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Abstract: A class of cylindrical distributions, which include the Weibull-von Mises distribution as
a special case, is considered. This distribution is obtained by combining the extended sine-skewed
wrapped Cauchy distribution (marginal circular part) with the Weibull distribution (conditional linear
part). This family of proposed distributions is shown to have simple normalizing constants, easy
random number generation methods, explicit moment expressions, and identifiability in parameters.
In particular, the marginal distribution of the circular random variable, and its conditional distribution
given a linear random variable give relatively stronger skewness than those of existing cylindrical
models. Some Monte Carlo simulations and real data analysis are performed to investigate the
feasibility and tractability of the proposed models.

Keywords: cylindrical distribution; linear–circular data; skew modelling; Weibull distribution;
wrapped Cauchy distribution

1. Introduction

Cylindrical data are a type of multivariate data that consist of a pair of variables, one
representing an angular observation on the unit circle S1 and the other representing a real
or non-negative observation on [0, ∞). Because the variable representing an angle can be
identified with a vector on the unit circle, these data are sometimes called linear–circular
data. Such data can be found in various fields, such as environmental studies, biology,
sports science, and others. Wind direction and SO2 concentration have been explored by [1],
and the directions and speed of ocean currents in the Adriatic Sea have been analyzed
by [2] through hidden Markov models with cylindrical distributions. The Bayesian spatio-
temporal modeling for wave heights and wave directions has been proposed by [3].

Some ways to model cylindrical data have been proposed by [4–7]. As an extension of
the copula-based distribution of [7,8], we have proposed a cylindrical distribution called
the Weibull sine-skewed von Mises (WeiSSVM) distribution, in which the marginal distri-
bution of a circular random variable Θ is the sine-skewed wrapped Cauchy distribution
proposed by [9] and the conditional distribution of a linear random variable X given Θ is
a Weibull distribution. The WeiSSVM density has a simple normalizing constant and is
amenable to calculations. This characteristic is referred to as tractability, which is one of the
desirable properties of a class of flexible distributions in [10]. The WeiSSVM distribution
also provides explicit expressions for the higher-order moments for X and Θ. This enables
the representation of characteristics of the distribution, such as linear–circular correlation,
with a high degree of interpretability in the parameter values.

On the other hand, when fitting the WeiSSVM distribution to observations, especially
in cases where circular data exhibit significant asymmetry near the mode, the maximum
likelihood estimator of the skewness parameter may approach the boundary of the pa-
rameter space. This phenomenon can be seen in Table 3 of [8]. This suggests that a

Symmetry 2024, 16, 295. https://doi.org/10.3390/sym16030295 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16030295
https://doi.org/10.3390/sym16030295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9822-690X
https://orcid.org/0000-0003-4808-6854
https://orcid.org/0000-0002-6663-2540
https://doi.org/10.3390/sym16030295
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16030295?type=check_update&version=2


Symmetry 2024, 16, 295 2 of 20

distribution with stronger skewness is required for the circular random variable. In ad-
dition, the standard error cannot be appropriately estimated by the Hessian matrix of
the negative log-likelihood function when the maximum likelihood estimate (MLE) takes
values on the boundary of the parameter space, as the first-order conditions for maximizing
the log-likelihood function are violated.

To overcome the shortcomings stated above, we consider a cylindrical distribution
with the skewing function in the WeiSSVM distribution replaced by a Beta distribution
function. We also show that the proposed distributions have simple normalizing constants,
easy random number generation methods, explicit moment expressions, and identifiability
in parameters. Through a Monte Carlo simulation study and two real data analyses, we
observed that the estimated skewness parameter moves away from the boundary of the
parameter space.

The rest of this paper is organized as follows. In Section 2, we introduce a class of
cylindrical model whose marginal distribution of Θ is the extended sine-skewed (ESS)
wrapped Cauchy distribution, as proposed in [11]. In addition, the proposed class of
cylindrical distribution has the Weibull distribution as the conditional distribution of the
linear random variable X given Θ. The ESS-wrapped Cauchy distribution can exhibit a
greater degree of skewness compared to the sine-skewed wrapped Cauchy distribution,
making the proposed model more flexible than the existing cylindrical models. Section 2.1
presents some higher order moments of random variables X and Θ, Section 2.3 describes an
easy random number generation method from the proposed distribution, and Section 2.4
presents an identifiability result for a family of the proposed distributions. In Section 3,
the performance of the proposed models is studied through Monte Carlo simulations and,
in Section 4 analysis of two real data sets is presented to demonstrate the performance of
the proposed models. Section 5 presents concluding remarks. Some lemmas and proofs are
given in Appendix A.

2. A New Model for Linear–Circular Data

The cylindrical distribution proposed by [8] features a simple normalizing constant,
and its marginal distribution of the linear random variable X blue and the conditional distri-
bution of the circular random variable Θ become well known: the Weibull and sine-skewed
wrapped Cauchy distributions. Hence, it is easy to calculate the log-likelihood function and to
generate random numbers from this distribution. As can be seen from [12], the skewing func-
tion of the sine-skewed wrapped Cauchy distribution, which is the marginal distribution of
the circular component Θ, is given by the distribution function of a uniform random variable.
To extend the WeiSSVM distribution, we replace the skewing function with the distribution
function of a density function on the interval [−1, 1] proposed in [13]:

Gm(x) =
∫ x

−1
gm(t)dt,

where

gm(x) =
Γ(2(m + 1))

22m+1Γ(m + 1)2 (1 − x2)m (−1 ≤ x ≤ 1),

and Γ(·) represents the gamma function. m ≥ 0 is the degree of the skewness parameter,
which is assumed to be pre-specified for simplicity and is referred to as the “order”. We call
this distribution the Weibull extended sine-skewed von Mises (WeiESSVM) distribution.

Here, we introduce a joint probability density of (Θ, X),

f (m)
WeiESSVM(θ, x) =

αβα

π cosh(κ)
Gm(λ sin(θ − µ))xα−1

× exp{−(βx)α(1 − tanh(κ) cos(θ − µ))}, (1)

where (x, θ) ∈ [0, ∞) × [−π, π), tanh(·) denotes the hyperbolic-tangent function, α> 0,
β > 0, −π ≤ µ < π, κ > 0 and −1 ≤ λ ≤ 1.
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Although the proposed density (1) can be defined for any m ≥ 0, it is tractable in the
case where m is a nonnegative integer since the function Gm(·) is expressed as

Gm(x) = Cm

m

∑
ℓ=0

(
m
ℓ

)
1

2ℓ+ 1
(−1)ℓ

(
x2ℓ+1 + 1

)
= Cm

m

∑
ℓ=0

(
m
ℓ

)
1

2ℓ+ 1
(−1)ℓx2ℓ+1 +

1
2

(2)

for m = 0, 1, 2, . . ., where Cm =
Γ{2(m + 1)}

22m+1Γ(m + 1)2 .

For m = 0, 1, . . . , 5, Gm(x) is explicitly defined by

G0(x) =
x + 1

2
,

G1(x) =
1
4
(−x3 + 3x + 2),

G2(x) =
1
16

(3x5 − 10x3 + 15x + 8),

G3(x) =
1
32

(−5x7 + 21x5 − 35x3 + 35x + 16),

G4(x) =
1

256
(35x9 − 180x7 + 378x5 − 420x3 + 315x + 128), and

G5(x) = − 1
512

(x + 1)6
(

63x5 − 378x4 + 938x3 − 1218x2 + 843x − 256
)

.

Notice that since the function G0(x) is the uniform distribution function on [−1, 1],
the density (1) reduces to the distribution proposed by [8]. Figure 1 depicts plots of the
functions gm(x) and Gm(x) for different orders m ∈ {0, 1, 4}. As shown in Section 3.1
of [13], the greater the slope of the function Gm near 0, the stronger the influence of the
skewness parameter λ on the marginal density of Θ.

(a)
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m=4
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Figure 1. (a) Density plots of gm(x) for m = 0, 1, and 4. (· · · : m = 0, - - -: m = 1, — : m = 4); (b) Plots
of the function Gm(x) for m = 0, 1, and 4. (· · · : m = 0, - - -: m = 1, — : m = 4).

Figure 2 shows contour plots of the density (1) with µ = 0, κ = 1, α = 2 and β = 1.
The horizontal axis represents the variable x and the vertical axis represents the variable
θ. As Figure 2 illustrates, the shape of the density function Θ of a model with m = 2 is
significantly skewed around µ = 0, in comparison to the model with m = 0.
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Figure 2. The top three panels: m = 0, λ = 0, 0.5, 0.9 (from the left to the right). The bottom three
panels: m = 2, λ = 0, 0.5, 0.9 (from the left to the right)

In what follows, we present marginal and conditional density functions of Θ and X.
The marginal density of Θ is given by

f (θ) =
1 − tanh2(κ/2)

π

Gm(λ sin(θ − µ))

1 + tanh2(κ/2)− 2 tanh(κ/2) cos(θ − µ)
, (3)

indicating the ESS-Wrapped Cauchy distribution with a concentration parameter tanh(κ/2).
The density (3) is derived in exactly the same manner as presented in [8]. The marginal
density of X becomes

f (x) =
I0(xαβα tanh(κ))

cosh(κ)
αβαxα−1 exp{−(βx)α}, (4)

where I0(ν) = (2π)−1
∫ 2π

0 exp(ν cos θ)dθ is the modified Bessel function of the first kind
and order zero. From Equation (2), 2Gm(λ sin(θ)) = 1+ τ(θ) where τ(θ) is an odd function
of θ. Hence, the density (4) is derived in the same way as in [8].

Next, the conditional density of Θ given X = x becomes:

f (θ|x) = 1
π I0(xαβα tanh(κ))

Gm(λ sin(θ − µ)) exp{(βx)α tanh(κ) cos(θ − µ)}, (5)

which means that the conditional distribution follows an ESS-von Mises distribution of
order m with concentration (βx)α tanh(κ). Finally, the conditional density of X given Θ = θ
is expressed as

f (x|θ) = α
[

β{1 − tanh(κ) cos(θ − µ)}1/α
]α

xα−1

× exp
[
−
{

β(1 − tanh(κ) cos(θ − µ))1/αx
}α]

. (6)

This implies that the conditional distribution of X follows the Weibull distribution with
α being a shape parameter and 1/{β(1 − tanh(κ) cos(θ − µ))1/α} being a scale parameter.
It is noteworthy that the marginal density (4) of X and the conditional density (6) of X
given Θ = θ are exactly the same as those of [8].
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2.1. Moment Expressions

Throughout the paper, we use the notation E0[·] for the expectation under the density (1)
with µ = 0. In this section, we present the expressions for moments E0[Xk cos(sΘ)] and
E0[Xk sin(sΘ)] (k ∈ N, s ∈ {0, 1, 2, . . .}) in explicit forms. To do that, we introduce the
following symbol as an extension of the Legendre function,

As
ν(x) =

1
π

∫ π

0
cos(sθ)

1

(x +
√

x2 − 1 cos θ)ν+1
dθ. (7)

The function As
ν(x) is considered an extension of the Legendre function of the first

kind. While the integral (7) is expressed by using the associated Legendre function, it
is necessary to impose certain conditions on ν and s so that the integral is well-defined.
Therefore, we use the symbol As

ν(x) instead of the associated Legendre function. In
Appendix A.4, we present the conditions under which the integral (7) is expressed by the
associated Legendre function.

First, we present Xk times sth cosine moments for s ∈ {0, 1, 2, . . .}. It follows from
Lemmas A1 and A2 in Appendix A that

E0[Xk cos(sΘ)] =
∫ π

−π

∫ ∞

0
xk cos(sθ) fWeiESSVM(θ, x)dxdθ

=
∫ π

−π

∫ ∞

0
cos(sθ)

αβα

2π cosh(κ)
2Gm(λ sin θ)xα+k−1 exp{−(βx)α(1 − tanh(κ) cos θ)}dxdθ

=
∫ π

−π
cos(sθ)

αβα

2π cosh(κ)
2Gm(λ sin θ)

1
αβα+k Γ

(
α + k

α

)
1

(1 − tanh(κ) cos θ)(α+k)/α
dθ

=
αβα

2π cosh(κ)
1

αβα+k Γ
(

k
α
+ 1
) ∫ π

−π
cos(sθ)2Gm(λ sin θ)

1

(1 − tanh(κ) cos θ)(α+k)/α
dθ

=
βα

2π cosh(κ)
1

βα+k Γ
(

k
α
+ 1
) ∫ π

−π
cos(sθ)

1

(1 − tanh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

βk Γ
(

k
α
+ 1
)
(−1)s As

k/α(cosh(κ)). (8)

This expression is the same as that of [8] and independent of the order m. Next, we
evaluate the expectation E0[Xk sin(sΘ)].

E0[Xk sin(sΘ)] =
∫ π

−π

∫ ∞

0
xk sin(sθ) fWeiESSVM(θ, x)dxdθ

=
∫ π

−π
sin(sθ)

αβα

2π cosh(κ)
2Gm(λ sin θ)

∫ ∞

0
xα+k−1 exp{−(βx)α(1 − tanh(κ) cos θ)}dxdθ

=
∫ π

−π
sin(sθ)

αβα

2π cosh(κ)
2Gm(λ sin θ)

× 1
αβα+k Γ

(
α + k

α

)
1

(1 − tanh(κ) cos θ)(α+k)/α
dθ

=
αβα

2π cosh(κ)
1

αβα+k Γ
(

k
α
+ 1
) ∫ π

−π
sin(sθ)2Gm(λ sin θ)

1

(1 − tanh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

2πβk Γ
(

k
α
+ 1
) ∫ π

−π
sin(sθ)2Gm(λ sin θ)

1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ. (9)

Then, the moments for the cases m = 1 and m = 2 can be given by the following
equations. The derivation details are provided in Appendix A.
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The case of m = 1: Using the result of Appendix A.1, we have

E0[Xk sin(sΘ)]|m=1

=
cosh(κ)k/α

2βk Γ
(

k
α
+ 1
)
(−1)s+1

[
−λ3

8

{
3A|s−1|

k/α (cosh(κ))− 3As+1
k/α (cosh(κ))

− A|s−3|
k/α (cosh(κ)) + As+3

k/α (cosh(κ))
}
+

3
2

λ

{
A|s−1|

k/α (cosh(κ))− As+1
k/α (cosh(κ))

}]
. (10)

The case of m = 2: It follows from Appendix A.2 that

E0[Xk sin(sΘ)]|m=2 =
cosh(κ)k/α

βk Γ
(

k
α
+ 1
)
(−1)s+1

×
[

3λ5

256

{(
A|s−5|

k/α (cosh(κ))− As+5
k/α (cosh(κ))

)
− 5
(

A|s−3|
k/α (cosh(κ))− As+3

k/α (cosh(κ))
)

+ 10
(

A|s−1|
k/α (cosh(κ))− As+1

k/α (cosh(κ))
)}

− 5λ3

32

{
3
(

A|s−1|
k/α (cosh(κ))− As+1

k/α (cosh(κ))
)

−
(

A|s−3|
k/α (cosh(κ))− As+3

k/α (cosh(κ))
)}

+
15
16

λ

(
A|s−1|

k/α (cosh(κ))− As+1
k/α (cosh(κ))

)]
. (11)

Since the marginal distribution of the circular part is the extended sine-skewed
wrapped Cauchy density (3), we obtain the following simple moment expressions. The sth
cosine moments of Θ under the density (1) with µ = 0 are

αs := E0{cos(sΘ)} = {tanh(κ/2)}|s|. (12)

Accordingly, αs does not depend on the order m. In contrast, from Equation (2), the sth
sine moments of Θ under the density (1) with µ = 0 are given by

βs := 2Cm

m

∑
ℓ=0

(
m
ℓ

)
(−1)ℓ

2ℓ+ 1

∫ π

−π
(λ sin θ)2ℓ+1 sin(sθ) f0(θ; ρ)dθ, (13)

where Cm is defined in Equation (2), f0(θ; ρ) is the wrapped Cauchy density with µ = 0,
ρ = tanh(κ/2) and (0

0) ≡ 1 for convenience. For non-zero location µ, the sth cosine and
sine moments of Θ are given by

αs,µ = E{cos(sΘ)} = cos(sµ)αs − sin(sµ)βs

and

βs,µ = E{sin(sΘ)} = cos(sµ)βs + sin(sµ)αs,

respectively. These equations are derived in [13], and thus details are omitted here.

2.2. Linear–Circular Correlation

In this subsection, we present some correlations and a linear–circular squared correla-
tion of X and vector (cos Θ, sin Θ). By Equations (8), (10), (12) and (13), the covariance of
X and cos Θ with µ = 0, that of X and sin Θ, and that of cos Θ and sin Θ are expressed as
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Cov0(X, cos Θ) = − cosh(κ)1/α

β
Γ
(

1
α
+ 1
){

A1
1/α(cosh(κ)) + A0

1/α(cosh(κ)) tanh(κ/2)
}

,

Cov0(X, sin Θ) =
λ cosh(κ)1/αΓ(1/α + 1)

2β

[
−3

8
(λ2 − 4)A0

1/α(cosh(κ))

+
1
2
(λ2 − 3)A2

1/α(cosh(κ))− λ2

8
A4

1/α(cosh(κ))

−
A0

1/α(cosh(κ))

8 cosh2(κ/2)

{
−3(λ2 − 4) + λ2 tanh2(κ/2)

}]
,

Cov0(cos Θ, sin Θ) =
λ tanh(κ/2)

32 cosh2(κ/2)

{
3(λ2 − 4λ) +

λ2

cosh2(κ/2)

}
.

For simplicity, let

ξ1(α, κ) = A0
2/α(cosh(κ))Γ

(
2
α
+ 1
)
− A0

1/α(cosh(κ))2Γ
(

1
α
+ 1
)2

and

ξ2(κ, λ) = 128 cosh2(κ/2)− λ3 tanh(κ/2) + 3(λ3 − 4λ).

Using these results, we have the following correlations:

rXC : = Corr(X, cos Θ)

=

√
2 cosh(κ/2)Γ(1/α + 1)

{
−A1

1/α(cosh(κ))− A0
1/α(cosh(κ)) tanh(κ/2)

}
√

ξ1(α, κ)
,

rXS : = Corr(X, sin Θ)

=
8λ cosh2(κ/2)Γ(1/α + 1)√

ξ1(α, κ)ξ2(κ, λ)

[
−3

8
(λ2 − 4)A0

1/α(cosh(κ))

+
1
2
(λ2 − 3)A2

1/α(cosh(κ))− λ2

8
A4

1/α(cosh(κ))

−
A0

1/α(cosh(κ))

8 cosh2(κ/2)

{
−3(λ2 − 4) + λ2 tanh2(κ/2)

}]
(14)

and

rCS : = Corr(cos Θ, sin Θ)

=
λ sinh(κ/2)

{
3(λ2 − 4) + λ2/ cosh2(κ/2)

}
√

2
√

ξ2(κ, λ)
. (15)

Then, the linear–circular squared correlation of X with (cos Θ, sin Θ) that is defined
in [14,15] can be obtained by

R2
XΘ =

r2
XC + r2

XS − 2rCSrXCrXS

1 − r2
CS

. (16)

It is seen from these expressions that R2
XΘ does not depend on the parameter β and

the sign of λ. In addition, if λ = 0 then R2
XΘ = r2

XC holds. It should be noted that when
λ = 0, the linear–circular squared correlation coefficients for any order m are identical.
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Similar to the cylindrical distribution proposed by [8], the linear–circular squared
correlation R2

XΘ depends only on α, κ, and the absolute value |λ|. The behavior of R2
XΘ for

α and κ is shown by the contour plots in Figure 3. As depicted in Figure 3, when λ and κ
are fixed, R2

XΘ increases as α increases. Concerning the effects of κ on R2
XΘ, the shape of the

functions of κ is humped (rising then falling) when α and λ are fixed. These characteristics
resemble those of the distribution of [8]. The linear–circular squared correlations for
models with m = 2, 3, 4, and beyond can be obtained by using numerical or Monte Carlo
integration methods.
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Figure 3. Contour plots of linear–circular squared correlation for the WeiESSvM distribution of order
m = 1. (a) λ = 0; (b) λ = 0.5; (c) λ = 1.

2.3. Random Number Generation

Combining the results from Section 2 with the random number generation method
proposed by [8], which is based on the decomposition f (x, θ) = f (x|θ) f (θ), we introduce a
simple random number generation algorithm. This involves initially generating Θ ∼ f (θ)
and then X|Θ ∼ f (x|θ). The algorithm proceeds as follows.

Step 1 Generate a random variable Θ1 from the wrapped Cauchy distribution with location
µ and concentration tanh(κ/2) and generate independently U from the uniform
distribution U[0, 1].

Step 2 Set Θ as

Θ =

{
Θ1 if U < Gm(λ sin(Θ1 − µ))

−Θ1 if U ≥ Gm(λ sin(Θ1 − µ)).

Then, Θ follows the sine-skewed wrapped Cauchy distribution.

Step 3 Generate X from the Weibull distribution (6) with a shape parameter α and a scale
parameter 1/{β(1 − tanh(κ) cos(θ − µ))1/α}.

2.4. Identifiability

Identifiability is an essential condition for giving a unique interpretation to estimators
and for deriving the consistency of estimators. If parameter estimation is performed using
a non-identifiable family of distributions, two different estimates will represent the same
model, resulting in difficulty in interpreting the estimated parameters. If we consider a
family of distributions (1) that includes the order m as a parameter, the family becomes
non-identifiable with respect to m when λ = 0. For this reason, it is necessary to discuss
the identifiability of the subfamily F (m)

cyl := { f (m)
WeiESSVM(θ, x; η)|η ∈ H} for which the order

m is fixed. Here, H = {(µ, κ, λ, α, β)| − π ≤ µ < π, κ > 0,−1 ≤ λ ≤ 1, α > 0, and β > 0}
denotes the parameter space. Then the following holds.
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Proposition 1. For each m ∈ {0, 1, 2, . . .}, the family F (m)
cyl is identifiable.

The proof is given in Appendix A.

3. Statistical Inference

Assume that observations (θ1, x1), . . . , (θn, xn) are sampled from the density (1). To esti-
mate the parameter vector η, we employ the maximum likelihood estimator
η̂n ∈ argmaxη∈Hℓm(η) based on the log-likelihood function

ℓm(η) = (α − 1)
n

∑
i=1

log xi − βα
n

∑
i=1

xα
i {1 − tanh(κ) cos(θi − µ)}

+
n

∑
i=1

log Gm(λ sin(θi − µ)) + n{α log β + log α − log(π cosh(κ))}.

After all parameters are converted to unconstrained variables using variable conver-
sions, such as κ̃ = log κ, optimization is carried out by the BFGS quasi-Newton method
in R’s ‘optim‘ function. Because the density (1) has the hyperparameter m, we need to
specify it. Here, we consider two methods for selecting order m. The first is the maximum
log-likelihood approach, which is given by m = argmaxm=0,1,...,Mℓm(η̂n), where M > 0 is a
prespecified upper bound. The second is to find the order m that minimizes the Takeuchi
information criterion (TIC), which is proposed by [16]:

TIC(m) = (−2)ℓm(η̂n) + 2tr
(

Ĵ−1K̂
)

, (17)

where

Ĵ = − 1
n

∂2

∂η∂ηT ℓm(η̂n)

and

K̂ =
1
n

n

∑
i=1

∂

∂η
log f (m)

WeiESSVM(θi, xi; η̂n)
∂

∂ηT log f (m)
WeiESSVM(θi, xi; η̂n).

In the right-hand side of Equation (17), the first term (−2)ℓm(η̂n) measures the good-
ness of fit of a model, and the second term 2tr

(
Ĵ−1K̂

)
measures how much the model used

for estimation deviates from the true model.

Monte Carlo Simulation Study

In this section, we demonstrate the model fitting performance of the WeiESSvM
distribution (1). To investigate the finite sample performances of the MLE, we generate
random samples from WeiESSVM distributions with two different orders m = 2 and
m = 3. The data-generating processes (DGP) considered here are as follows. In the first
DGP, hereafter referred to as DGP 1, the parameter values are chosen as α = 2, β = 0.5,
µ = π/6 ≈ 0.5236, κ = 1, λ = −0.8 with m = 2 and for the second DGP (DGP 2), we set
α = 2, β = 1, µ = 0, κ = 1.5, λ = 0.5 with m = 3. The random samples are generated
according to the methods provided in Section 2.3. The sample size is selected as n = 100
and n = 300, and the Monte Carlo simulations were repeated 1000 times. We computed
average bias and root mean squared error (RMSE). Since the true order mtrue is unknown,
we fit possible candidates for mfitted that varies from 0 to 4, and the unknown order m is
estimated by both maximized likelihood values and TIC, which are defined by
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m̂(MLL) = argmax
m∈{0,1,...,4}

ℓm(η̂n) and m̂(TIC) = argmin
m∈{0,1,...,4}

TIC(m).

Tables 1 and 2 presented the results of the MLEs for DGP 1 and DGP 2, respectively.
From these tables, we observed the following facts. First, when a fitted value of mfitted is
equal to the true value of mtrue, that is mfitted = mtrue = 2 for DGP 1, and mfitted = mtrue = 3
for DGP 2, it is observed that as n increases, the bias and the RMSE decrease, which
indicates the consistency of the MLE. In contrast, even for the misspecified case with
mfitted ̸= mtrue, we can confirm that the bias and the RMSE of the parameters of the
Weibull distribution, such as α, β, and κ, decrease as n becomes large. Hence, it can
be confirmed that the consistency of the parameters of the Weibull distributions holds,
particularly when the order of fitted models is mfitted = 5, the efficiency of the estimators is
convincingly demonstrated. These facts can be explained by the structures of the Fisher
information matrix of the log-likelihood function, as the function log Gm(·) is independent
of parameters α, β, and κ. For the case with underestimated mfitted, that is mfitted < mtrue
for DGP 1, the estimated λ̂ tends to lie on the boundary of its parameter space, yielding
negative bias in estimation, and vice versa for mfitted > mtrue in DGP 2. Similarly, in the
case with mfitted > mtrue for DGP 1, the bias of the estimated parameter λ̂ became positive,
and vice versa for mfitted < mtrue in DGP 2.

Table 1. Simulation results of the mean bias and RMSE of the MLE for DGP 1. The true order is m = 2.
The RMSE values are reported in parentheses, and the best results among models are highlighted in
boldface. True parameter values are α = 2, β = 0.5, µ = π/6, κ = 1, λ = −0.8.

n = 100 α β µ κ λ

m = 0 0.0667 0.0235 −0.0873 0.0749 −0.1895
(0.1721) (0.0475) (0.1157) (1.0784) (0.1915)

m = 1 0.0486 0.0076 −0.0202 0.0254 −0.1213
(0.1648) (0.0404) (0.0864) (1.0603) (0.1518)

m = 2 0.0427 0.0031 –0.0026 0.0107 –0.0243
(0.1634) (0.0395) (0.0895) (1.0546) (0.1266)

m = 3 0.0405 0.0015 0.0033 0.0055 0.0584
(0.1628) (0.0393) (0.0922) (1.0523) (0.1459)

m = 4 0.0396 0.0010 0.0057 0.0034 0.1242
(0.1627) (0.0393) (0.0935) (1.0515) (0.1818)

n = 300

m = 0 0.0373 0.0203 −0.0806 0.0652 −0.1932
(0.0948) (0.0318) (0.0912) (1.0409) (0.1937)

m = 1 0.0197 0.0046 −0.0141 0.0168 −0.1230
(0.0888) (0.0243) (0.0499) (1.0234) (0.1378)

m = 2 0.0154 0.0013 0.0003 0.0058 –0.0105
(0.0877) (0.0240) (0.0508) (1.0190) (0.0774)

m = 3 0.0142 0.0002 0.0038 0.0026 0.0793
(0.0876) (0.0239) (0.0515) (1.0179) (0.1086)

m = 4 0.0131 −0.0003 0.0060 0.0007 0.1465
(0.0874) (0.0239) (0.0520) (1.0168) (0.1620)

Figures 4 and 5 show boxplots of the estimated skewness parameter λ̂ for changing
values of mfitted for DGP1 and 2, respectively. It can be observed that for DGP 1, at least
3/4 and 1/2 of the λ̂ lies on the boundary −1 when mfitted = 0 for sample size n = 100
and n = 300, respectively. As for DGP2, at least 1/4 of the λ̂ lies on the boundary 1
when mfitted = 0 for n = 100. This indicates that the existing sine-skewed Weibull-
von Mises distribution corresponding to the case with m = 0, could not sufficiently
capture the skewness of the angular variables, and our extended sine-skew modeling
overcomes this drawback. The unbiasedness property is observed with correctly specified
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case mtrue = mfitted = 2, which indicates that the specifying unknown order m is crucial for
estimating λ.

Table 2. Simulation results of the mean bias and RMSE of the MLE for DGP 2. The true order is m = 3.
The RMSE values are reported in parentheses, and the best results among models are highlighted in
boldface. True parameter values are α = 2, β = 1, µ = 0, κ = 1.5, λ = 0.5.

n = 100 α β µ κ λ

m = 0 0.0459 0.0111 0.0173 0.0282 0.3881
(0.1490) (0.0874) (0.0553) (0.5640) (0.4032)

m = 1 0.0422 0.0033 0.0031 0.0170 0.2042
(0.1483) (0.0870) (0.0580) (0.5605) (0.2475)

m = 2 0.0412 0.0015 –0.0000 0.0142 0.0897
(0.1481) (0.0871) (0.0595) (0.5596) (0.1587)

m = 3 0.0407 0.0007 −0.0013 0.0131 0.0159
(0.1480) (0.0872) (0.0601) (0.5591) (0.1214)

m = 4 0.0404 0.0003 −0.0021 0.0124 −0.0358
(0.1480) (0.0872) (0.0605) (0.5589) (0.1177)

n = 300

m = 0 0.0126 0.0106 0.0162 0.0156 0.3921
(0.0799) (0.0492) (0.0338) (0.5186) (0.3981)

m = 1 0.0096 0.0044 0.0044 0.0067 0.1930
(0.0795) (0.0482) (0.0325) (0.5157) (0.2090)

m = 2 0.0088 0.0028 0.0016 0.0045 0.0777
(0.0795) (0.0481) (0.0328) (0.5149) (0.1066)

m = 3 0.0084 0.0021 0.0004 0.0035 0.0045
(0.0794) (0.0481) (0.0331) (0.5145) (0.0664)

m = 4 0.0082 0.0018 –0.0003 0.0029 −0.0467
(0.0794) (0.0481) (0.0333) (0.5143) (0.0767)

100 300

0 1 2 3 4 0 1 2 3 4

−1.0

−0.8

−0.6

−0.4

m

λ

Figure 4. Boxplots of the estimated skewness parameter λ̂ among m ∈ {0, 1, . . . , 4} and n = 100, 300
for DGP 1. The true values of m and λ are set at 2 and −0.8.
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Figure 5. Boxplots of the estimated skewness parameter λ̂ among m ∈ {0, 1, . . . , 4} and n = 100, 300
for DGP 2. The true values of m and λ are set at 3 and 0.5.

Tables 3 and 4 summarize the results of the selected orders by using m̂(MLL) and m̂(TIC).
According to Table 3, both the maximized likelihood method and TIC select m = 1 model
for both sample sizes of 100 and 300. The ratio of selecting orders m = 1 and m = 4
increases as n increases, whereas the ratio of selecting true model m = 2 remains low
and stable for different model selection methods and sample sizes. The same findings are
observed from Table 4, as the ratio of selecting orders m = 4 increases whereas the ratio of
the selecting true model m = 3 remains low.

Table 3. Simulation results of the ratio of selected models by MLL and TIC for DGP 1. The true order
is m = 2.

m = 0 m = 1 m = 2 m = 3 m = 4

m̂(MLL)

n = 100 0.177 0.324 0.122 0.068 0.309
n = 300 0.072 0.392 0.139 0.058 0.339

m̂(TIC)

n = 100 0.170 0.457 0.085 0.035 0.253
n = 300 0.047 0.442 0.086 0.055 0.370

Table 4. Simulation results of the ratio of selected models by MLL and TIC for DGP 2. The true order
is m = 3.

m = 0 m = 1 m = 2 m = 3 m = 4

m̂(MLL)

n = 100 0.426 0.103 0.033 0.011 0.427
n = 300 0.340 0.125 0.045 0.014 0.476

m̂(TIC)

n = 100 0.330 0.188 0.012 0.028 0.442
n = 300 0.320 0.110 0.040 0.025 0.505
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4. Real Data Analysis
4.1. Periwinkle Data Set

We consider the data set of size 31 with direction and distance blue periwinkles have
moved after re-positioning them at a specific point on the ground. The data set is given
in Table 1 of [17] and available in R packages NPCirc and circular. Table 5 shows the
maximum likelihood estimators, the log-likelihood functions evaluated at the maximum
likelihood estimators, and the TIC values. The linear–circular association measure defined
by (16) was R2

XΘ(α̂, κ̂, λ̂) = 0.263 for m = 1, whereas the sample estimate was R̂2
XΘ = 0.294,

which was calculated by substituting r2
XC, r2

XS, and r2
CS with their sample moments r̂2

XC,
r̂2

XS, and r̂2
CS. This subtle difference between model and sample association measures

comes from the drawbacks of the proposed models with fitted skewness parameters at
the boundary λ̂ = 1. The estimated linear–circular association measure R2

XΘ(α̂, κ̂, λ̂) for
models m = 2, 3, 4 becomes R2

XΘ(α̂, κ̂, λ̂; m = 2) = 0.292, R2
XΘ(α̂, κ̂, λ̂; m = 3) = 0.296,

R2
XΘ(α̂, κ̂, λ̂; m = 4) = 0.297, respectively. It can be seen that for orders m from 0 to 3,

the estimates for the skewness parameter λ appear on the boundary of the parameter space.
However, as m increases, the estimates of λ are away from the boundary, and become
interior points of the parameter space.

Table 5. Estimated parameters with maximized log-likelihood function and TIC for periwinkle data.
The maximum MLL and minimum TIC values are in boldface.

α̂ β̂ µ̂ κ̂ λ̂ MLL TIC

m = 0 2.011 0.050 1.242 1.682 1.000 −168.466 350.383
m = 1 2.012 0.047 1.192 1.637 1.000 −168.009 344.615
m = 2 2.003 0.046 1.157 1.596 1.000 −167.871 345.010
m = 3 1.991 0.045 1.129 1.558 1.000 −167.838 345.251
m = 4 1.988 0.044 1.121 1.547 0.936 −167.845 345.385

The maximum log-likelihood method selects the model with m = 3, whereas the TIC
minimization method selects the model with m = 1. If we want to conduct a hypothetical
test on the asymmetry of the distribution (i.e., the null hypothesis is λ = 0) using the
asymptotic method, the model with m = 4, in which the estimate of λ is less than 1, is
theoretically preferable.

Figure 6 shows a scatter plot of the data and a contour plot of the fitted WeiESSVM
density of order m = 3, which has the maximum log-likelihood (MLL). The vertical axis
indicates the angle in radians, and the horizontal axis indicates the length.

− π

− π 2

0

π 2

π

0 25 50 75 100 125

xt

θ
t

Figure 6. Scatter plot of the blue periwinkle data and contour plot of the fitted WeiESSVM density.
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Now we compare it with cylindrical models of [4,6,8]. The cylindrical density of [6] is
given by

fKS(θ, x) ∝ exp
[
−{x − µ(θ)}2

2σ2 + κ1 cos(θ − µ1) + κ2 cos{2(θ − µ2)}
]

,

where −π ≤ θ < π, x > 0, σ > 0, κ1 > 0, κ2 > 0, −π ≤ µ1 < π, −π/2 ≤ µ2 < π/2,
µ(θ) = µ′ + λ cos(θ − ν), µ′ ∈ R, λ > 0, and −π ≤ ν < π.

It is reported by [8] that the MLLs of the fitted densities of [4,6] are −176.88 and
−168.46, respectively. As shown in Table 5, all MLLs of the WeiESSVM model with orders
from 1 to 4 are greater than these two values. Because the numbers of parameters in
the models of [4,6] are 6 and 8, respectively, and greater than those of the WeiESSVM
distribution of any order, the Akaike information criterion and Bayesian information
criterion of the WeiESSVM model of any order are better than those of the two models.
Table 5 demonstrates that all WeiESSVM models of order from 1 to 6 enhance the MLL
value compared to the WeiSSVM distribution proposed in [8], which corresponds to the
WeiESSVM model with m = 0.

4.2. Occurrence Date of Typhoon and the Reciprocal of Minimum Pressure Data Set

We fit the bivariate data of the occurrence date of the typhoon and the reciprocal of
minimum pressure for the second example. The dataset is sourced from the website “Digital
Typhoon” [18] at the National Institute of Informatics. The data we used here are from 2014
to 2022 and the sample size is n = 231. The occurrence date of the typhoon is transformed
into [0, 2π) such that the number of days from 1 January to 31 December corresponds to
1 through 365 into radians by θi = daysi × 2π/365. Since the typhoon season is generally
from May to October, we set 1 July at 0 radian so that the mode of the angular data should be
located at the origin. The minimum pressure of typhoon data is transformed into reciprocals
so that the smaller pressures correspond to larger values. This transformation is made by
x̃i = 1/ log(pressurei) and xt = 1000(x̃i −min(x̃i) + c), where c is a small constant to avoid
zero values; here, we set c = 0.0001. The resulting bivariate cylindrical data are plotted in
Figure 7 with contour plots with estimated best-fitting cylindrical density function whose pa-
rameters were summarized in Table 6. The estimated skewness order is m̂ = 1 by TIC, whereas
the MLL method selects m̂ = 4, and the clear negative skewness is observed with moderately
larger values of λ̂ = −0.682 with m̂ = 1. Similar to the previous example, the Mardia–Sutton
and Kato–Shimizu densities were estimated, which yielded the MLL as −591.02 and −590.43,
respectively, indicating that our proposed model outperforms existing cylindrical distribu-
tions. The linear–circular association measure defined by (16) was R2

XΘ(α̂, κ̂, λ̂) = 0.017
for m = 1, whereas the sample estimate was R̂2

XΘ = 0.015. This indicates that the model
and sample association measures are quite close to each other. For models m = 0, 2, 3, 4,
R2

XΘ(α̂, κ̂, λ̂; m = 0) = 0.025, R2
XΘ(α̂, κ̂, λ̂; m = 2) = 0.015, R2

XΘ(α̂, κ̂, λ̂; m = 3) = 0.014,
and R2

XΘ(α̂, κ̂, λ̂; m = 4) = 0.013, respectively. This indicates that as m increases, the linear–
circular association of the cylindrical data calculated by the estimated model parameters
decreases. From this fact, the most adequate model, namely the model with m̂ = 1, can
explain the linear–circular association of the data, and this model is selected by a TIC.

Table 6. Estimated parameters with maximized log-likelihood function and TIC for typhoon data.
The maximum MLL and minimum TIC values are in boldface.

α̂ β̂ µ̂ κ̂ λ̂ MLL TIC

m = 0 1.3729 1.0213 2.3993 0.2353 −0.8749 −554.45 1119.95
m = 1 1.3733 1.0082 2.4753 0.1930 −0.6820 −554.11 1119.29
m = 2 1.3718 1.0053 2.4965 0.1798 −0.5710 −554.06 1119.40
m = 3 1.3717 1.0037 2.5086 0.1736 −0.5001 −554.04 1119.49
m = 4 1.3705 1.0030 2.5153 0.1691 −0.4500 −554.03 1119.54
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Figure 7. Scatter plot of the occurrence date of typhoon and reciprocals of pressure data and contour
plot of the fitted WeiESSVM density with m̂ = 1.

5. Concluding Remarks

In this paper, we have proposed a tractable and flexible model for data on the cylinder.
As an advantage, this model achieves a better fit by selecting an appropriate order m,
even when dealing with a cylindrical dataset in which the circular part exhibits significant
skewness. Consequently, if we incorporate this distribution as a component in finite
mixture models or hidden Markov models, they can effectively capture local asymmetries
in the observed data. Although [19] employs the hidden Markov model with the cylinder
distribution proposed by [8] as a component, replacing it with the WeiESSVM distribution
could enhance data fitting.

In the analysis of real data in Section 4, the Hessian matrix of minus the log-likelihood
function of this model did not degenerate numerically. On the other hand, it is not clear
at this point whether the Fisher information matrix, which is the population version of
the Hessian matrix, is regular or not. Such a study would be well worthwhile since
the regularity of the Fisher information matrix is an important factor in the asymptotic
normality of the maximum likelihood estimator.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronym Definition
DGP Data-generating process
ESS Extended sine-skewed
MLE Maximum likelihood estimate
MLL Maximum log-likelihood
RMSE Root mean squared error
TIC Takeuchi information criterion
WeiESSVM Weibull extended sine-skewed von Mises distribution
WeiSSVM Weibull sine-skewed von Mises distribution

Appendix A. Proofs

To derive the pth sine-moments in Section 2.1, we need the following two lemmas.

Lemma A1. Let α > 0, β > 0 and κ > 0 be positive constants. For any u > 0,∫ ∞

0
xu−1 exp{−(βx)α(1 − tanh(κ) cos θ)}dx =

1
αβu Γ

(u
α

) 1

(1 − tanh(κ) cos θ)u/α
.

Proof. It follows that∫ ∞

0
xu−1 exp{−(βx)α(1 − tanh(κ) cos θ)}dx

=
∫ ∞

0

(
1
β

(
t

1 − tanh(κ) cos θ

)1/α
)u−1

exp{−t} t1/α−1

αβ

(
1

1 − tanh(κ) cos θ

)1/α

dt

=
1
α

(
1
β

(
1

1 − tanh(κ) cos θ

)1/α
)u ∫ ∞

0
tu/α−1 exp{−t}dt

=
1

αβu Γ
(u

α

) 1

(1 − tanh(κ) cos θ)u/α
,

which completes the proof.

Lemma A2. Let κ > 0 be a positive constant. For any s ∈ Z and any ν > 0,∫ π

−π
cos(sθ)

1

{cosh(κ)− sinh(κ) cos θ}ν+1 dθ = (2π)(−1)s A|s|
ν (cosh(κ)),

where A|s|
ν (·) is defined in Equation (7).

Proof. First, we let s be a nonnegative integer, that is s ∈ {0, 1, 2, . . .}. Then, it follows that∫ π

−π
cos(sθ)

1

{cosh(κ)− sinh(κ) cos θ}ν+1 dθ

=
∫ π

−π
cos(sθ)

1

{cosh(κ) + sinh(κ) cos(θ + π)}ν+1 dθ

=
∫ 2π

0
cos(s(t − π))

1

{cosh(κ) + sinh(κ) cos t}ν+1 dt

= cos(sπ)
∫ 2π

0
cos(st)

1

{cosh(κ) + sinh(κ) cos t}ν+1 dt. (A1)
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Because the integrand has period 2π, and cos(sπ) = (−1)s for s ∈ Z, the expression
(A1) is expressed as

2(−1)s
∫ π

0
cos(st)

1{
cosh(κ) +

√
cosh2(κ)− 1 cos t

}ν+1 dt. (A2)

From Equation (7), we have the result (A2). If s is a negative integer, then∫ π

−π
cos(sθ)

1

{cosh(κ)− sinh(κ) cos θ}ν+1 dθ

=
∫ π

−π
cos(|s|θ) 1

{cosh(κ)− sinh(κ) cos θ}ν+1 dθ.

Therefore, the result holds from the same argument.

Appendix A.1. Derivation of the Moment in the Case of m = 1

We use the following elementary properties to derive the moment (10):

sin3 θ =
3 sin θ − sin 3θ

4

and

sin A sin B =
cos(A − B)− cos(A + B)

2
.

Let s ∈ {0, 1, 2, . . .} and k ∈ N. Applying Lemma A2 for Equation (9), we have

E0[Xk sin(sΘ)]|m=1 =
cosh(κ)k/α

2π

1
βk Γ

(
k
α
+ 1
)

×
∫ π

−π
sin(sθ)

1
2

{
−(λ sin θ)3 + 3λ sin θ + 2

} 1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

4π

1
βk Γ

(
k
α
+ 1
)

×
∫ π

−π

[
−λ3

8
{3 cos(s − 1)θ − 3 cos(s + 1)θ − cos(s − 3)θ + cos(s + 3)θ}

+
3
2

λ{cos(s − 1)θ − cos(s + 1)θ}
]

1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

4π

1
βk Γ

(
k
α
+ 1
)

×
[
−λ3

8

{
3(−1)|s−1|(2π)A|s−1|

k/α (cosh(κ))− 3(−1)s+1(2π)As+1
k/α (cosh(κ))

− (−1)|s−3|(2π)A|s−3|
k/α (cosh(κ)) + (−1)s+3(2π)As+3

k/α (cosh(κ))
}

+
3
2

λ

{
(−1)|s−1|(2π)A|s−1|

k/α (cosh(κ))− (−1)s+1(2π)As+1
k/α (cosh(κ))

}]
=

cosh(κ)k/α

2βk Γ
(

k
α
+ 1
)
(−1)s+1

[
−λ3

8

{
3A|s−1|

k/α (cosh(κ))

− 3As+1
k/α (cosh(κ))− A|s−3|

k/α (cosh(κ)) + As+3
k/α (cosh(κ))

}
+

3
2

λ

{
A|s−1|

k/α (cosh(κ))− As+1
k/α (cosh(κ))

}]
.
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Appendix A.2. Derivation of the Moment in the Case of m = 2

Similarly, we derive the moment (11). Applying the formula sin5 θ = (1/16)(sin 5θ
−5 sin 3θ + 10 sin θ) to the skewing function

G2(λ sin θ) =
1
16

{
3(λ sin θ)5 − 10(λ sin θ)3 + 15λ sin θ + 8

}
,

we have

E0[Xk sin(sΘ)]|m=2 =
cosh(κ)k/α

2π

1
βk Γ

(
k
α
+ 1
) ∫ π

−π
sin(sθ)

× 1
8

{
3(λ sin θ)5 − 10(λ sin θ)3 + 15λ sin θ + 8

} 1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

π

1
βk Γ

(
k
α
+ 1
) ∫ π

−π
sin(sθ)

× 1
16

{
3λ5 sin5 θ − 10λ3 sin3 θ + 15λ sin θ + 8

} 1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

π

1
βk Γ

(
k
α
+ 1
) ∫ π

−π
sin(sθ)

×
[

1
16

{
3λ5 sin 5θ − 5 sin 3θ + 10 sin θ

16
− 10λ3 3 sin θ − sin 3θ

4
+ 15λ sin θ + 8

}]
× 1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

π

1
βk Γ

(
k
α
+ 1
) ∫ π

−π
sin(sθ)

×
[

3λ5

256
(sin 5θ − 5 sin 3θ + 10 sin θ)− 5λ3

32
(3 sin θ − sin 3θ) +

15
16

λ sin θ +
1
2

]
× 1

(cosh(κ)− sinh(κ) cos θ)(α+k)/α
dθ

=
cosh(κ)k/α

π

1
βk Γ

(
k
α
+ 1
)

×
∫ π

−π

[
3λ5

256
1
2

{
(cos(s − 5)θ − cos(s + 5)θ)− 5(cos(s − 3)θ − cos(s + 3)θ)

+ 10(cos(s − 1)θ − cos(s + 1)θ)
}

− 5λ3

32
3(cos(s − 1)θ − cos(s + 1)θ)− (cos(s − 3)θ − cos(s + 3)θ)

2

+
15
16

λ
cos(s − 1)θ − cos(s + 1)θ

2

]
1

(cosh(κ)− sinh(κ) cos θ)k/α+1 dθ
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=
cosh(κ)k/α

π

1
βk Γ

(
k
α
+ 1
)

×
[

3λ5

256 · 2

{(
(2π)(−1)|s−5|A|s−5|

k/α (cosh(κ))− (2π)(−1)s+5 As+5
k/α (cosh(κ))

)
− 5
(
(2π)(−1)|s−3|A|s−3|

k/α (cosh(κ))− (2π)(−1)|s+3|As+3
k/α (cosh(κ))

)
+ 10

(
(2π)(−1)|s−1|A|s−1|

k/α (cosh(κ))− (2π)(−1)s+1 As+1
k/α (cosh(κ))

)}

− 5λ3

32 · 2

{
3
(
(2π)(−1)|s−1|A|s−1|

k/α (cosh(κ))− (2π)(−1)s+1 As+1
k/α (cosh(κ))

)

−
(
(2π)(−1)|s−3|A|s−3|

k/α (cosh(κ))− (2π)(−1)s+3 As+3
k/α (cosh(κ))

)}

+
15

16 · 2
λ

(
(2π)(−1)|s−1|A|s−1|

k/α (cosh(κ))− (2π)(−1)s+1 As+1
k/α (cosh(κ))

)]
,

which leads to Equation (11).

Appendix A.3

Proof of Proposition 1. Let the order m be fixed. Because the marginal distribution of Θ is
the ESS wrapped Cauchy distribution (3) and the identifiability of this model is proved in
Proposition 4 of [11], the family F (m)

cyl is identifiable for the model parameters µ, κ, and λ.
Furthermore, because the conditional distribution of X given Θ is the Weibull distribution (6)
with being a shape parameter α and a scale parameter 1/{β(1 − tanh(κ) cos(θ − µ))1/α},
the identifiablity holds for the model parameters α > 0 and β > 0, and, hence, the proposition
is proved.

Appendix A.4. An Relationship between As
ν(x) and the Associate Legendre Function

This section clarifies how the symbol As
ν(x) defined in Equation (7) relates to the asso-

ciated Legendre function Ps
ν(x) of the first kind of degree ν and order s. For the associated

Legendre function P0
ν (x) of the first kind of degree ν and order 0, from ([20], Equation 3.664.1),

we have ∫ π

0
(x +

√
x2 − 1 cos θ)νdθ = πP0

ν (x).

See Sections 8.7 and 8.8 of [20].
On the other hand, it follows from the result of ([20], Equation 8.711.2) that for any

s ∈ {1, 2, . . .} and ν > 0,

Ps
ν(x) =

(ν + 1)(ν + 2) · · · (ν + s)
π

∫ π

0
cos sθ(x +

√
x2 − 1 cos θ)νdθ

= (−1)s ν(ν − 1)(ν − 2) · · · (ν − s + 1)
π

∫ π

0

cos sθ

(x +
√

x2 − 1 cos θ)ν+1
dθ. (A3)

Using the generalized binomial coefficient for any number ν ∈ R and s > 0,(
ν

s

)
=

{
ν(ν−1)···(ν−s+1)

s! s ∈ {1, 2, 3, . . .},
1 s = 0,
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we have

Ps
ν(x) = (−1)s s!(ν

s)

π

∫ π

0

cos sθ

(x +
√

x2 − 1 cos θ)ν+1
dθ.

We can see from Equation (A3) that if ν is an integer and larger than the positive
integer s, then Ps

ν(x) = 0. Therefore, if either s ≤ ν and ν ∈ N or ν ∈ R+\Z, we obtain the
following theorem:∫ π

0

cos sθ

(x +
√

x2 − 1 cos θ)ν+1
dθ = (−1)s π

s!(ν
s)

Ps
ν(x) = πAs

ν(x).
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