 3-dominating set is also a 2-dominating set. Therefore, it is interesting
to study 2-dominating sets that are not 3-dominating. This motivates the introduction
of proper 2-dominating sets. The idea of defining proper dominating sets of some types
appeared, for example, in [34,35], in relation to secondary domination.

Definition 1. A subset D ⊂ V(G) is called a proper 2-dominating set if it is a 2-dominating set
but not a 3-dominating set.

In other words, D ⊂ V(G) is a proper 2-dominating set if there exists a vertex outside
the set D that has exactly two neighbours within the set D. Since the set V(G) is 3-
dominating, it is not a proper 2-dominating set. To simplify the notation, we will write
2-dset to denote a proper 2-dominating set and by γ2(G) the cardinality of the smallest
2-dset.

For any graph G, we have the inequality:

γ2(G) ≥ γ2(G). (1)

Directly from the Definition 1, we obtain the following lemma:

Lemma 1. Let k ≥ 2 be an integer. Every vertex of degree l < k belongs to a (l + i)-dominating
set for i ∈ {1, . . . , k}.

The 2-dsets can be applied to a wide range of practical problems, such as crisis
management. Let us consider a particular inhabited area where a plan should be developed
to provide the inhabitants in the event of a critical situation, for example related to damage
to critical infrastructure. It is important that each resident has access to help and that
this access is further secured in the event of further damage. From the point of view
of optimising the problem, it is preferable to plan location points so that the number of
distribution points is minimal and that each resident has direct access to at least two of
these points in the event of problems at one of the points. By modelling the situation with a
graph, the solution to this problem of the location of such points is to find the minimum
2-dominating set of graphs. In turn, the minimum 2-dsets determine the weakest places
where direct access to only two points is possible.

2. Main Results

As mentioned above, a graph does not always have a 2-dset; as an example, we
can consider a path P2 or the star K1,3 (see Figure 1). In this section, we give a complete
characterisation of graphs that have a 2-dset.

Figure 1. Graphs P2 and K1,3 do not have a 2-dset.

Theorem 1. A connected graph G of order n, n ≥ 3 has a 2-dset D if and only if there exists a
vertex v such that:

1. v /∈ L(G) ∪ S(G), or
2. v ∈ S(G) and |NG(v) ∩ L(G)| ≤ 2.

Proof. Let G be a graph with a 2-dset D. Let us assume, by contradiction, that every vertex
x ∈ S(G) and |NG(x) ∩ L(G)| ≥ 3 or x ∈ L(G).
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If x ∈ L(G), then according to Lemma 1, it belongs to set D. Now, if x ∈ S(G), it must
have at least three neighbours in D. Since D is a 2-dset, there exists a vertex in the set
V(G) \ D that has at most two neighbours in D, which is a contradiction.

In contrast, let us consider the following cases.

1. Let us assume that v is a strong support vertex with exactly two leaves in its neigh-
bourhood, l1 and l2. Let R = V(G) \ NG(v), and NG(v) = {l1, l2} ∪ V0 ∪ V1 ∪ V2,
where:

(i) V0 ⊆ V(G) such that NG(V0) ∩ R = ∅;
(ii) V1 ⊆ V(G) such that |NG(V1) ∩ R| = 1;
(iii) V2 ⊆ V(G) such that |NG(V1) ∩ R| ≥ 2.

Let us consider the following cases:

(a) V0 ̸= ∅.
Let v0 ∈ V0 be the vertex with the smallest degree in the graph G \ {v, l1, l2}.
Note that each vertex of V0 has a degree of at least two, otherwise V0 contains
a leaf, which contradicts the assumption that v has exactly two leaves in its
neighbourhood. Then, the set (V(G) \ NG(v0)) ∪ {v, v′0} where v′0 ∈ NG(v0) \
{v} is a 2-dset and the vertex v0 is exactly 2-dominated.

(b) V0 = ∅ and V1 ̸= ∅.
Then, the set R∪{v, l1, l2} is a 2-dset and each vertex of V1 is exactly 2-dominated.

(c) V0 = ∅, V1 = ∅, and V2 ̸= ∅.
Then, the set R ∪ {l1, l2} is a 2-dset and the vertex v is exactly 2-dominated.

(d) V0 = ∅, V1 = ∅, and V2 = ∅.
Then, G = P3, the set L(P3) is a 2-dset, and the vertex v is exactly 2-dominated
by L(P3).

2. Let us assume that v is a weak support vertex with one leaf l1 in its neighbourhood.
Let R = V(G) \ NG(v) and NG(v) = {l1} ∪ V0 ∪ V1 ∪ V2, where sets Vi, i = 0, 1, 2 are
the same as in case 1. Let us consider the cases:

(a) V0 ̸= ∅.
Similarly as in case 1(a), let v0 ∈ V0 be a vertex with the smallest degree
in the graph G \ {v, l1}. Note that every vertex in the set V0 has a degree
of at least two. Otherwise, we obtain a contradiction to the assumption
that the vertex v has exactly one leaf in its neighbourhood. Then the set
(V(G) \ NG(v0))∪ {v, v′0}, where v′0 ∈ NG(v0) \ {v}, is a 2-dset and the vertex
v0 is exactly 2-dominated.

(b) V0 = ∅ and V1 ̸= ∅.
Then, the set R∪ {l1, v} is a 2-dset and each vertex of V1 is exactly 2-dominated.

(c) V0 = ∅, V1 = ∅, and V2 ̸= ∅.
Let v′ ∈ NG(v) ∩ V2. Then, the set R ∪ {l1, v′} is a 2-dset and the vertex v is
exactly 2-dominated.

(d) V0 = ∅, V1 = ∅, and V2 = ∅.
Then, the graph G = P2 has an order two and P2 does not have a 2-dset.

3. Let us assume that v ∈ V(G) \ (L(G) ∪ S(G)). Let R = V(G) \ NG(v) and
NG(v) = V0 ∪ V1 ∪ V2, where sets Vi, i = 0, 1, 2 are the same as in case 1. Let us
consider the cases:

(a) V0 ̸= ∅.
Similarly as in case 1(a), let v0 ∈ V0 be a vertex with the smallest degree in
the graph G \ {v}. Note that every vertex in the set V0 has a degree of at least
two in G. Otherwise, we obtain a contradiction with the assumption that v
is neither a leaf nor a support vertex. Then the set (V(G) \ NG(v0)) ∪ {v, v′0},
where v′0 ∈ NG(v0) \ {v}, is a 2-dset and the vertex v0 is exactly 2-dominated.

(b) V0 = ∅ and V1 ̸= ∅.
Then, the set R ∪ {v} is a 2-dset and each vertex of V1 is exactly 2-dominated.
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(c) V0 = ∅, V1 = ∅, and V2 ̸= ∅.
Then, the set R∪{x, y} is a 2-dset, where the vertices {x, y} ∈ V2. The existence
of at least two such vertices is guaranteed by the assumption that v is neither a
leaf nor a support vertex. Furthermore, the vertex v is exactly 2-dominated.

(d) V0 = ∅, V1 = ∅, and V2 = ∅.
Then, the graph G = N1 has an order one and N1 does not have a 2-dset.

Now, we give another complete characterisation of graphs that have a 2-dset using a
generalised corona of graphs.

Definition 2. The generalised corona of a graph G and the sequence hn is the graph G ◦ hn such
that V(G ◦ hn) = V(G) ∪⋃n

i=1 V(Hi) and E(G ◦ hn) = E(G) ∪⋃n
i=1 E(Hi) ∪

⋃n
i=1{xiy : y ∈

V(Hi)}.

If Hi
∼= H in the above definition, for i ∈ {1, . . . , n}, then we obtain the definition of a

corona of two graphs G and H introduced by R. Frucht and F. Harary in [36].

Theorem 2. Let H be a graph. The graph G has a 2-dset if and only if G ̸= H ◦ Npi , pi ≥ 3,
i ∈ {1, 2, . . . , |V(H)|}.

Proof. The proof is analogous to the proof of Theorem 1.

Figure 2 shows the corona G = P3 ◦ (N3, N3, N5). By Lemma 1, every leaf belongs to a
2-dominating set. The set L(G) is not the 2-dset because every vertex that is not a leaf is
at least 3-dominated. Moreover, since V(G) is not 2-dset, then this graph does not have a
2-dset.

P3

Figure 2. The graph G = P3 ◦ (N3, N3, N5).

Moreover, from the above theorems we see that the graph G does not have a 2-
dset if and only if every vertex x ∈ V(G) is a support vertex and has at least three
leaves in its neighbourhood or x is a leaf itself. Therefore, we immediately obtain the
following corollaries.

Corollary 1. If L(G) = ∅, then G has a 2-dset.

Corollary 2. If a graph G has a vertex v such that dG(v) = 2, then G has a 2-dset.

From the above corollaries, we can obtain characterisations of well-known graph
products with 2-dset, such as the Cartesian product, the tensor product, and the strong
product. These graph products can be found in the literature under various names. To
avoid confusion, we recall necessary definitions.

Let us recall the definitions of some graph products. Let G and H be two dis-
joint graphs.

Definition 3. The Cartesian product of two graphs G and H is the graph G × H such that V(G ×
H) = V(G) × V(H) and E(G × H) = {(xi, yp)(xj, yq) : (xi = xj and ypyq ∈ E(H)) or
(yp = yq and xixj ∈ E(G))}.
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Definition 4. The tensor product of the graphs G and H is the graph G × H such that
V(G × H) = V(G)× V(H) and E(G × H) = {(xi, yp)(xj, yq) : xixj ∈ E(G) and
ypyq ∈ E(H)}. The tensor product is also called a direct product or a categorical product.

Definition 5. The strong product of the graphs G and H is the graph G ⊠ H such that
V(G⊠H) = V(G)×V(H) and E(G⊠H) = {(xi, yp)(xj, yq) : (xi = xj and ypyq ∈ E(H)) or
(yp = yq and xixj ∈ E(G)) or (xixj ∈ E(G) and ypyq ∈ E(H))}.

Some other properties of these products are studied in [37–39]. Note that these graph
products have a symmetric structure.

Moreover, graph products play an important role in studying different properties and
invariants in graphs. To describe classes of graphs with a given property it is easier to study
graphs whose structure can be characterised in terms of smaller and simpler graphs, so
many existing results come from the study of products of graphs. Operations on graphs
also allow us to build families of graphs with a 2-dset.

The following results specify when the Cartesian product, the tensor product, and the
strong product have a 2-dset.

Theorem 3. If G and H are nontrivial connected graphs, then the graph G □ H has a 2-dset.

Proof. In the Cartesian product of two graphs G □ H, we have δ(G □ H) = δ(G) + δ(H).
Since the graphs G and H are nontrivial by Corollary 1, the graph G □ H has a 2-dset.

Theorem 4. If G and H are connected graphs of order n, n ≥ 3 and L(G) = ∅, then the graph
G × H has a 2-dset.

Proof. Since in the tensor product of two graphs G × H, we have δ(G × H) = δ(G) · δ(H)
and δ(H) ≥ 2 and by Corollary 1, the graph G × H has a 2-dset.

Theorem 5. If G and H are nontrivial connected graphs, then the graph G ⊠ H has a 2-dset.

Proof. Since δ(G ⊠ H) ≥ 2 for two nontrivial connected graphs, the graph G ⊠ H has a
2-dset.

Now we will show relations between γ2(G) and γ2(G), γ3(G). The relationships
between parameters of domination are one of the main directions of research in the theory
of domination. Bounds for domination parameters can often be expressed in terms of other
graph invariants. This means that they can be easily computed.

Theorem 6. Let G be a connected graph with a 2-dset. If γ2(G) < γ3(G), then γ2(G) = γ2(G).

Proof. If γ2(G) < γ3(G), it means that every γ2-set of G is not a γ3-set. In other words,
there is a vertex of the γ2-set that is not 3-dominated. Thus, every γ2-set is also a γ2-set.
Therefore, γ2(G) = γ2(G), which completes the proof.

The converse implication is not true. That is, the equality γ2(G) = γ2(G) does
not necessarily imply that γ2(G) < γ3(G). Consider the tree T from Figure 3. Then,
γ2(T) = γ2(T) and these parameters are realised by the set V1 = {a, b, c, e}. Moreover, the
smallest 3-dominating set is the set V2 = {a, b, d, e}, so γ2(T) = γ3(T).

a

b

c d e

Figure 3. Graph T.
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Theorem 7. Let G be a connected graph of order n, n ≥ 3, which has a 2-dset and let
γ2(G) = γ3(G). If there exists a γ2-set in the graph G that is not independent, then
γ2(G) = γ2(G).

Proof. Assume that G is a graph such that γ2(G) = γ3(G). Let D be a γ2-set that is not
independent. If there exists a vertex v ∈ V(G) \ D that is exactly 2-dominated, then D is a
γ2-set. Otherwise, every vertex v ∈ V(G) \ D is 3-dominated. Since D is not independent,
there exist two adjacent vertices x, y ∈ D. Let z ∈ (NG(x) ∪ NG(y)) \ {x, y}. The existence
of this vertex is guaranteed because G has at least three vertices. Then, xz ∈ E(G) or
yz ∈ E(G) or xz, yz ∈ E(G). Without loss of generality, assume that xz ∈ E(G). We will
show that z does not belong to the set D. If z ∈ D, then the set D \ {x} is also a 2-dominating
set, contradicting the assumption that D is a γ2-set. This means that (NG(x) \ {y})∩ D = ∅.
As D is a 3-dominating set, every vertex z′ ∈ NG(x) \ D is 3-dominated. Now, consider the
set D1 = D \ {x} ∪ {z}. Then, the vertex x has exactly two neighbours in the set D1, and
every vertex z′ ∈ NG(x) \ D1 is dominated by at least two vertices of D1. This implies that
D1 is a γ2-set, which completes the proof.

From the above theorem, we obtain the following corollary.

Corollary 3. Let G be a connected graph of order n, n ≥ 3, which has a 2-dset and let
γ2(G) = γ3(G). If γ2(G) > γ2(G) then every γ2-set in the graph G is independent.

Theorem 8. If G is a connected graph of order n, n ≥ 3, which has a 2-dset, then

γ2(G) ≤ γ2(G) ≤ γ2(G) + 1.

Proof. The left inequality follows directly from the definition of a 2-dset. We will demon-
strate that adding one vertex to the γ2-set is sufficient to obtain a 2-dset. Therefore, we
have the case where γ2(G) = γ3(G) and all γ2-sets are independent, and we let D be
an arbitrary γ2-set. Thus, there exists a vertex x ∈ D that is not a leaf. Otherwise, we
would have a graph without a 2-dset, which is a contradiction. Every γ3-set is indepen-
dent. Otherwise, if there is a γ3-set that is not independent, then it is also a γ2-set. This
is a contradiction to the assumption that every γ2-set is independent. Since the γ3-set
is independent, NG(x) ∩ D = ∅. Furthermore, each neighbour of x is dominated by at
least 3 vertices. As x is not a leaf, it has at least two neighbours, denoted as y and z. We
form the set D′ = D \ {x} ∪ {y, z}. Thus, every neighbour of x is dominated by at least
two vertices of D′. Hence x is exactly 2-dominated by y and z. The set D′ is a 2-dset, and
|D′| = |D| − 1 + 2, which concludes the proof.

The following corollary presents the proper 2-domination number in standard classes
of graphs. In each of these classes, the equality γ2(G) = γ2(G) holds.

Corollary 4. Let n, m be integers. Then,

(i) γ2(Kn) = 2;
(ii) γ2(Cn) = ⌈ n

2 ⌉;
(iii) γ2(Pn) = ⌊ n

2 ⌋+ 1;

(iv) γ2(Kn,m) =

{
2 for n = 2, n ≤ m
4 for n ≥ 3, n ≤ m

.

To illustrate the example of graph where the equality γ2(G) = γ2(G) + 1 is met, let
us consider the tree T such that V(T) = {a, b, c, d, e, f , g} and E(G) = {ac, bc, cd, de, e f , eg}.
Then, γ2(T) = γ3(T) and these parameters are realised by the set V1 = {a, b, d, f , g}.
Moreover, the set V2 = {a, b, c, e, f , g} is 2-dset and γ2(T) = γ2(T) + 1.

Now, we will show that in trees the value of the 2-proper domination number is related
to the existence of a (2-d)-kernel. In [20,40], the following theorems have been proved.



Symmetry 2024, 16, 296 8 of 10

Theorem 9 ([20]). For a tree T the following are equivalent:

1. γ2(T) = α(T).
2. T has a unique γ2(T)-set that also is a unique α(T)-set.

Theorem 10 ([40]). A tree T has a (2-d)-kernel if and only if γ2(T) = α(T).

From the two aforementioned theorems it follows that a tree T has a (2-d)-kernel if
and only if it possesses exactly one minimal 2-dominating set. This leads to the final result.

Theorem 11. Let T be a tree of order n, n ≥ 3, which has a 2-dset. Then,

γ2(T) =
{

γ2(T) + 1 if T has (2-d)-kernel, which is 3-dominating set,
γ2(T) otherwise

.

Proof. Let T be a tree, which has a 2-dset. By Theorem 2 we obtain T ̸= T′ ◦ Npi , pi ≥ 3,
i ∈ {1, 2, . . . , |T′(H)|}, where T′ is an arbitrary tree of order n, n ≥ 1. By Theorems 9 and 10
it follows that a tree T has (2-d)-kernel if and only if there exists a unique smallest 2-
dominating set, which is also a maximum independent set. Let us consider the follow-
ing cases:

1. A tree T has (2-d)-kernel J. Let us consider the following subcases.

(a) If the set J is also 3-dominating, then there exists a vertex x that is not a leaf.
This means that x has at least two neighbours identified as x1 and x2. We create
the set J′ = J \ {x} ∪ {x1, x2}. Consequently, each neighbour of x is dominated
by a minimum of two vertices of J′. Moreover, x is exactly 2-dominated by x1
and x2. The set J′ is a 2-dset, and |J′| = |J| − 1 + 2. Hence γ2(T) = γ2(T) + 1.

(b) If the set J is not 3-dominating, then there exists a vertex v ∈ J, which is exactly
2-dominated. Thus, J is also a 2-dset. Therefore, γ2(T) = γ2(T).

2. A tree T does not have (2-d)-kernel. Let us consider the following subcases:

(a) If γ2(T) < γ3(T), then by Theorem 6 it follows that γ2(T) = γ2(T).
(b) If γ2(T) = γ3(T), then by Theorem 9 every γ2-set of a tree T is not independent.

By Theorem 7 we obtain γ2(T) = γ2(T).

This completes the proof.

3. Conclusions

In this paper, we introduced and thoroughly investigated the concept of proper 2-
dominating sets in graphs, providing a comprehensive characterisation of graphs that
possess such sets. Our main focus was to establish necessary and sufficient conditions
for the existence of proper 2-dominating sets and to estimate bounds for the proper 2-
domination number concerning 2-dominating and 3-dominating numbers.

Our main results, obtained in Theorems 1 and 2, provide a clear understanding of
the structural properties of graphs with proper 2-dominating sets. The corollaries derived
from these theorems further extend our insight into specific graph classes, such as paths,
cycles, complete graphs, and various graph products. Note that Theorems 3–5 show the
application of our findings in well-known graph products, showing the existence of proper
2-dominating sets in these products.

In the last part of the article presented in Theorem 8, we showed relations between
numbers γ2(G) and γ2(G). We have proved that the cardinality of γ2-set is greater by
one at most than the cardinality of γ2-set. However, the classes of graphs such that
γ2(G) = γ2(G) + 1 are still unknown. In the above, we indicated only one example of such
a graph.

Moreover, since we have not found any counterexamples to the statements below, we
finish the paper with the following conjectures.
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Conjecture 1. If the graph G has no leaves, then γ2(G) = γ2(G).

Conjecture 2. If γ2(G) = γ2(G) + 1, then the graph has a unique independent γ2(G)-set.

Author Contributions: Both authors contributed equally to this work. Conceptualization, P.B.
and M.P.; methodology, P.B. and M.P.; validation, P.B. and M.P.; formal analysis, P.B. and M.P.;
writing—original draft preparation, P.B. and M.P.; writing—review and editing, P.B. and M.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Diestel, R. Graph Theory; Springer: New York, NY, USA, 2005.
2. De Jaenish, C.F. Traite des Applications de l’Analyse Mathematique au jeu des Echecs; Academie Imperialedes Sciences: St. Petersburg,

Russia, 1862.
3. Berge, C. Theory of Graphs and Its Applications; Methuen: London, UK, 1962.
4. Ore, O. Theory of Graphs. Am. Math. Soc. Transl. 1962, 38, 206–212.
5. Cockayne, E.J.; Hedetniemi, S.T. Towards a theory of domination in graphs. Networks 1977, 7, 247–261. [CrossRef]
6. Raczek, J. Complexity Issues on of Secondary Domination Number. Algorithmica 2023. [CrossRef]
7. Haynes, T.W.; Hedetniemi, S.; Slater, P. Fundamentals of Domination in Graphs; CRC Press: Boca Raton, FL, USA, 1998.
8. Haynes, T.W.; Hedetniemi, S.T.; Henning, M.A. Topics in Domination in Graphs; Springer: Cham, Switzerland, 2020.
9. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs; Advanced Topics; Marcel Dekker: New York, NY, USA, 1998.
10. Harary, F.; Haynes, T.W. Double domination in graphs. Ars Combin. 2000, 55, 201–213.
11. Harary, F.; Haynes, T.W. Nordhaus-Gaddum inequalities for domination in graphs. Discret. Math. 1996, 155, 99–105. [CrossRef]
12. Martínez, A.C. A note on the k-tuple domination number of graphs. Ars Math. Contemp. 2022, 22, 1–5.
13. Martínez, A.C. Some new results on the k-tuple domination number of graphs. RAIRO-Oper. Res. 2022, 56, 3491–3497. [CrossRef]
14. Blidia, M.; Chellali, M.; Haynes, T.W. Characterizations of trees with equal paired and double domination numbers. Discret. Math.

2006, 306, 1840–1845. [CrossRef]
15. Blidia, M.; Chellali, M.; Haynes, T.W.; Henning, M. Independent and double domination in trees. Util. Math. 2006, 70, 159–173.
16. Chellali, M.; Haynes, T.W. On paired and double domination in graphs. Util. Math. 2005, 67, 161–171.
17. Bange, D.W.; Barkauskas, A.E.; Slater, P.J. Efficient dominating sets in graphs. In Applications of Discrete Mathematics; Ringeisen,

R.D., Roberts, F.S., Eds.; SIA: Philadelphia, PA, USA, 1988; pp. 189–199.
18. Chellali, M.; Khelladi, A.; Maffray, F. Exact double domination in graphs. Discuss. Math. Graph Theory 2005, 25, 291–302. [CrossRef]
19. Fink, J.F.; Jacobson, M.S. n-domination in graphs. In Graph Theory with Applications to Algorithms and Computer Science; John Wiley

& Sons, Inc.: New York, NY, USA, 1985; pp. 283–300.
20. Blidia, M.; Chellali, M.; Favaron, O. Independence and 2-domination in trees. Australas. J. Combin. 2005, 33, 317–327.
21. Chellali, M. Bounds on the 2-domination number in cactus graphs. Opusc. Math. 2006, 26, 5–12.
22. Morgenstern, O.; Von Neumann, J. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944.
23. Berge, C. Graphs and Hypergraphs; North-Holland Pub. Co.: Amsterdam, The Netherland, 1973.
24. Berge, C.; Duchet, P. Perfect graphs and kernels. Bull. Inst. Math. Acad. Sin. 1988, 16, 263–274.
25. Bai, Y.; Fujita, S.; Zhang, S. Kernels by properly colored paths in arc-colored digraphs. Discret. Math. 2018, 341, 1523–1533.

[CrossRef]
26. de la Maza, S.G.H.; Hernández-Cruz, C. On the complexity of the k-kernel problem on cyclically k-partite digraphs. Theoret.

Comput. Sci. 2019, 795, 9–19. [CrossRef]
27. Włoch, I. On kernels by monochromatic paths in the corona of digraphs. Open Math. 2008, 6, 537–542. [CrossRef]
28. Włoch, A. On 2-dominating kernels in graphs. Australas. J. Combin. 2012, 53, 273–284.
29. Bednarz, P. On (2-d)-kernels in the tensor product of graphs. Symmetry 2021, 13, 230. [CrossRef]
30. Bednarz, P.; Hernández-Cruz, C.; Włoch, I. On the existence and the number of (2-d)-kernels in graphs. Ars Combin. 2015, 121,

341–351.
31. Bednarz, P.; Paja, N. On (2-d)-kernels in two generalizations of the Petersen graph. Symmetry 2021, 13, 1948. [CrossRef]
32. Bednarz, P.; Włoch, I. An algorithm determining (2-d)-kernels in trees. Util. Math. 2017, 102, 215–222.

http://doi.org/10.1002/net.3230070305
http://dx.doi.org/10.1007/s00453-023-01192-2
http://dx.doi.org/10.1016/0012-365X(94)00373-Q
http://dx.doi.org/10.1051/ro/2022159
http://dx.doi.org/10.1016/j.disc.2006.03.061
http://dx.doi.org/10.7151/dmgt.1282
http://dx.doi.org/10.1016/j.disc.2018.02.014
http://dx.doi.org/10.1016/j.tcs.2019.05.031
http://dx.doi.org/10.2478/s11533-008-0044-6
http://dx.doi.org/10.3390/sym13020230
http://dx.doi.org/10.3390/sym13101948


Symmetry 2024, 16, 296 10 of 10

33. Bednarz, P.; Włoch, I. On (2-d)-kernels in the cartesian product of graphs. Ann. Univ. Mariae-Curie-Skłodowska Sect. A–Math. 2016,
70, 1–8. [CrossRef]

34. Kosiorowska, A.; Michalski, A.; Włoch, I. On minimum intersections of certain secondary dominating sets in graphs. Opusc.
Math. 2023, 43, 813–827. [CrossRef]
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