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Abstract: The relativistic Doppler effect comes from the fact that observers in different inertial
reference frames experience space and time differently, while the speed of light always remains
the same. Consequently, a wave packet of light exhibits different frequencies, wavelengths, and
amplitudes. In this paper, we present a local approach to the relativistic Doppler effect based on
relativity, spatial and time translational symmetries, and energy conservation. Afterwards, we
investigate the implications of the relativistic Doppler effect for the quantum state transformations of
wave packets of light and show that a local photon is a local photon at the same point in the spacetime
diagram in all inertial frames.
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1. Introduction

When a moving car beeps its horn, the driver and a bystander on the pavement
hear the sound at different frequencies and observe different wavelengths. This change,
resulting from the relative motion of the driver and the bystander, is known as the Doppler
effect [1,2] and is well understood in classical physics. For example, the frequency heard
by the resting observer depends on the speed of the car relative to the pavement and the
original frequency of the signal. Due to its simplicity, the Doppler effect has already found a
wide range of applications, including the policing of speed limit violations by irresponsible
drivers. The relativistic Doppler effect [3–9] also accounts for differences in how observers
experience space and time. Observers in different inertial reference frames, which move at
a relative speed close to the speed of light, receive signals that differ not only in frequency
and wavelength, but also in amplitude.

According to Einstein’s principle of relativity [10–16], there is no privileged frame
of reference. The same physical laws apply in all reference frames if these move with
respect to each other at constant velocity. For example, wave packets of light with a well-
defined direction of propagation move at the speed of light c in any reference frame. For
completeness, let us point out that some authors debate whether this assumption is true or
not [17]. For example, it is believed that some effects, such as the experimentally verified
Sagnac effect [18,19], are best understood in terms of anisotropies of the speed of light [20].
Moreover, some experiments that have been designed to disprove the existence of an
aether may have been misinterpreted [21,22]. Other experiments again claim to verify the
constancy of the speed of light with high accuracy [23]. Here, we notice that any physical
theory that involves space and time requires a way of measuring both using clocks and
meters, and we simply assume in the following that all clocks and meters are calibrated
such that light travels at the same speed in all directions in all reference frames.

Recently, our group discussed and promoted a possible quantisation of the electro-
magnetic (EM) field in position space [24–27]. Starting from the assumption that the
basic building blocks of light are localised photons—so-called blips (bosons localised in
position)—with well-defined positions, polarisations, and directions of propagation, we
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derived a Hamiltonian that generates their dynamics, as well as electric and magnetic field
observables for the calculation of expectation values. As a first application of our local
photon approach, we constructed locally acting mirror Hamiltonians for describing light
scattering through partially transparent interfaces [25,28]. However, our approach differs
from previous field quantisation schemes (cf., e.g., Ref. [29] and the references therein) and
requires a doubling of the Hilbert space of the EM field by the inclusion of positive and
negative frequency photons. The main purpose of this manuscript is to verify the consis-
tency of our generalisation of standard quantum optics approaches with the well-known
Doppler effect [3,5–8].

In addition to demonstrating this consistency, we show that a local approach has many
advantages and offers new insight. For example, as we shall see below, it can accommodate
spatial and time translational symmetries in a more straightforward way. In the following,
we derive the relativistic Doppler effect with only a minimum of assumptions, and, as we
shall see below, all results presented here are consistent with the existing literature [30–38].
The main new result of our investigation is the derivation of a relationship between local
photons in different inertial reference frames. More concretely, it will be shown that a local
photon is seen as a local photon by all observers at the same point in the spacetime diagram.
We are therefore confident that our local approach will pave the way for systematic studies
of even more complex scenarios, like the Unruh effect [39,40] and quantum electrodynamics
in reference frames with time-varying accelerations without the need for approximations,
such as the usual assumption of a flat spacetime [41]. Moreover, some of the insights
obtained here might have applications in relativistic quantum information [42–50].

In the following, we review the basic assumptions made in the derivation of the
relativistic Doppler effect. Suppose an observer—let us call her Alice (A)—is watching
a wave packet of light with a well-defined direction of propagation s and a well-defined
polarisation λ travel along the x axis. Since this wave packet travels at the speed of light,
its electric field amplitudes EA(xA, tA) seen by Alice at positions xA at times tA equal

EA(xA, tA) = EA(xA − sctA, 0) (1)

where the initial electric field amplitudes of the wave packet are given by EA(xA, 0). Here
s = −1 and s = 1 correspond to wave packets propagating in the direction of decreasing
and increasing xA respectively. Hence, if the physical properties of a wave packet seen by
Alice are known at one instant in time, they are known at all times. The same applies to
the electric field amplitudes EB(xB, tB) seen at (xB, tB) by a second observer—called Bob (B)
—who is travelling at a constant velocity vB relative to Alice, wherefore

EB(xB, tB) = EB(xB − sctB, 0) (2)

in analogy to Equation (1). Hence, the electric field amplitudes perceived by both Alice
and Bob at any position and time are only characterised by the values of the parameters
χi = xi − scti with i = A, B. In the remainder of this paper, we shall use a shorthand
notation and replace Ei(xi, ti) with Ei(χi).

The principle of relativity also suggests that the electric and magnetic field trans-
formations from observer A to observer B and vice versa need to be formally the same.
The only difference is that the relative speed of their reference frames changes from vB to
vA = −vB. This suggests a linear dependence between the electric field amplitudes EB(χB)
and EA(χA) at the same point in the spacetime diagram, since this transformation is the
only transformation that remains formally the same when reversed. We therefore assume
in the following that

EB(χB) = ξBA EA(χA) (3)
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where the coordinates χA and χB specify the same spacetime trajectory, and ξBA denotes a
transformation constant. Analogously, we also know that

EA(χA) = ξAB EB(χB). (4)

Furthermore, the principle of relativity tells us that the transformation constants ξAB and
ξBA relate to each other such that

ξAB(s, vB) = ξBA(s,−vB) (5)

since the direction of propagation s of the wave packet is the same in both reference frames,
but the relative speed of the frames changes sign. When combining Equations (3)–(5) we
therefore find that

ξBA(s, vB) = 1/ξBA(s,−vB) . (6)

In the following, this is taken into account when we determine ξAB and ξBA. Whilst some
quantisations based on the vector potential require a gauge-fixing condition, which may
not be relativistically invariant, in this paper we shall deal directly with the gauge-invariant
electric and magnetic field observables. As a consequence, Equations (3) and (4) are the
only transformation conditions required in this paper.

Next, we notice that the spatial and time translational symmetries of the EM field tell
us that the above relations must hold for all spacetime coordinates χA and χB. Hence, the
transformation factors ξBA and ξAB can depend on the direction of propagation s and on
the relative speed vB of Bob’s reference frame with respect to Alice’s, but not on where
and when the electric and magnetic field amplitudes are measured. The above arguments
thus reduce the question, how do local electric and magnetic field observables transform
from one inertial frame to another, to the simpler question, how do they transform at a
single point in the spacetime diagram? Nevertheless, the above equations are not enough
to determine the transformation factor ξBA in Equation (3). To answer this question, an
additional assumption is needed.

Our final assumption in the following derivation of the relativistic Doppler effect is
based on energy conservation. To implement this, we consider a certain “box”, which is
a volume of spacetime points obtained by identifying a finite-sized interval along the x
axis and extending it to also contain all future and past points along light-like trajectories
passing through this interval. By integrating over the positions inside the “box” at a fixed
time, we can calculate the total amount of energy that it contains. By construction, the
same “box” must contain the same amount of energy in Alice’s and Bob’s reference frames,
since it contains the same physical system in both cases. Nevertheless, as Alice and Bob
experience space and time differently, the same “box” appears to have a different size in
each of their frames. For example, parts of the wave packet that occur simultaneously in
the frame of observer A appear at different times in the reference frame of observer B. In
addition, the density of the possible trajectories of light changes when moving from one
inertial frame to another varies; however, the total number of world lines in the “box” must
remain the same. Taking this into account, we can finally identify the dependence of ξBA on
s and on vB. When applying Fourier transforms to local electric field amplitudes, we obtain
the usual frequency, wavelength, and amplitude changes of the relativistic Doppler effect.

This paper is structured as follows. Section 2 reviews the relativistic Doppler effect
in classical physics. We first study how the coordinates χA and χB of two inertial ob-
servers A and B relate to each other when they correspond to the same trajectory in the
spacetime diagram. Afterwards, we derive the transformation factors ξBA and ξAB in
Equations (3) and (4) by imposing the above described conditions. In Section 3, we use a
local photon approach and proceed as described in Refs. [24–26] to quantise the EM field in
different inertial reference frames. Section 4 combines this description with the results of
Section 2 to obtain a quantum picture of the relativistic Doppler effect. Given the principle
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of relativity, neither observer A nor observer B should be able to perform measurements on
photonic wave packets which tell them about their absolute speed. Taking this into account,
we find that the local photon annihilation operators of Alice and Bob are the same when
they refer to the same location in the spacetime diagram. However, the transformations
of the annihilation operators of monochromatic photons are more complex. Finally, we
summarise our findings in Section 5.

2. The Relativistic Doppler Effect

The motion of an observer affects both the time and the distance separating two events
in spacetime. In the case of two observers Alice (A) and Bob (B) in flat 1 + 1 dimensional
spacetime (Minkowski space), this difference in duration and separation can be expressed as
a transformation between their natural coordinates χA and χB respectively. In this section,
we provide a derivation of the transformation between the coordinates of an observer at
rest and an observer moving with a constant velocity. Afterwards, we use this to identify
the constant ξBA for the electric field amplitude transformation in Equation (3).

2.1. Coordinate Transformations

Suppose that our first observer, Alice, is at rest and provides a point of reference,
whilst our second observer, Bob, travels at a constant velocity vB relative to Alice along
the x axis. As illustrated in Figure 1, the position and time at which an event takes place
from Alice’s point of view are denoted as xA and tA respectively. Analogously, from Bob’s
point of view, events take place at positions xB and times tB. For simplicity, we assume in
the following that both observers, who are stationary with respect to their own coordinate
systems, are located at the origin. This means that Alice’s position is given by xA = 0 and
Bob’s position is given by xB = 0 for all times tA and tB respectively. Moreover, we assume
that Bob meets Alice only once at an initial time tA = tB = 0.

Figure 1. Schematic view of two observers, Alice (a) and Bob (b), in different inertial reference frames
that move with respect to each other at constant velocity. For simplicity, we assume here that both
observers are based at the origin of their respective coordinate system and share the same position at
an initial time tA = tB = 0. Suppose Alice emits a short light pulse from her position towards Bob at

a time when her clock reads t(1)A , which Bob then receives when his clock reads t(2)B . By comparing
these two times, the ratio of their spacetime coordinates, i.e., χB/χA, can be determined.

In the stationary reference frame, light with a well-defined direction of propagation s
travels along the xA axis at the speed of light c. Therefore, if Alice observes any localised
pulse of light, its position xA at any time tA satisfies the relation

χA = xA − sctA = const. (7)

Here, χA coincides with the position xA of the light pulse at tA = 0. The speed of light mea-
sured relative to the rest frame of an inertial observer is always constant and independent
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of the motion of the source. Hence, from Bob’s point of view, the position xB of the same
light pulse at any time tB satisfies the relation

χB = xB − sctB = const. (8)

In general, χB does not equal χA, but the direction of propagation s must be the same in
both reference frames. As both Equations (7) and (8) must be satisfied, we have

χB = κ χA . (9)

The constant κ provides a connection between the coordinate χA adopted by Alice and
the coordinate χB adopted by Bob, thereby establishing a relation between the coordinates
of identical world lines. Considering the cases where s = −1 and s = +1 and solving
the above equations, one can derive the point-like coordinate transformations between
spacetime coordinates (xA, tA) and (xB, tB), which refer to the same point in the spacetime
diagrams of Alice and Bob.

To determine the relating constant κ in Equation (9), we assume that Alice sends a
short light pulse from her own position at x(1)A = 0 at a time t(1)A to Bob (cf. Figure 1). From

Bob’s point of view, the light is emitted from a position x(1)B at a time t(1)B and arrives at his

position x(2)B = 0 when his watch reads a time t(2)B . As Alice and Bob have both been placed
at the origin of their respective coordinate systems, Equation (9) tells us that

t(2)B = κ t(1)A . (10)

According to Alice, a right-moving light pulse is received by Bob at a position x(2)A at a time

t(2)A , where t(2)A = t(1)A + x(2)A /c, and x(2)A = vBt(2)A . Putting these two relations together, we
find that

t(1)A = (1 − β) t(2)A (11)

where the constant β is defined as

β = vB/c . (12)

Analogously, one can also show that

t(2)B = (1 + β) t(1)B . (13)

Equations (11) and (13) specify the relationship between the times at which the light is
emitted and received from the points of view of both observers.

In general, the time elapsed between two events in Alice’s reference frame is different
from the time elapsed between the same two events in Bob’s frame [11–14]. The reason
for this is that a moving clock ticks at a different rate than a stationary clock [15,16]. To
properly take this into account, as the position at which Bob receives the signal is moving
relative to Alice, we suppose that

t(2)A = γ t(2)B . (14)

Furthermore, as the position of the emitter is stationary with respect to Alice, but now
moving in the opposite direction with respect to Bob, it must also be that

t(1)B = γ t(1)A . (15)
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By combining Equations (11)–(15), it can now be shown that

γ = 1/
√

1 − β2 . (16)

Since γ is always larger than 1, clocks run slower in a moving frame. By putting together
Equations (13) and (15), we moreover find that κ = γ(1 + β). By carrying out a similar
calculation for left-propagating light, we eventually obtain the complete relation

χB = γ(1 + sβ) χA . (17)

As one would expect, the constant κ in Equation (10) depends on both the direction of
propagation of light s and the relative velocity vB between Alice and Bob.

2.2. Field Amplitude Transformations

Although light propagates at the same speed in all reference frames, depending upon
the direction of the wave packet and the relative speed between Alice and Bob, wave
packets will appear to be either stretched or squeezed from the point of view of a moving
observer. This occurs due to the difference in how space and time are perceived by a moving
observer compared to an observer at rest, as we described in the previous subsection. As a
consequence of this transformation, a wave packet of light may appear to have different
energies in Alice’s and Bob’s reference frames. However, the energy associated with the
same number of light trajectories must be the same for both Alice and Bob. The purpose of
this subsection is to exploit energy conservation in order to determine the transformation
coefficient ξBA defined in Equation (3). To do so, we now investigate the energy of a bundle
of light trajectories from both Alice’s and Bob’s points of view.

More concretely, as illustrated in Figure 2, we now place a “box” that confines a bundle
of light-like world lines with coordinates χA ∈ [a1, a2] into the spacetime diagram of Alice.
From Alice’s point of view, the “box” has a width of ∆xA = a2 − a1, which corresponds
to an instant in time, and contains all past and future points associated with this spatial
interval. Entirely analogous to Alice, the same bundle of world lines creates an analogous
“box” in Bob’s spacetime diagram, but its width ∆xB along the xB axis differs from ∆xA. As
shown in Figure 2, we denote the endpoints of the “box” in Bob’s spacetime diagram at
tB = 0 by b1 and b2. Hence, ∆xB = b2 − b1 and Bob’s world line coordinates are χB ∈ [b1, b2].

Figure 2. The figures show the spacetime diagram of a short light pulse permanently confined to
a spacetime “box” from both Alice’s (a) and Bob’s (b) points of view. From Alice’s point of view,
the “box” extends from xA = a1 to xA = a2. The amplitude of the light pulse in Alice’s frame is
illustrated by the red waveform and remains within the box for all tA. From Bob’s point of view, the
same “box” extends from xB = b1 to xB = b2. In Bob’s frame, the width of the “box” is increased
relative to Alice by a factor of γ(1 + sβ), where β = vB/c. The waveform seen by Bob is shown in
blue and remains in the “box” for all tB.
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Suppose now that hA and hB denote the density of the bundle of world lines in Alice’s
and in Bob’s reference frame respectively. By taking into account the conservation of the
total number of world lines within the “box”, we see that

hA ∆xA = hB ∆xB . (18)

Since β and γ are defined such that

[γ(1 + sβ)]−1 = γ(1 − sβ) , (19)

by using Equation (17), we can show that

hB = γ(1 − sβ) hA . (20)

Due to the change in the space and time coordinates between Alice’s and Bob’s reference
frames, from Bob’s point of view, the position density of the trajectories of light has changed
by a factor of γ(1 − sβ).

The space and time transformations that take place between Alice’s and Bob’s reference
frames are unknown to them. We, however, knowing that there is a change in the energy
density along the χ axis, must take this into account when we look more closely at Alice’s
and Bob’s energy observables. In doing so, we conclude that the actual amounts of energy
associated with a fixed number of trajectories in both Alice’s and Bob’s “boxes" are only
the same when [29]

Aε

2hA

∫ a2

a1

dχA

[
EA(χA)

2 + c2 BA(χA)
2
]
=

Aε

2hB

∫ b2

b1

dχB

[
EB(χB)

2 + c2 BB(χB)
2
]

. (21)

Here, A is the area occupied by the EM field in the y − z plane, which is unchanged
by boosts along the x axis, and ε is the relevant permittivity. Equation (21) can now be
used to obtain an expression for ξBA. As the ratio between the electric and magnetic field
amplitudes of travelling waves must be the same in every reference frame, which implies
that BB(χB) = ξBA BA(χA) in analogy to Equation (3), and by substituting Equations (3),
(17) and (20) into Equation (21), we conclude that

γ(1 + sβ) ξ2
BA = γ(1 − sβ) (22)

and hence

ξBA(s, vB) = γ(1 − sβ) . (23)

This expression for the electric field transformation constant ξBA satisfies Equation (6).
For completeness, let us add that the usual expressions for the total energy of the EM

field in Alice’s and Bob’s reference frames are given by [29]

H(i)
energy =

Aε

2

∫ ∞

−∞
dχi

[
Ei(χi)

2 + c2 Bi(χi)
2
]

(24)

with i = A, B. By not taking into account the different densities hA and hB of the light
trajectories, but nevertheless employing the results in Equations (17) and (23), we find that
the above expressions are related by the relativistic transformation

H(B)
energy = γ(1 − sβ)H(A)

energy . (25)
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There now seems to be a difference in the energy of the EM field seen by Alice and
the energy seen by Bob. However, as we have seen above, energy conservation is restored
when we correctly account for the space and time transformations between Alice’s and
Bob’s reference frames. The above discussion also shows that the total amount of energy
of the EM field in a given reference frame i can only be calculated up to an overall factor
unless there is a way of determining its world line density hi.

2.3. Frequency and Wavelength Transformations

Whilst the previous subsection only deals with changes in the magnitude of the local
energy, the Doppler effect is normally associated with frequency and wavelength shifts
of monochromatic waves seen by two different inertial observers [51]. These shifts are
not surprising, since the frequency of a monochromatic wave seen by Alice and Bob is
the number of complete wavelengths that pass their positions per unit of time. Frequency
and wavelength are therefore strongly connected with the clock or meter being used as a
measuring device [52]. For completeness, we therefore now also have a closer look at the
momentum representation of the electric field amplitudes. Since the complex electric field
amplitudes Ẽi(ki, ti) and Ei(xi, ti) in momentum and in position space relate to each other
via a Fourier transform, we have [26]

Ei(xi, ti) =
1√
2π

∫ ∞

−∞
dki eiskixi Ẽi(ki, ti) (26)

with

Ẽi(ki, ti) = e−ickiti Ẽi(ki, 0) (27)

for i = A, B. Here, ckA and ckB are the frequencies of a monochromatic wave observed by
Alice and Bob respectively.

By again using the χi coordinates defined in Equations (7) and (8) and by taking into
account the main result of the previous subsection, i.e., by combining Equations (3) and (23),
we see that

EB(χB) = γ(1 − sβ) EA(χA) . (28)

Substituting the above Fourier transform into this relation yields

1√
2π

∫ ∞

−∞
dkB eiskBχB ẼB(kB, 0) =

1√
2π

γ(1 − sβ)
∫ ∞

−∞
dkA eiskAχA ẼA(kA, 0) . (29)

By taking the inverse Fourier transformation of both sides of Equation (29) with respect to
the coordinate χB, we can now show that

ẼB(kB, 0) =
1

2π
γ(1 − sβ)

∫ ∞

−∞
dχB

∫ ∞

−∞
dkA eis(kAχA−kBχB) ẼA(kA, 0) . (30)

After substituting χA for χB using Equation (17), the χB integration can be solved. This
integration leads us to the final result:

ẼB(kB, 0) = ẼA(γ(1 + sβ)kB, 0) . (31)

The above equality specifies the relationship between the Fourier components ẼA(kA, 0)
and ẼB(kB, 0) of the electric field amplitudes measured by Alice and by Bob. If, for instance,
ẼA(kA, 0) is nonzero for a wave with a single frequency ckA only, then Bob observes a
monochromatic wave with frequency

ckB = γ(1 − sβ) ckA . (32)
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This shift in frequency is consistent with previous derivations of the relativistic Doppler
shift for light propagating in the s direction [53,54].

3. The Quantised EM Field in the Stationary Frame

For a long time, it has been believed that photons do not have a wave function and
that light cannot be localised [55–57]. However, quantum physics should apply to all
particles, and photons should not be an exception. For example, when a single-photon
detector clicks, it measures the position of the arriving photon at that instant in time [58,59].
Defining a time of arrival operator for a localised photon detector, however, has been a
significant problem and could not be achieved within the standard Hilbert space of the
quantised EM field [60–64]. The origin of the wave function problem was that many authors
liked to identify the wave function of the photon with its electric field amplitudes, but the
complex electric field amplitudes at different positions do not commute. The eigenstates of
the observable electric field are therefore not local, although they can be made to appear
local by altering the scalar product that is used to calculate the overlap of quantum state
vectors [24,65].

An alternative way of establishing the wave function of a single photon is to double
the Hilbert space of the quantised EM field to include both positive and negative frequency
photons and to separate light from its carriers [25–27]. The carriers of the quantised EM
field in momentum space are nonlocal monochromatic waves. The Fourier transforms of
these carriers, the blips (which stands for bosons localised in position), however, form a
complete set of pairwise orthonormal local carriers of the quantised EM field in position
space. Similar to how a point mass is a carrier for a gravitational field, blips are carriers of
nonlocal electric and magnetic field amplitudes. When expressing the observables of the
electric and magnetic field in free space in terms of blip annihilation and creation operators,
these include contributions from blips at all points along the position axis. By applying a
constraint to the blip dynamics, a relativistically form-invariant representation of the EM
field is derived. Below, these expressions are used to derive a transformation between the
blips in Alice’s and Bob’s reference frames.

3.1. Local Photons

Let us first have a closer look at the modeling of the quantised EM field in Alice’s
resting reference frame. Here, blips are characterised by their position xA ∈ (−∞, ∞)
at a given time tA ∈ (−∞, ∞), as well as by their direction of propagation s and their
polarisation λ. For boosts and translations along the xA and tA axes, s and λ are invariant.
The parameter s = ±1 denotes propagation in the direction of increasing and decreasing
xA respectively. We shall assume that λ = H,V are two linear polarisations orthogonal to
the xA axis [25,26]. The creation operator a†

sλ(xA) adds to the system a single blip located
at a position xA at a time tA = 0 with a direction of propagation s and a polarisation λ. In
the above, † denotes complex conjugation and distinguishes a†

sλ(xA) from the annihilation
operator asλ(xA), which removes the same blip from the system.

For consistency with Maxwell’s equations, all blips must propagate at the speed of
light. This constraint imposes the following condition: at some time tA, the time-evolved
operator UA(tA, 0) a†

sλ(xA)U†
A(tA, 0) must be equivalent to the blip creation operator at a

position xA − sctA. Hence,

UA(tA, 0) a†
sλ(xA)U†

A(tA, 0) = a†
sλ(xA − sctA) (33)

where UA(tA, 0) is the time evolution operator of the quantised EM field in Alice’s ref-
erence frame. As a consequence of this, all blips characterised by the same coordinate
χA = xA − sctA are identical. From this point onwards, we shall therefore denote blip
creation and annihilation operators in Alice’s reference frame a†

sλ(χA) and asλ(χA) respec-
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tively. Blips that are characterised by nonidentical values of χA, s, or λ are distinguishable
from one another and are therefore pairwise orthogonal. Hence, we can determine that[

asλ(χA), a†
s′λ′(χ′

A)
]
= δss′ δλλ′ δ(χA − χ′

A) . (34)

All creation operators commute with one another, as do the annihilation operators.

3.2. Field Observables in the Position Representation

As mentioned already above, Alice’s electric and magnetic field observables EA(xA, tA)
and BA(xA, tA) in the Heisenberg picture, which are measured at a position xA and time
tA, contain nonlocal contributions from blips at all points along the xA axis [26,66]. All her
blips contribute simultaneously to these field observables independently of their separation
from Alice. For a moving observer like Bob, however, events that take place along the
xA axis at a fixed time tA are no longer simultaneous and do not occur at a single time
tB. For this reason, one has to be careful when defining field observables by superposing
simultaneous blips at different positions along the x axis. Fortunately, blips can be identified
with all other blips along their individual trajectories, which allows us to represent the
field observables as a nonlocal superposition over the χA = xA − sctA coordinates. This
change in representation is illustrated in Figure 3 for a field propagating to the right. In this
diagram, the field observable at the origin can be determined as a nonlocal superposition of
blips along the xA axis at a fixed tA (marked in red). Alternatively, they can be identically
determined as a superposition of blips dispersed along the χA axis. By fixing the time tA,
this new representation returns to its original form.

Figure 3. The diagram shows the contribution of right-propagating blips to the field observables
measured by Alice at the origin. From one point of view, blips distributed along the xA axis (solid red)
contribute nonlocally to the field observables. As blips at one point in spacetime can be identified
with blips at all other points along their world lines (marked in yellow), blips distributed along the
xA − ctA axis (hollow red) provide an equivalent contribution to the field observables as blips along
the xA axis on the same world line.

As in Section 2 and for simplicity, we shall restrict ourselves in the following to only
one polarisation λ. Let us say that λ = H. In this case, the electric field is horizontally
polarised, whereas the magnetic field is vertically polarised, but we consider only the
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amplitude of Alice’s electric and magnetic field vectors. Taking this into account, EA(χA)
and BA(χA) can be written as

EA(χA) = ∑
s=±1

∫ ∞

−∞
dχ′

A cR(χA − χ′
A) asH(χ

′
A) + H.c. ,

BA(χA) = ∑
s=±1

∫ ∞

−∞
dχ′

A sR(χA − χ′
A) asH(χ

′
A) + H.c. (35)

These operators represent the observables of the electric and magnetic field amplitudes
respectively at position xA = χA at tA = 0 and at every position along the χA = contant
trajectory. In the expressions above, the contribution of each blip to Alice’s field observ-
ables is weighted by a nonlocal distribution R(χA − χ′

A), which we shall refer to as the
regularisation function. By taking into account that a single monochromatic photon has the
positive energy h̄c|kA|, the function R(χA − χ′

A) can be determined explicitly and can be
shown to be given by [24,26,27]

R(χA − χ′
A) = −

√
h̄

4πεcA
· 1
|χA − χ′

A|3/2 . (36)

This highly nonlocal function is closely related to the one-dimensional Feynman propagator
for two excitations of the EM field observables. The Feynman propagator is nonlocal,
whereas correlations between blips are strictly localised. As R(χA − χ′

A) is nonzero for all
values of χA ̸= χ′

A, we view each blip as carrying with it static and nonlocal electric and
magnetic fields.

3.3. EM Excitations in the Momentum Representation

In Section 2.3, the position-dependent electric field amplitudes Ei(xi, ti) with i = A, B
were expressed as Fourier transforms of the momentum space field amplitudes Ẽi(ki, ti),
which were characterised by the wave numbers ki, which provided an alternative view
of the classical Doppler transformation. The same transformation can also be performed
for the blip annihilation operators asλ(χA). In doing so, we obtain annihilation operators
ãsλ(kA) with

ãsλ(kA) =
1√
2π

∫ ∞

−∞
dχA e−iskAχA asλ(χA) (37)

which describe field excitations characterised by a fixed wave number kA, direction of
propagation s, and polarisation λ. Using commutation relation (34), we can show that the
following commutation relation is satisfied:[

ãsλ(kA), ã†
s′λ′(k′A)

]
= δss′ δλλ′ δ(kA − k′A) . (38)

All other commutators are zero. Due to the orthogonality of the ãsλ(kA) operators, ãsλ(kA)
annihilates an excitation with a unique wave number kA. The operator ã†

sλ(kA) is the
creation operator for this excitation. The inverse transformation of Equation (37) is given by

asλ(χA) =
1√
2π

∫ ∞

−∞
dkA eiskAχA ãsλ(kA) (39)

which decomposes a single blip into a superposition of monochromatic excitations for
all kA ∈ (−∞, ∞). As all possible values of kA contribute to a localised excitation, the
wavelength and the momentum of a single blip are completely undetermined. Nevertheless,
as the free EM field observables must propagate at the speed c without any dispersion (like
the corresponding solutions of Maxwell’s equations), blip excitations must propagate in
this way also. As a result, the dynamics of single blips can be determined [26].
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4. A Quantum Picture of the Relativistic Doppler Effect

Next, we have a closer look at how Bob experiences the quantised EM field in his
moving reference frame. Afterwards, we determine the relationship between Alice’s
and Bob’s field observables using the classical field amplitude transformations derived
in Section 2.2. By taking into account that both Alice and Bob can express their field
observables as a superposition of blips along both the χA = xA − sctA and χB = xB − sctB
axes respectively a local transformation is determined between the blips in Bob’s and
Alice’s reference frames.

4.1. The Doppler Effect in Position Space

In the following, we denote the annihilation and creation operators for a blip at a
position xB at an initial time tB = 0 in Bob’s reference frame bsλ(xB) and b†

sλ(xB), with s and
λ again indicating the direction of propagation and the polarisation of the blip respectively.
According to Bob, blips travel at the speed of light c along the xB axis and

UB(tB, 0) b†
sλ(xB)U†

B(tB, 0) = b†
sλ(xB − sctB) , (40)

in analogy to Equation (33). Here, UB(tB, 0) denotes the time evolution operator of the EM
field in Bob’s reference frame. As in Section 3, constraining the blip annihilation operators
in this way allows us to introduce annihilation operators bsλ(χB) for blips at xB and tB with
χB = xB − sctB. Moreover,[

bsλ(χB), b†
s′λ′(χ′

B)
]
= δss′ δλλ′ δ(χB − χ′

B) (41)

in analogy to Equation (34). The blip operators in Bob’s reference frame satisfy an identical
set of commutation relations to Alice’s operators, as one would expect from the principle
of relativity.

Entirely analogous to the generalisation of Alice’s field observables, any nonlocal
contributions of blips to Bob’s field observables can be expressed in terms of their separation
from Bob along the χB axis. Hence, we define Bob’s field observables as

EB(χB) = ∑
s=±1

∫ ∞

−∞
dχ′

B cR(χB − χ′
B) bsH(χ

′
B) + H.c. ,

BB(χB) = ∑
s=±1

∫ ∞

−∞
dχ′

B sR(χB − χ′
B) bsH(χ

′
B) + H.c. (42)

with χB = xB − sctB. Here, (xB, tB) are the spacetime coordinates of the point where the
field measurement is made. The distribution R(χB − χ′

B) in the equation above is the same
as in Equation (36) with χA and χ′

A replaced by χB and χ′
B respectively.

Although the same regularisation function is used by both Alice and Bob, as Alice
measures the separation of blips along the χA axis and Bob along the χB axis, the contribu-
tion of the blips to their field observables is different. This is illustrated in Figure 4. In the
diagram, Alice’s blips (solid red) are distributed at regular intervals along the xA axis. Bob’s
blips (solid blue) are distributed at identical intervals along the xB axis. Since R(x − x′)
is used for both observers, the two outermost red blips have the same contribution to
Alice’s field observables as the two outermost blue blips do to Bob’s field observables. By
identifying the blips with their counterparts along the xB − ctB, however, we can see that
the blips defined by Bob appear closer to Alice than her own. As a result, the regularisation
function used by Bob appears squeezed from Alice’s point of view. Conversely, for light
propagating to the left the regularisation function appears stretched. As mentioned already
above, events that occur simultaneously in Alice’s reference frame are not simultaneous in
Bob’s reference frame and vice versa.
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Figure 4. The diagram shows the contribution of right-propagating blips to Alice’s and Bob’s field
observables at the origin. Blips distributed along the xA axis (solid red) and along the xB axis (solid
blue) contribute equally to Alice’s and Bob’s field observables respectively. As blips at one point in
spacetime can be identified with blips at all points along their world lines (marked in yellow), blips
distributed along the χB = xB − ctB axis (hollows in red and blue) provide an equivalent contribution
to Alice’s and Bob’s field observables as blips along the xA axis and xB axis on the same world line.

Now that the operators asλ(χA) and bsλ(χB) have been defined by constructing field
observables for the two observers (cf. Equations (35) and (42)), a relationship between
these operators can be found by imposing the field relation in Equation (3). In order to
compare the electric field observables EA(χA) and EB(χB), we now express EB(χB) in terms
of Alice’s coordinates χA. By combining Equations (3) and (35), we see that

EB(χB) = ∑
s=±1

ξBA

∫ ∞

−∞
dχ′

A cR(χA − χ′
A) asH(χ

′
A) + H.c. (43)

with χB = γ(1 + sβ) χA. By substituting χ′
B = γ(1 + sβ) χ′

A into Equation (43) and using
both Equation (23) and the explicit form of the regularisation function (36), we find that

EB(χB) = ∑
s=±1

|γ(1 − sβ)|1/2
∫ ∞

−∞
dχ′

B cR(χB − χ′
B) asH(γ(1 − sβ)χ′

B) + H.c. (44)

By comparing this equation with Equation (42), we see that both expressions are only the
same if

bsλ(χB) = [γ(1 − sβ)]1/2 asλ(γ(1 − sβ)χB) (45)

where the coordinates χA and χB define the same light-like trajectory in Alice’s and Bob’s
coordinate systems respectively. One can easily check that the annihilation operators on
both sides of the above transformation obey bosonic commutation relations. Hence, the
annihilation operators asλ(χA) and bsλ(χB) can be used interchangeably, and a single blip
in Alice’s reference frame is observed by Bob as a single blip at exactly the same position in
the spacetime diagram.

Moreover, the above result allows us to demonstrate that the total number of photons
remains the same in both reference frames. In particular, using Equations (17) and (45), one
can check that

∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dxB b†

sλ(xB)bsλ(xB) = ∑
s=±1

∑
λ=H,V

∫ ∞

−∞
dxA a†

sλ(xA)asλ(xA) . (46)
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In the local quantum picture of the Doppler shift that we present here, there is therefore no
change to the particle nature of the EM field: a fixed number of local photons in Alice’s
reference frame also appears as an identical number of local photons in Bob’s reference
frame. Hence, if both observers perform a linear optics experiment, for example, a Hong–
Ou–Mandel experiment [67,68] in which two identical photons approach a beam splitter
from opposite sides, Alice and Bob both see both photons leaving the setup through the
same output port. The dynamics of the quantised EM field are essentially the same in all
inertial reference frames, as stated by Einstein’s principle of relativity [10]. The change
in the amplitude of the blip operators by a factor of [γ(1 − sβ)]1/2 in Equation (45) is the
direct result of Alice and Bob using different coordinates to describe the same spacetime
point. The relativistic Doppler effect is simply an immediate consequence of this fact.

4.2. The Doppler Effect in the Momentum Representation

For completeness, and since the relativistic Doppler effect is usually studied in momen-
tum space [9], we finally have a closer look at the implications of the above equations on the
momentum representation of the quantised EM field. In this representation, the electric and
magnetic field observables are expressed in a basis of bosonic excitations with a definite fre-
quency, polarisation, and direction of propagation. Analogous to Alice’s ãsλ(kA) operators
defined in Equation (37), we now introduce a set of annihilation operators b̃sλ(kB) with

b̃sλ(kB) =
1√
2π

∫ ∞

−∞
dχB e−iskBχB bsλ(χB) (47)

in Bob’s reference frame. Like the ãsλ(kA) operators, the b̃sλ(kB) operators satisfy bosonic
commutation relations:[

b̃sλ(kB), b̃†
s′λ′(k′B)

]
= δss′ δλλ′ δ(kB − k′B) . (48)

Here, kBc is the frequency measured by Bob with respect to time tB.
In the position representation, the blip operators asλ(χA) and bsλ(χB) defined in Alice’s

and Bob’s reference frames respectively satisfy the transformation in Equation (45). In the
following, we derive an analogous relationship between the corresponding momentum
space annihilation operators. By substituting Equation (45) into the right hand side of
Equation (47) and again taking into account that χB = γ(1 + sβ) χA (cf. Equation (17)), we
find that

b̃sλ(kB) =
1√
2π

[γ(1 + sβ)]1/2
∫ ∞

−∞
dχA e−isγ(1+sβ)kBχA asλ(χA) . (49)

Then, using Equation (39), we obtain

b̃sλ(kB) =
1

2π
[γ(1 + sβ)]1/2

∫ ∞

−∞
dχA

∫ ∞

−∞
dkA eis[kA−γ(1+sβ)kB]χA ãsλ(kA) . (50)

After performing the χA integration, which yields a Dirac delta function in kA −γ(1+ sβ)kB,
and then employing the kA integration, we see that

b̃sλ(kB) = [γ(1 + sβ)]1/2 ãsλ(γ(1 + sβ)kB) . (51)

As for Equation (45), the annihilation operators on both sides of this equation obey bosonic
commutation relations. The above result therefore demonstrates that the b̃sλ(kB) and
ãsλ(kA) can be used interchangeably so long as Alice’s and Bob’s wave numbers are
such that

kA = γ(1 + sβ) kB . (52)
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A single monochromatic photon with wave number kB observed by Bob therefore appears
as a single monochromatic photon to Alice, but its wave number is altered as described by
the above relation. The corresponding frequency transformation is in complete agreement
with the classical Doppler shift derived in Section 2.3 (cf. Equation (32)).

In addition to a frequency transformation, there is also a change in the amplitude of the
monochromatic excitations. As shown in Ref. [69] for gravitationally redshifted photons,
this amplitude change occurs as the transformation between monochromatic excitations
cannot be unitary. It was also shown in this reference, however, that a unitary transforma-
tion can be constructed for realistic photon operators when a suitable transformation for
the frequency distribution of the photon is introduced [69,70]. Whilst the transformation
given in Equation (51) is very simple, it clearly shows that excitations do not have the
same momenta in all reference frames. In particular, if Alice detects an excitation in the
kA mode only, this mode will be empty according to Bob. Bob, however, will detect an
equal number of excitations in his kB = γ(1 − sβ)kA mode. This result is very different to
that in the position representation where a local photon is viewed as a local photon at the
same position in the spacetime diagram by all inertial observers. The only difference is that
different observers use different coordinates to characterise this point.

5. Conclusions

This paper offers an alternative perspective on the relativistic Doppler effect, which
is usually referred to only in momentum space and discussed in terms of frequency,
wavelength, and amplitude changes of wave packets of light when measured in different
inertial reference frames. In this paper, we study the relativistic Doppler effect in position
space using the spacetime coordinates χA = xA − sctA and χB = xB − sctB of two inertial
observers: Alice in the stationary frame and Bob in a frame moving with constant velocity
vB with respect to Alice. This alternative approach allows us to accommodate spatial and
time translational symmetries in a relatively straightforward way. In addition, we take
advantage of energy conservation and the principle of relativity.

For example, symmetry arguments and the principle of relativity are used to show
that local electric field amplitudes seen by Alice and Bob only differ by a constant factor,
which we denote as ξAB and ξBA respectively. Energy conservation can be used to calculate
these factors as a function of the propagation direction s and the velocity of Bob’s reference
frame vB with respect to Alice’s frame. For simplicity, we assume here that both observers
are stationary in their respective coordinate systems and place them at the origin. When
transforming our local description of the relativistic Doppler effect into momentum space,
we recover the usual predictions, which show that our approach is consistent with the
findings of other authors.

Sections 3 and 4 concentrate on the local description of the quantised EM field for light
propagation in the 1 + 1 dimensional Minkowski spacetime to obtain a quantum picture
of the relativistic Doppler effect. Our aim here is to identify the relationship between the
quantum states of a wave packet of light seen by Alice and Bob. Our main result is the
straightforward relationship between the annihilation operators asλ(χA) and bsλ(χB) used
by Alice and Bob for the description of local excitations—so-called blips—of the quantised
EM field. When considering the same point in the spacetime diagram, i.e., when χA and χB
depend on each other as stated in Equation (17), both observers measure the same number
of field excitations.

Although the classical electric and magnetic fields undergo a change in amplitude
(cf. Equation (3)), the photon number remains the same, which is an important result of
quantum physics. In the photoelectric effect, for example, it is the photon number and not
the field intensity that determines the number of emitted electrons. Moreover, we conclude
that the relativistic Doppler effect is not a quantum effect but simply the result of Alice
and Bob using different spacetime coordinates and experiencing space and time differently,
while the speed of light is the same in all inertial reference frames [4]. Furthermore, as
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was shown in Section 4.2, although the total number of photons is conserved, the wave
numbers k that these correspond to are not the same for Alice and Bob.

The results of this paper might have applications in different areas of physics, including
quantum communication [42,44] and relativistic quantum information [45–50]. Our results
might also have some implications for ongoing discussions into the basic assumptions
of relativity theory, since it implies that the local description of the quantised EM field
is equivalent in both Alice’s and Bob’s reference frames. A different set of assumptions
would lead to an alternative relationship between blips in these two reference frames. Our
results on the transverse Doppler effect may aid experimental verifications of the reality
of length contraction and time dilation. In the current study, the concentration was on
a well-expected result caused by the transformation between the stationary frame and a
moving frame in a classical and relativistic representation in order to explore it for blips as
well. In the future, our approach can be used to study more complicated situations and
systems like an accelerating reference frame.
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