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Abstract: Fermatean fuzzy sets (FFSs) serve as a nascent yet potent approach for coping with fuzziness,
with their efficacy recently being demonstrated across a spectrum of practical contexts. Nevertheless,
the scholarly literature remains limited in exploring the similarity and distance measures tailored for
FFSs. The limited existing measures on FFSs sometimes yield counter-intuitive outcomes, which can
obfuscate the accurate quantification of similarity and difference among FFSs. This paper introduces
a suite of similarity and distance measures tailored for FFSs, drawing inspiration from the Tanimoto
measure. We delve into the characteristics of these novel measures and offer some comparative studies
with existing FFSs measures, highlighting their superior efficacy in the processing of fuzzy data
from FFSs. Our proposed measures effectively rectify the counter-intuitive situations encountered
with many existing measures and demonstrate a significant enhancement in differentiating between
diverse FFSs. Moreover, we showcase the real-world applicability of our proposed measures through
case studies in pattern recognition, medical diagnostics, and multi-attribute decision-making.

Keywords: fermatean fuzzy sets; similarity measures; distance measures; pattern recognition; medical
diagnosis; multiple-attribute decision-making

1. Introduction

The increasing prevalence of uncertainty across diverse disciplines is a direct conse-
quence of the intricate nature of objective realities and the bounds of human cognition [1–3].
Fuzziness manifests as a type of uncertainty arising from imprecise or vague information,
being one of the specific forms of uncertainty. This nebulous characteristic often manifests
itself in a probabilistic and indeterminate manner, which challenges the pursuit of precise
delineations. In response, the scholarly community has developed a multitude of innova-
tive theories and methodologies to effectively encapsulate and address the fuzziness within
practical contexts [4–8]. Among these, fuzzy sets theory, introduced by Zadeh in 1965 [4],
has garnered substantial scholarly focus. This theory broadens the scope of classical set
theory to accommodate scenarios where categorical boundaries are not clearly demarcated.
By assigning membership values to elements within a set, fuzzy sets facilitate a nuanced
and more precise representation of ambiguous concepts. Fuzzy sets theory revolutionizes
traditional decision-making paradigms by enabling reasoning based on fuzzy information
and decisions informed by partial or ambiguous data. This innovative approach has been
instrumental in modeling and articulating fuzzy and uncertain information, and its utility
has been widely recognized in domains such as pattern recognition, signal processing,
medical diagnosis, and inference systems [9–15].
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In the context of increasingly intricate decision-making scenarios, the common theory
of fuzzy sets encounters its bounds in the precise depiction of uncertain data. To rectify
this shortcoming, academia has championed various enhancements to conventional fuzzy
sets, including Intuitionistic fuzzy sets (IFSs) [16], hesitant fuzzy sets [6], evidence the-
ory [17], and rough sets [18]. Notably, IFSs have garnered significant focus, owing to their
proficiency in encapsulating both fuzzy and uncertain data by incorporating elements’
membership and non-membership degrees. This distinctive trait has rendered IFSs an
indispensable instrument across diverse research fields for tackling uncertainties [19–21].
Building upon the foundation of IFSs, in 2013, Yager pioneered the concept of Pythagorean
fuzzy sets (PFSs) [22]. This paradigm encompasses a Pythagorean function, amalgamating
membership, non-membership, and hesitancy degrees, thus transcending the original
confines of membership and non-membership alone. PFSs enforce a constraint such that
the cumulative squares of the degrees of membership and non-membership are confined
below one, thereby enhancing their capacity to encapsulate and delineate fuzzy infor-
mation [23–25]. However, though IFSs and PFSs have achieved considerable success in
handling certain types of uncertainties, they may not always offer sufficient flexibility in
certain specific application scenarios. For example, both Intuitionistic fuzzy sets (IFSs) and
Pythagorean fuzzy sets (PFSs) are unable to accommodate scenarios where the sum or
squared sum of membership and non-membership degrees exceeds unity [26]. To solve
this issue, recently, Yager and Filev [27] extended PFSs and introduced a novel type of
fuzzy set called Fermatean fuzzy sets (FFSs) in 2019. FFSs is founded on the notion of
Fermatean distance, which postulates that the sum of the cubes of the membership and non-
membership degrees must not exceed one, and encompasses hesitation in capturing and
representing uncertain information. This attribute enables it to encompass a greater amount
of information, making it more powerful than PFSs and IFSs. Fermatean fuzzy sets (FFS)
enhance the granularity of fuzziness representation by introducing additional parameters
and functions, thereby capturing more nuanced information about fuzziness [26]. This fine-
grained representation is particularly significant in fields that demand high precision, such
as medical diagnostics [28,29] and financial risk assessment [30,31]. Currently, FFSs have
evoked considerable interest among researchers. Ghorabaee [32] introduced an innovative
decision-making methodology founded on FFSs. Garg [33] demonstrated the utilization
of Fermatean fuzzy aggregation functions within COVID-19 testing facilities. Aydemir
and Yilmaz [34] introduced a method, known as TOPSIS, to determine preference orders
in FFS based on similarity to ideal solutions. Shahzadi and Akram [35] introduced the
formation of fuzzy soft sets and demonstrated their utility in selecting appropriate antivirus
masks. Gul [36] showed the utility of FFSs in assessing occupational risks within the man-
ufacturing sector. Sergi and Sari [37] proposed some Fermatean fuzzy capital budgeting
techniques. Sivadas [38] introduced the Fermatean fuzzy soft set, a novel hybrid structure
that amalgamates the features of Fermatean fuzzy sets with the parameterization typical of
soft set theory. Ali and Ansari [26] introduced the notion of formation fuzzy bipolar soft
sets and demonstrated their applicability in multiple-criteria decision-making (MCDM).
In addition, FFSs have also been employed in several fields including data mining, image
processing, and clustering [32,39–41].

The concepts of similarity measure and distance measure are two other crucial con-
cepts in the theory of fuzzy sets. They, respectively, refer to mathematical functions that
evaluate the similarity and distance between two entities based on their distinctive at-
tributes. In classical set theory, similarity is usually quantified using set-theoretic measures,
such as Jaccard similarity or cosine similarity [42,43]. However, these measures perform
poorly for fuzzy sets because they fail to account for the membership grades associated
with constituent elements. The concept of similarity measure is employed to determine the
similarity between individuals, while the concept of distance measure is used to quantify
the degree of difference between individuals. Similarity measures include broader mea-
sures than distance measures, which specifically calculate differences in Cartesian space.
These terms are often used interchangeably, with distance often serving as the reciprocal
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of similarity and vice versa. In terms of evaluation, for distance measure, the shortest
distance is observed between the closest points, while for similarity measure, the highest
level of similarity is observed between the closest points. Recent research has introduced
innovative similarity measures and distance measures:

• Garg [44] has proposed a similarity measure that utilizes transformed right-angled
triangles. Huang [45] has presented a novel similarity/distance measure under an In-
tuitionistic fuzzy environment enhancing its capability to address real-world fuzziness,
whereas Olgun [46] has designed an IFSs similarity measure utilizing the framework
of Choquet integral, thereby incorporating a modified approach to the cosine metric.
Kumar [47] has presented a novel IFSs similarity measure, deployed in applications
such as pattern recognition and clustering analysis. Moreover, Duan [48] has presented
an innovative Intuitionistic fuzzy similarity measure. Garg [49] developed a novel
measure based on PFSs to tackle the challenges associated with multiple-attribute
decision-making (MADM). Li [50] introduced a fresh similarity assessment for PFSs,
which is founded on the concept of spherical arc distance from a geometric standpoint.
Additionally, a MADM approach was established in a Pythagorean fuzzy setting. Hus-
sian and Yang [51] put forward novel similarity measures for PFSs that are grounded in
Hausdorff measures. Additionally, recent studies [52–58] have introduced numerous
other similarity measures.

• Atanassov delineated four 2D distance measures, which were established on the foun-
dations of the concepts of Euclidean and Hamming distances [16]. The Hausdorff
distance measures were proposed by Glazoczewski [59] to distinguish differences
between IFSs. More recently, Gohain put forth a measure that is predicated on the
divergence of the maximum and minimal cross-validation indices [60]. Panda and
Mahanta introduced a nonlinear distance measure that takes into consideration the
discrepancies among IFSs with substantial hesitation levels [61]. Xiao introduced a
novel Jensen–Shannon divergence-based IFSs distance measure [62]. Also, Li [63]
conducted an inquiry into the normalized Hamming and Euclidean distance, aiming
to enhance the precision and computational efficiency of fuzzy set proximity computa-
tions. Zeng [64] introduced a novel distance measure for IFSs, thereby extending its
utility within the domain of pattern recognition. Talebi utilized a distance measure
grounded in α-stable statistical models and developed an adaptive filtering struc-
ture [65]. Li [66] presented an innovative distance measure under a Pythagorean
fuzzy environment, while Xu [67] introduced a measure based on Hamming distance.
Furthermore, Gou, Xu, and Ren [68] introduced an innovative distance measure that
builds upon the Euclidean distance model for PFSs.

At present, the similarity and distance measures for IFSs and PFSs are relatively complete.
Currently, several similarity and distance measures have been put forward for FFSs,

including the new distance using Hellinger distance and triangular divergence [69], the co-
sine similarity measure by Kirişci [70], the cosine similarity by Sahoo [71] and the similarity
measure based on linguistic scale function [72]. These measures are designed to confront
issues including complexity, asymmetry, and variations in intersection size. Despite this,
there is still limited research on the measures of similarity and distance in FFSs, and the
existing measures for FFSs suffer from counter-intuitive outcomes, insufficient sensitivity
to varying intersection sizes, and asymmetry issues, which are not applicable under many
conditions. Therefore, the study of similarity and distance measures of FFSs has become an
important research field with significant academic significance.

This paper introduces a set of novel similarity and distance measures for FFSs.
The properties of these measures are thoroughly analyzed through abundant examples.
Additionally, we propose two models that employ these measures for tasks, including
medical diagnosis, pattern recognition, and MADM problems, within Fermatean fuzzy
environments. We present an array of experiments comparing our measures to existing
ones. The results demonstrate that our proposed measures overcome numerous counter-
intuitive situations, and enhance the dependability of the decision-making process in



Symmetry 2024, 16, 277 4 of 24

identifying distinctions among FFSs. These qualities exemplify the superior nature of our
proposed measures.

The primary contributions of this study are delineated as follows:

(1) We introduce novel similarity and distance measures for FFSs and provide proofs of
their properties.

(2) Two models employing these measures are proposed for medical diagnosis, pattern
recognition, and MADM problems, demonstrating their efficacy.

(3) By conducting a comparative evaluation against established measures for FFSs,
the measures we suggest exhibit superior performance, with improved sensitivity
to discriminating dissimilarities between FFSs and a capacity to circumvent counter-
intuitive limitations of existing measures. Our measures offer greater reliability and
superiority in distinguishing FFSs.

Section 2 provides a concise overview of the foundational principles underlying fuzzy
sets theory. Subsequently, in Section 3, we introduce a suite of innovative similarity and
distance measures tailored for FFSs, alongside the delineation of their distinctive attributes.
Meanwhile, a large number of experimental studies have been carried out to demonstrate
the superiority of the suggested measures in overcoming counter-intuitive situations,
distinguishing FFSs, and making more reliable decisions. In Section 4, based on proposed
measures, two models are introduced to address medical diagnosis, pattern recognition,
and MADM problems. Finally, in Section 5, we draw conclusions and provide directions
for subsequent scholarly research.

2. Preliminaries

Within this portion, some foundational concepts related to fuzzy sets, the Tanimoto
similarity measure, and several existing measures for FFSs will be provided.

2.1. Intuitionistic Fuzzy Sets

Definition 1 ([16]). We utilize the symbol Z to denote a set of limited cardinality. An Intuitionistic
fuzzy set I is given by:

I = {⟨z, ρI(z), σI(z)⟩ : z ∈ Z} (1)

Herein, ρI(z) : Z → [0, 1] signifies the membership degree of z, and σI(z) : Z → [0, 1]
expresses the non-membership degree of z. ∀z, ρI(z) and σI(z) satisfy:

0 ≤ ρI(z) + σI(z) ≤ 1 (2)

∀z, the indeterminacy degree associated with z is given by:

θI(z) = 1 − ρI(z)− σI(z) (3)

This definition encapsulates the essence of Intuitionistic fuzzy sets within a finite domain Z.

2.2. Pythagorean Fuzzy Sets

Definition 2 ([22]). The Pythagorean fuzzy set P is given by the following representation:

P = {⟨z, ρP(z), σP(z)⟩ : z ∈ Z} (4)

In this construct, ρP(z) and σP(z) serve as the membership and non-membership degrees of z,
respectively, and are mappings from Z to the interval [0, 1]. ∀z, ρP(z) and σP(z) satisfy:

0 ≤ ρ2
P(z) + σ2

P(z) ≤ 1 (5)
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∀z, the indeterminacy degree associated with z is quantified by:

θP(z) =
√

1 − ρ2
P(z)− σ2

P(z)

2.3. Fermatean Fuzzy Sets

Definition 3 ([27]). The Fermatean fuzzy set F is given by the following representation:

F = {⟨z, ρF(z), σF(z)⟩ : z ∈ Z} (6)

In this construct, ρF(z) and σF(z) serve as the membership and non-membership degrees of z,
respectively, and are mappings from Z to the interval [0, 1]. ∀z, ρF(z) and σF(z) satisfy:

0 ≤ ρ3
F(z) + σ3

F(z) ≤ 1 (7)

For all z within the set of integers Z, the degree of indeterminacy associated with z is:

θF(z) =
3
√

1 − ρ3
F(z)− σ3

F(z) (8)

2.4. Existing Measures for FFSs

Definition 4. Suppose two FFSs, Z = {z1, z2, . . . , zn}, F = {(z, [ρF(zi, ), σF(zi)]) : zi ∈ Z}
and G = {(z, [ρG(zi, ), σG(zi)]) : zi ∈ Z}. The cosine similarity measure relative to F and G is
given by:

CFFS(F, G) =
1
n

n

∑
i=1

ρ3
F(zi)ρ

3
G(zi) + σ3

F(zi)σ
3
G(zi) + θ3

F(zi)θ
3
G(zi)√

ρ6
F(zi) + σ6

F(zi) + θ6
F(zi)

√
ρ6

G(zi) + σ6
G(zi) + θ6

G(zi)
(9)

Definition 5. Suppose that Z = {z1, z2, . . . , zn}, F = {(z, [ρF(zi, ), σF(zi)]) : zi ∈ Z} and
G = {(z, [ρG(zi, ), σG(zi)]) : zi ∈ Z} are two FFSs. The Euclidean distance is defined as:

DFFS(F, G) =
1

2n ∑
zi∈Z

(|ρ3
F(zi)− ρ3

G(zi)|2 + |σ3
F(zi)− σ3

G(zi)|2 + |θ3
F(zi)− θ3

G(zi)|2)
1
2 (10)

Definition 6 ([70]). Suppose that Z = {z1, z2, . . . , zn}, F = {(z, [ρF(zi, ), σF(zi)]) : zi ∈ Z}
and G = {(z, [ρG(zi, ), σG(zi)]) : zi ∈ Z} are two FFSs. The new cosine similarity proposed by
Kirişci is defined as:

S1
FFS(F, G) =

CFFS(F, G) + 1 − DFFS(F, G)

2
(11)

Definition 7 ([71]). Suppose that Z = {z1, z2, . . . , zn}, F = {(z, [ρF(zi, ), σF(zi)]) : zi ∈ Z}
and G = {(z, [ρG(zi, ), σG(zi)]) : zi ∈ Z} are two FFSs. Several similarities proposed by Sahoo
are defined as:

S2
FFS(F, G) = 1 −

(
1

2n

n

∑
i=1

(
|ρF(zi)− ρG(zi)|3 + |σF(zi)− σG(zi)|3 + |θF(zi)− θG(zi)|3

)) 1
3

(12)

S3
FFS(F, G) = 1 −

(
1

2n

n

∑
i=1

(|ρF(zi)− ρG(zi)|+ |σF(zi)− σG(zi)|+ |θF(zi)− θG(zi)|)
)

(13)

S4
FFS(F, G) = 1 −

(
1

2n

n

∑
i=1

(∣∣∣ρ3
F(zi)− ρ3

G(zi)
∣∣∣+ ∣∣∣σ3

F(zi)− σ3
F(zi)

∣∣∣+ ∣∣∣θ3
F(zi)− ρ3

F(zi)
∣∣∣)) (14)
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S5
FFS(F, G) = 1 −

(
1

2n

n

∑
i=1

(
|ψ(Fi)− ψ(Gi)|3

)) 1
3

(15)

S6
FFS(F, G) =

1
n

n

∑
i=1

 ψ(Fi)ψ(Gi) + θ3
F(zi)θ

3
G(zi)√

ψ2(Fi) + θ3
F(zi)

√
ψ2(Gi) + θ3

G(zi)

 (16)

The score function is defined as:

ψ(z) = ρ3 − σ3 (17)

Definition 8 ([69]). Suppose that Z = {z1, z2, . . . , zn}, F = {(z, [ρF(zi, ), σF(zi)]) : zi ∈ Z}
and G = {(z, [ρG(zi, ), σG(zi)]) : zi ∈ Z} are two FFSs. The Hellinger distance is defined as:

dH(F, G) =

√√√√ 1
2n

n

∑
i=1

((√
ρ3

F(zi)−
√

ρ3
G(zi)

)2
+

(√
σ3

F(zi)−
√

σ3
G(zi)

)2
)

(18)

Definition 9 ([69]). Suppose that Z = {z1, z1, . . . , zn}, F = {(z, [ρF(zi, ), σF(zi)]) : zi ∈ Z}
and G = {(z, [ρG(zi, ), σG(zi)]) : zi ∈ Z} are two FFSs. The triangular divergence distance is
defined as:

dT(F, G) =

√√√√ 1
2n

n

∑
i=1

((
ρ3

F(zi)− ρ3
G(zi)

)2

ρ3
F(zi) + ρ3

G(zi)
+

(
σ3

F(zi)− σ3
G(zi)

)2

σ3
F(zi) + σ3

G(zi)

)
(19)

2.5. Tanimoto Similarity Measure

Definition 10 ([73]). Let A and B represent two sets of probability distributions, respectively,
denoted as {a1, a2, . . . , an} and {b1, b2, . . . , bn}. The Tanimoto measure, which quantifies the
similarity between A and B, can be given by:

T(A, B) =

n
∑

i=1
aibi

n
∑

i=1
a2

i +
n
∑

i=1
b2

i −
n
∑

i=1
aibi

(20)

3. Some Novel Tanimoto Similarity Measures and Distance Measures for FFSs

To date, research on the similarity and distance measures of FFSs remains incomplete,
and existing measures can sometimes exhibit counter-intuitive, insensitive to changes,
or even asymmetric problems in certain scenarios. Consequently, there is a need to pro-
pose new measures that can address these issues. The Tanimoto similarity coefficient
exhibits prominent advantages in metric properties, such as effective handling of binary
features [74], range constraints [74], simplified computation [74,75], sensitivity to small
datasets [74,75], broad applicability in domains like chemical informatics and bioinfor-
matics [75,76], and standardization capabilities [75,76]. Therefore, we are dedicated to
investigating the integration of the Tanimoto similarity coefficient with FFSs to enhance the
control of uncertainties in real-world applications, particularly in the fields of medicine,
biology, and decision-making. Within the current segment, we introduce a suite of Tan-
imoto similarity measures, along with their weighted forms, for FFSs, capitalizing on
the Tanimoto similarity measure. We introduce the corresponding distance measures for
comparison with established distance measures. The validity of these new measures is
confirmed through a series of computational trials. Additionally, we showcase the ability
of the newly introduced measures to resolve the paradoxical issues inherent in existing
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measures and to excel in distinguishing between diverse FFSs, as supported by multiple
illustrative instances.

3.1. New Similarity Measures for FFSs

Definition 11. Let two FFSs F = {(z, [ρF(zi), σF(zi)]) : zi ∈ Z} and G = {(z, [ρG(zi), σG(zi)]) :
zi ∈ Z} based on a finite set Z = {z1, z2, . . . , zn}. The Tanimoto similarity measure for the FFSs
can be given as:

TFFS(F, G) =
1
n

n

∑
i=1

ρ3
F(zi)ρ

3
G(zi) + σ3

F(zi)σ
3
G(zi)

ρ6
F(zi) + σ6

F(zi) + ρ6
G(zi) + σ6

G(zi)− ρ3
F(zi)ρ

3
G(zi)− σ3

F(zi)σ
3
G(zi)

(21)

Theorem 1. With respect to any two FFSs, F and G, the TFFS(F, G) must satisfy:

1. 0 ≤ TFFS(F, G) ≤ 1;
2. TFFS(F, G) = TFFS(G, F);
3. TFFS(F, G) = 1, if F = G, (ρF(zi) = ρG(zi), σF(zi) = σG(zi)).

Proof of Theorem 1.

1. Considering the ith item of the summation in Equation (11):

TFFS(F, G) =
ρ3

F(zi)ρ
3
G(zi) + σ3

F(zi)σ
3
G(zi)

ρ6
F(zi) + σ6

F(zi) + ρ6
G(zi) + σ6

G(zi)− ρ3
F(zi)ρ

3
G(zi)− σ3

F(zi)σ
3
G(zi)

(22)

According to 0 ≤ ρ(zi) ≤ 1 and 0 ≤ σ(zi) ≤ 1, we can obtain ρ3
F(zi)ρ

3
G(zi) +

σ3
F(zi)σ

3
G(zi) ≥ 0. According to the inequality a2 + b2 ≥ 2ab, ρ6

F(zi) + σ6
F(zi) +

ρ6
G(zi) + σ6

G(zi)− ρ3
F(zi)ρ

3
G(zi)− σ3

F(zi)σ
3
G(zi) ≥ ρ3

F(zi)ρ
3
G(zi) + σ3

F(zi)σ
3
G(zi). There-

fore, 0 ≤ TFFS(F, G) ≤ 1. From the Equation (21), the summation of n terms is
0 ≤ TFFS(F, G) ≤ 1.

2.

TFFS(F, G) =
1
n

n

∑
i=1

ρ3
F(zi)ρ

3
G(zi) + σ3

F(zi)σ
3
G(zi)

ρ6
F(zi) + σ6

F(zi) + ρ6
G(zi) + σ6

G(zi)− ρ3
F(zi)ρ

3
G(zi)− σ3

F(zi)σ
3
G(zi)

=
1
n

n

∑
i=1

ρ3
G(zi)ρ

3
F(zi) + σ3

G(zi)σ
3
F(zi)

ρ6
G(zi) + σ6

G(zi) + ρ6
F(zi) + σ6

F(zi)− ρ3
G(zi)ρ

3
F(zi)− σ3

G(zi)σ
3
F(zi)

= TFFS(G, F)

3. When F = G, there are ρF(zi) = ρG(zi), (σF(zi) = σG(zi), for i = 1, 2, . . . , n. So, there is

TFFS(F, G) =
1
n

n

∑
i=1

ρ3
F(zi)ρ

3
G(zi) + σ3

F(zi)σ
3
G(zi)

ρ6
F(zi) + σ6

F(zi) + ρ6
G(zi) + σ6

G(zi)− ρ3
F(zi)ρ

3
G(zi)− σ3

F(zi)σ
3
G(zi)

=
1
n

n

∑
i=1

ρ3
F(zi)ρ

3
F(zi) + σ3

F(zi)σ
3
F(zi)

ρ6
F(zi) + σ6

F(zi) + ρ6
F(zi) + σ6

F(zi)− ρ3
F(zi)ρ

3
F(zi)− σ3

F(zi)σ
3
F(zi)

=
1
n

n

∑
i=1

ρ6
F(zi) + σ6

F(zi)

ρ6
F(zi) + σ6

F(zi)

= 1

Hence, the demonstrations have been concluded.

Considering the weights associated with zi, a weighted Tanimoto similarity measure
for FFSs F and G is introduced as follows:
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Definition 12. For zi ∈ Z, a weight ωi is allocated. The weighted Tanimoto measure Tω
FFS(F, G)

can be given by:

Tω
FFS(F, G) =

n

∑
i=1

ωi(ρ
3
F(zi)ρ

3
G(zi) + σ3

F(zi)σ
3
G(zi))

ρ6
F(zi) + σ6

F(zi) + ρ6
G(zi) + σ6

G(zi)− ρ3
F(zi)ρ

3
G(zi)− σ3

F(zi)σ
3
G(zi)

(23)

In a manner analogous to the demonstration provided for Theorem 1, the following
can be derived:

Theorem 2. With respect to any two FFSs, F and G, the Tω
FFS(F, G) must satisfy:

1. 0 ≤ Tω
FFS(F, G) ≤ 1;

2. Tω
FFS(F, G) = Tω

FFS(G, F);
3. Tω

FFS(F, G) = 1, if F = G, (ρF(zi) = ρG(zi), σF(zi) = σG(zi)).

Taking into account the indeterminacy degree, the following can be derived:

Definition 13. For zi ∈ Z, take the degree of indeterminacy θi. The measure Tθ
FFS(F, G)is given by:

Tθ
FFS(F, G) = 1

n

n
∑

i=1

ρ3
F(zi)ρ

3
G(zi)+σ3

F(zi)σ
3
G(zi)+θ3

F(zi)θ
3
G(zi)

ρ6
F(zi)+σ6

F(zi)+θ6
F(zi)+ρ6

G(zi)+σ6
G(zi)+θ6

G(zi)−ρ3
F(zi)ρ

3
G(zi)−σ3

F(zi)σ
3
G(zi)−θ3

F(zi)θ
3
G(zi)

(24)

When considering the degree of indeterminacy and the weights of zi, we can obtain:

Definition 14. For zi ∈ Z, take the degree of indeterminacy θi and the weight ωi. The measure
Tθω

FFS(F, G) can be defined as:

Tθω
FFS(F, G) =

n
∑

i=1

ωi(ρ
3
F(zi)ρ

3
G(zi)+σ3

F(zi)σ
3
G(zi)+θ3

F(zi)θ
3
G(zi))

ρ6
F(zi)+σ6

F(zi)+θ6
F(zi)+ρ6

G(zi)+σ6
G(zi)+θ6

G(zi)−ρ3
F(zi)ρ

3
G(zi)−σ3

F(zi)σ
3
G(zi)−θ3

F(zi)θ
3
G(zi)

(25)

3.2. New Distance Measures for FFSs

To facilitate comparison with existing distance measures, we propose the distance
form for Tanimoto similarity.

Definition 15. Considering a fixed set Z = {z1, z2, . . . , zn}, F = {(z, [ρF(zi), σF(zi)]) : zi ∈ Z}
and G = {(z, [ρG(zi), σG(zi)]) : zi ∈ Z} are two FFSs, the Tanimoto distance is given by:

DTFFS(F, G) = 1 − TFFS(F, G) (26)

The larger the DTFFS(F, G) is, the larger the disparity between two FFSs.

Theorem 3. With respect to any two FFSs, F and G, the DTFFS(F, G) must satisfy:

1. 0 ≤ DTFFS(F, G) ≤ 1;
2. DTFFS(F, G) = DTFFS(G, F);
3. DTFFS(F, G) = 0, if F = G((ρF(zi) = ρG(zi), σF(zi) = σG(zi), θF(zi) = θG(zi)).

Definition 16. For zi ∈ Z, a weight ωi is allocated. The weighted Tanimoto distance DTω
FFS(F, G)

can be given by:
DTω

FFS(F, G) = 1 − Tω
FFS(F, G) (27)

Theorem 4. With respect to any two FFSs, F and G, the DTω
FFS(F, G) must satisfy:

1. 0 ≤ DTω
FFS(F, G) ≤ 1;

2. DTω
FFS(F, G) = DTω

FFS(G, F);
3. DTω

FFS(F, G) = 0, if F = G, (ρF(zi) = ρG(zi), σF(zi) = σG(zi)).
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Definition 17. For zi ∈ Z, take the degree of indeterminacy θi. The Tanimoto distance DTθ
FFS(F, G)

can be described as:
DTθ

FFS(F, G) = 1 − Tθ
FFS(F, G) (28)

Definition 18. For zi ∈ Z, take the degree of indeterminacy θi and the weight ωi. The Tanimoto
measure DTθω

FFS(F, G) is given by:

DTθω
FFS(F, G) = 1 − Tθω

FFS(F, G) (29)

3.3. Numerical Experiments

Example 1. There are three FFSs, F1, F2 and F3, with

F1 = {⟨z1, 0.30, 0.20⟩, ⟨z2, 0.60, 0.80⟩},
F2 = {⟨z1, 0.30, 0.20⟩, ⟨z2, 0.60, 0.80⟩},
F3 = {⟨z1, 0.50, 0.70⟩, ⟨z2, 0.64, 0.77⟩}.

According to equations in Sections 3.1 and 3.2, the similarity (sm) and distance (dm) between
FFSs are calculated, The computed values are depicted as Tables 1 and 2. Taking the weights
ω = {0.4, 0.6}, the weighted Tanimoto measures between FFSs are presented in Tables 3 and 4.

Table 1. The outcomes using Tanimoto similarity measures.

Measures sm(F1, F2) sm(F2, F3) sm(F1, F3) sm(F3, F1)

TFFS 1.0000 0.5151 0.5151 0.5151
Tθ

FFS 1.0000 0.8063 0.8063 0.8063

Table 2. The outcomes using Tanimoto distance measures.

Measures dm(F1, F2) dm(F2, F3) dm(F1, F3) dm(F3, F1)

DTFFS 0.0000 0.4849 0.4849 0.4849
DTθ

FFS 0.0000 0.1937 0.1937 0.1937

Table 3. The outcomes using weighted Tanimoto similarity measures.

Measures sm(F1, F2) sm(F2, F3) sm(F1, F3) sm(F3, F1)

Tω
FFS 1.0000 0.6086 0.6086 0.6086

Tθω
FFS 1.0000 0.8422 0.8422 0.8422

Table 4. The outcomes using weighted Tanimoto distance measures.

Measures dm(F1, F2) dm(F2, F3) dm(F1, F3) dm(F3, F1)

DTω
FFS 0.0000 0.3914 0.3914 0.3914

DTθω
FFS 0.0000 0.1578 0.1578 0.1578

According to the results above, observations indicate that in cases where F1 = F2, TFFS(F1, F2) = 1,
DTFFS(F1, F2) = 0, satisfying the Property (3) in Definition 11 and the Property (3) in Definition 15.
Furthermore, it holds that TFFS(F3, F1) = TFFS(F1, F3) and DTFFS(F3, F1) = DTFFS(F1, F3), satisfying
Property (2) as defined in Definition 11 and Property (2) as defined in Definition 15.

Example 2. Within the set Z, two FFSs F1 and F2 are identified, characterized by F1 = {⟨z, ρ, σ⟩}
and F2 = {⟨z, σ, ρ⟩}, respectively. In the present example, the membership and non-membership
degrees of F1 and F2 are alternatively denoted by variables ρ and σ, respectively. The variables ρ
and σ fall within the interval [0, 1], and these parameters satisfy condition 0 ≤ ρ3 + σ3 ≤ 1. The
similarity and distance between F1 and F2 are measured by Equations (21) and (26), respectively.
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Figures 1 and 2 illustrate the trends of similarity and distance between F1 and F2 as the parameters
ρ and σ vary within a range of values, respectively.

Figure 1. Tanimoto similarity measure between F1 and F2. (a) TFFS; (b) Opposite side of TFFS; (c)
Variations of ρ and σ; (d) Variations of σ and TFFS; (e) Variations of ρ and TFFS.

Figure 2. Tanimoto distance measure between F1 and F2. (a) DTFFS; (b) Opposite side of DTFFS;
(c) Variations of ρ and σ; (d) Variations of σ and DTFFS; (e) Variations of ρ and DTFFS.

According to Figures 1 and 2, the similarity and distance values fall within the interval [0,1].
Notably, when ρ equals σ, the similarity measure between F1 and F2 attains its maximum value
of 1. Conversely, when ρ is set to 1 while σ is zero (or vice versa), the similarity measure reaches
its minimum value of 0. As parameters ρ and σ vary within the range of [0, 1], the corresponding
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similarity measure undergoes alterations within the identical interval [0, 1]. The change in distance
measure is reversed. These results affirm that the Tanimoto similarity measures and the distance
measures satisfy the boundedness Property (1) as stipulated in Definition 11 and Definition 15,
respectively. The general direction shown in Figures 1 and 2 is consistent with instinctive reasoning,
indicating that the Tanimoto measures adhere to the requirements of Property (1) in Definition 11
and Definition 15.

Example 3. In the present study, two FFSs, labeled as F and G, under various Cases are examined,
as detailed in Table 5. It is evident that the F values for Case 1 and Case 2 are identical, whereas
the G values differ significantly. Consequently, the similarity measure sm(F, G) for Case 1 is
anticipated to be distinct from that of Case 2. Similarly, the similarity measures sm(F, G) for
Cases 3, 4, 5, and 6 are also expected to exhibit distinct values from one another. The outcomes of
employing diverse similarity measures are presented in Table 6.

Table 5. FFSs F and G under different Cases.

PFSs Case 1 Case 2

F {⟨z1, 0.361, 0.754⟩, ⟨z2, 0.032, 0.191⟩} {⟨z1, 0.361, 0.754⟩, ⟨z2, 0.032, 0.191⟩}
G {⟨z1, 0.080, 0.073⟩, ⟨z2, 0.459, 0.133⟩} {⟨z1, 0.081, 0.070⟩, ⟨z2, 0.459, 0.091⟩}
PFSs Case 3 Case 4

F {⟨z1, 0.327, 0.418⟩, ⟨z2, 0.283, 0.529⟩} {⟨z1, 0.327, 0.418⟩, ⟨z2, 0.283, 0.529⟩}
G {⟨z1, 0.391, 0.325⟩, ⟨z2, 0.021, 0.711⟩} {⟨z1, 0.407, 0.684⟩, ⟨z2, 0.455, 0.495⟩}
PFSs Case 5 Case 6

F {⟨z1, 0.734, 0.091⟩, ⟨z2, 0.249, 0.982⟩} {⟨z1, 0.734, 0.091⟩, ⟨z2, 0.249, 0.982⟩}
G {⟨z1, 0.731, 0.028⟩, ⟨z2, 0.452, 0.469⟩} {⟨z1, 0.723, 0.236⟩, ⟨z2, 0.588, 0.598⟩}

Table 6. The outcomes using different similarity measures. The counter-intuitive results in Cases 1
and 2 are highlighted in red, the counter-intuitive results in Cases 3 and 4 are highlighted in blue,
and the counter-intuitive results in Cases 5 and 6 are highlighted in green.

Measures Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

TFFS 0.002 0.001 0.613 0.534 0.561 0.631
Tθ

FFS 0.770 0.771 0.938 0.896 0.545 0.603
S1

FFS 0.778 0.778 0.914 0.883 0.506 0.609
S2

FFS 0.527 0.525 0.814 0.814 0.554 0.617
S3

FFS 0.582 0.571 0.829 0.829 0.655 0.655
S4

FFS 0.714 0.714 0.875 0.825 0.575 0.625
S5

FFS 0.758 0.758 0.852 0.861 0.420 0.420
S6

FFS 0.949 0.949 0.982 0.982 0.675 0.675

The findings reveal that counter-intuitive outcomes are consistently observed in each pair
of Cases. For instance, as previously mentioned, under reasonable assumptions, the sm(F, G)
for Case 1 would not be equal to that of Case 2; however, the same sm(F, G) values(0.778) are
obtained using S1

FFS. It is noteworthy that the majority of similarity measures yield counter-
intuitive results. Specifically, S1

FFS, S4
FFS, S5

FFS, and S6
FFS produced counter-intuitive outcomes

in Case 1 and Case 2; S2
FFS, S3

FFS and S6
FFS produced counter-intuitive outcomes in Case 3 and

Case 4; and S3
FFS, S5

FFS, and S6
FFS produced counter-intuitive outcomes in Case 5 and Case 6.

However, the introduced Tanimoto similarity measures exhibit high precision across all scenarios,
demonstrating the superiority of our measures.

Example 4. There are three FFSs in Z = {z1, z2}, denoted as F, G1 and G2, and presented in
Table 7. The data in Table 7 clearly indicate that G1 ̸= G2, implying that the distance between F
and G1, dm(F, G1) and the similarity between F and G2, dm(F, G2) must be distinct. In Table 8,
the outcomes of the Tanimoto distance measures and those of the Hellinger distance measure and the
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triangular distance measure proposed by Deng [69] (indicated as dH and dT) are compared. Obvi-
ously, the Tanimoto distance measures offer precise results that correspond well with expectations.
Nevertheless, the other distance measures yield results that are at odds with intuition and may not
effectively differentiate both FFSs correctly in practice. It can be concluded from this example that
our proposed measures enhance accuracy and demonstrate superior performance compared to the
Hellinger distance measure and the triangular distance measure.

Table 7. FFSs F, G1 and G2.

z1 z2

F ⟨0.509, 0.559⟩ ⟨0.541, 0.612⟩
G1 ⟨0.544, 0.332⟩ ⟨0.748, 0.205⟩
G2 ⟨0.811, 0.416⟩ ⟨0.569, 0.817⟩

Table 8. The outcomes using different distance measures. The counter-intuitive results are highlighted
in red.

Measures sm(F, G1) sm(F, G2)

DTFFS 0.525 0.534
DTθ

FFS 0.136 0.412
dH 0.249 0.249
dT 0.322 0.322

Example 5. Ai, Bi and Ci are three randomly generated FFSs under case i(i = 1, 2, . . . , 50).
The current study employs the proposed similarity measures to quantify the resemblance between
the two entities, subsequently calculating the discrepancy by taking the difference between the
maximum and minimum values derived from these assessments, denoted as Di. We conducted
50 such experiments and averaged the final results to obtain the average difference between the
minimum and maximum values of the similarity results in these 50 experiments, denoted as DAVG.
Specifically, the Di and DAVG for FFSs can be calculated as follow:

Di = max(TFFS(Ai, Bi), TFFS(Ai, Ci), TFFS(Bi, Ci)) (30)

DAVG =
1

50

50

∑
i=1

Di (31)

Similarly, we compare the Dis and DAVGs obtained using other measures. Figure 3a presents the
frequency of different similarity measures attaining the maximum Di in these 50 experiments, while
Figure 3b depicts the DAVGs of different similarity measures across these 50 experiments. We
conducted the same experiment using distance measures and the results are presented in Figure 4.

Figure 3a illustrates that the Tanimoto similarity measures tend to maximize differences of the
similarity between different FFSs while Figure 3b illustrates that the Tanimoto similarity reveals
that they produce the maximum average differences between the maximum and minimum similarity
values. These findings suggest that our proposed similarity measures generate similarity scores
with greater variation, thereby endowing the Tanimoto similarity measures with a greater ability to
discern differences across various levels of FFSs. Furthermore, it can exhibit better performance in
discriminating FFSs with high similarity. The heightened differences in similarity scores assigned
to different FFSs can bolster the trustworthiness of FFSs classification and facilitate more confident
decision-making. However, S1 and S2 exhibit the smaller values in Figure 3a,b, indicating a tendency
to assign similar values to diverse samples, potentially resulting in greater hesitation when making
decisions within the same environment, thereby impeding efficient and confident decision-making.
These outcomes underscore the preeminence of our proposed similarity measures over the extant
ones under scrutiny. Similarly, we performed the identical analysis on distance measures and
achieved the same outcomes, as depicted in Figure 4 corroborating the superiority of our proposed
distance measures.
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Figure 4. Differences in results obtained from each distance measures.

4. Applications

This section presents two models that are designed to tackle pattern recognition,
medical diagnosis, and MADM, which are grounded in the suggested measures. To
substantiate the efficiency of the models introduced, a series of experiments comparing
with the existing measures were conducted.

4.1. A Novel Model for Pattern Recognition and Medical Diagnosis

In the presence of an attribute set Z = {z1, z2, . . . , zn}, we aim to classify the test
samples S = {S1, S2, . . . , Sm} based on k patterns F = {F1, F2, . . . , Fk}. Pattern instances
are represented by FFSs, indicated as Fi = {

〈
zl , ρFi , σFi

〉
: zl ∈ Z}(i = 1, 2, 3, . . . , k).

Similarly, test samples are expressed as FFSs, indicated as Sj = {
〈

zl , ρSj , σSj

〉
: zl ∈ Z}

(j = 1, 2, 3, . . . , m). Our goal is to achieve precise classification of the test samples to the
provided patterns. The process of recognition is outlined below:

Step 1 Compute the Tanimoto similarity(or distance) between Sj(j = 1, 2, 3, . . . , m) and
Fi(i = 1, 2, 3, . . . , k).

Step 2 Obtain the maximum Tanimoto similarity s
(

Fo, Sj
)

using Equation (32) or the
minimum Tanimoto distance d

(
Fo, Sj

)
using Equation (33):

s
(

Fo, Sj
)
= max{TFFS(Fi, Sj)} (32)
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d
(

Fo, Sj
)
= min{DTFFS(Fi, Sj)} (33)

Step 3 If any pattern Fo has the highest Tanimoto similarity between Si, then, Si and Fo
belong to the same category:

o = arg max{s
(

Fo, Sj
)
}, Sj → Fo (34)

If distance measure is used as the standard of measure, then the following form
would be applied:

o = arg min{d
(

Fo, Sj
)
}, Sj → Fo (35)

Example 6 ([69]). This example pertains to the pattern recognition of unknown samples, where the
domain of discourse consists of their attributes zi(i = 1, 2, 3) and three known sample categories are
represented by FFS Fi(i = 1, 2, 3). Specifically,

F1 = {⟨z1, 0.8, 0.3⟩, ⟨z2, 0.7, 0.2⟩, ⟨z3, 0.6, 0.4⟩},
F2 = {⟨z1, 0.9, 0.2⟩, ⟨z2, 1.0, 0.0⟩, ⟨z3, 0.8, 0.1⟩},
F3 = {⟨z1, 0.2, 0.7⟩, ⟨z2, 0.4, 0.6⟩, ⟨z3, 0.7, 0.5⟩}.

There exists a sample S with unknown category, defined as:

S = {⟨z1, 0.8, 0.1⟩, ⟨z2, 0.9, 0.3⟩, ⟨z3, 0.9, 0.0⟩},

and the proposed Tanimoto measures are employed to classify the unknown sample S into the
appropriate category. The recognition process is as delineated below:

Step 1 Compute the Tanimoto similarity(or distance) between Fi(i = 1, 2, 3) and S:

TFFS(F1, S) = 0.665
TFFS(F2, S) = 0.894
TFFS(F3, S) = 0.238
DTFFS(F1, S) = 0.335
DTFFS(F2, S) = 0.106
DTFFS(F3, S) = 0.762

Step 2 Obtain the maximum Tanimoto similarity s
(

Fo, Sj
)

using Equation (32) or the minimum
Tanimoto distance d

(
Fo, Sj

)
using Equation (33):

s(F2, S) = 0.894
d(F2, S) = 0.1055

Step 3 According to the Equation (34) or Equation (35), S and F2 belongs to the same pattern.

A comparative assessment is conducted with the existing similarity and distance measures
mentioned in Section 2. The computational results are presented in Tables 9 and 10, and the
visualized outcomes are displayed in Figures 5 and 6.

Table 9. The outcomes of different similarity measures.

Measures sm(F1, S) sm(F2, S) sm(F3, S) Classification

TFFS 0.665 0.894 0.238 F2
Tθ

FFS 0.664 0.842 0.440 F2
S1

FFS 0.707 0.847 0.564 F2
S2

FFS 0.716 0.639 0.502 F1
S3

FFS 0.716 0.715 0.464 F1
S4

FFS 0.685 0.763 0.482 F2
S5

FFS 0.657 0.803 0.390 F2
S6

FFS 0.890 0.892 0.651 F2
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Table 10. The outcomes of different distance measures.

Measures dm(F1, S) dm(F2, S) dm(F3, S) Classification

DTFFS 0.335 0.106 0.762 F2
DTθ

FFS 0.336 0.158 0.560 F2
dH 0.228 0.123 0.474 F2
dT 0.293 0.159 0.547 F2
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Figure 5. The outcome of different similarity measures.
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Figure 6. The outcomes of different distance measures.

According to the tenet of minimum distance, it was determined that sample S is most similar
to sample F2, which is consistent with the findings in reference [69]. It should be noteworthy that
similar recognition results have also been yielded by other distance measures. Furthermore, based on
the principle of maximum similarity, similarity measures S1

FFS, S4
FFS, S5

FFS and S6
FFS yielded the

same recognition results, classifying sample S into F2. Conversely, the results of S2
FFS and S3

FFS are
different, as they classify sample S as F1. Therefore, the accuracy of S2

FFS and S3
FFS remains to be

discussed. These findings effectively demonstrate the utility of our proposed Tanimoto similarity
and distance measures.

Example 7. This instance is about mineral categories in pattern recognition. Suppose that there are
five typical mixed minerals represented by FFS Fi(i = 1, 2, 3, 4, 5), and each mineral is composed of
six basic minerals which form the universe of discourse zi(i = 1, 2, 3, 4, 5, 6). Our objective is to
use the proposed measures to identify the category to which an unknown mixed mineral S belongs.
Table 11 shows the known FFSs and unknown S, while Tables 12 and 13 summarize the results
obtained from similarity and distance measures, respectively.
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Table 11. Known FFSs and a simple S.

z1 z2 z3 z4 z5 z6

F1 ⟨0.457, 0.284⟩ ⟨0.036, 0.155⟩ ⟨0.838, 0.377⟩ ⟨0.032, 0.993⟩ ⟨0.109, 0.618⟩ ⟨0.266, 0.660⟩
F2 ⟨0.397, 0.726⟩ ⟨0.073, 0.426⟩ ⟨0.094, 0.308⟩ ⟨0.678, 0.063⟩ ⟨0.480, 0.373⟩ ⟨0.243, 0.084⟩
F3 ⟨0.329, 0.542⟩ ⟨0.390, 0.945⟩ ⟨0.079, 0.967⟩ ⟨0.475, 0.880⟩ ⟨0.059, 0.763⟩ ⟨0.965, 0.175⟩
F4 ⟨0.814, 0.424⟩ ⟨0.026, 0.097⟩ ⟨0.726, 0.319⟩ ⟨0.415, 0.631⟩ ⟨0.791, 0.289⟩ ⟨0.762, 0.457⟩
F5 ⟨0.655, 0.629⟩ ⟨0.306, 0.339⟩ ⟨0.932, 0.013⟩ ⟨0.266, 0.988⟩ ⟨0.225, 0.007⟩ ⟨0.673, 0.841⟩
S ⟨0.989, 0.199⟩ ⟨0.138, 0.648⟩ ⟨0.783, 0.232⟩ ⟨0.882, 0.111⟩ ⟨0.838, 0.267⟩ ⟨0.370, 0.085⟩

Table 12. The results of different similarity measures.

Measures sm(F1, S) sm(F2, S) sm(F3, S) sm(F4, S) sm(F5, S) Classification

TFFS 0.184 0.267 0.104 0.480 0.225 F4
Tθ

FFS 0.503 0.594 0.150 0.707 0.387 F4
S1

FFS 0.509 0.625 0.264 0.738 0.453 F4
S2

FFS 0.402 0.575 0.372 0.624 0.438 F4
S3

FFS 0.464 0.647 0.314 0.662 0.415 F4
S4

FFS 0.476 0.588 0.238 0.668 0.391 F4
S5

FFS 0.213 0.415 0.141 0.592 0.234 F4
S6

FFS 0.564 0.747 0.292 0.864 0.554 F4

Table 13. The results of different distance measures.

Measures dm(F1, S) dm(F2, S) dm(F3, S) dm(F4, S) dm(F5, S) Classification

DTFFS 0.816 0.733 0.896 0.520 0.775 F4
DTθ

FFS 0.497 0.406 0.850 0.293 0.613 F4
dH 0.513 0.371 0.607 0.305 0.505 F4
dT 0.559 0.433 0.679 0.368 0.565 F4

Table 12 reveals that the Tanimoto similarity of mineral S and F4 is the highest, suggesting that
mineral S belongs to F4. This is consistent with the results of other similarity measures. In addition,
as depicted in Table 13, the Tanimoto distance between mineral S and F4 is minimal, indicating that
mineral S is the closest to F4. These findings align with the results obtained from other distance
measures. The results of our experiments provide evidence for the effectiveness of the proposed measures.

Example 8 ([77]). There are four individuals afflicted with the following symptoms: Headache,
Acidity, Burning eyes, Back pain, and Depression. These patients, identified as Ragu, Mathi, Velu,
and Karthi, are collectively referred to as Ii(i = 1, 2, 3, 4). Their symptoms are encapsulated as
zi(i = 1, 2, 3, 4, 5). The set of possible diagnoses is denoted by Di(i = 1, 2, 3, 4, 5), and includes:
D1: Stress; D2: Ulcer; D3: Visual impairment (VI); D4: Spinal problem (SP); D5: Blood pressure
(BP). The relationship I → Z is expressed by FFSs, as presented in Table 14, while the relationship
Z → D is represented by FFSs and listed in Table 15. Every entry in both tables is determined
through the FFS, with the values indicating the degrees of membership and non-membership,
respectively. The introduced similarity and distance measures are employed to quantify the similarity
and distance between each patient and potential diagnosis. Diagnoses are established for each patient
aligning with the principles of maximum similarity or minimum distance. Tables 16–18 present
the similarity measure outcomes and distance of patient I towards each diagnosis D, alongside the
ultimate diagnosis results.
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Table 14. Symptomatic characteristic of the patients.

z1 z2 z3 z4 z5

I1 ⟨0.9, 0.1⟩ ⟨0.7, 0.2⟩ ⟨0.2, 0.8⟩ ⟨0.7, 0.2⟩ ⟨0.2, 0.7⟩
I2 ⟨0.0, 0.7⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.2⟩ ⟨0.2, 0.7⟩ ⟨0.1, 0.2⟩
I3 ⟨0.7, 0.1⟩ ⟨0.7, 0.1⟩ ⟨0.0, 0.5⟩ ⟨0.1, 0.7⟩ ⟨0.0, 0.6⟩
I4 ⟨0.5, 0.1⟩ ⟨0.4, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.8, 0.2⟩ ⟨0.3, 0.4⟩

Table 15. Symptomatic characteristic of the diagnosis.

z1 z2 z3 z4 z5

D1 ⟨0.3, 0.0⟩ ⟨0.3, 0.5⟩ ⟨0.2, 0.8⟩ ⟨0.7, 0.3⟩ ⟨0.2, 0.6⟩
D2 ⟨0.0, 0.6⟩ ⟨0.2, 0.6⟩ ⟨0.2, 0.8⟩ ⟨0.5, 0.0⟩ ⟨0.1, 0.8⟩
D3 ⟨0.2, 0.2⟩ ⟨0.5, 0.2⟩ ⟨0.1, 0.7⟩ ⟨0.2, 0.6⟩ ⟨0.2, 0.8⟩
D4 ⟨0.2, 0.8⟩ ⟨0.1, 0.5⟩ ⟨0.7, 0.0⟩ ⟨0.1, 0.0⟩ ⟨0.2, 0.7⟩
D5 ⟨0.2, 0.8⟩ ⟨0.0, 0.7⟩ ⟨0.2, 0.8⟩ ⟨0.1, 0.8⟩ ⟨0.8, 0.1⟩

Table 16. Diagnostic results of the Tanimoto similarity measures.

Measures sm(Ii, D1) sm(Ii, D2) sm(Ii, D3) sm(Ii, D4) sm(Ii, D5) Classification

I1 0.588 0.472 0.447 0.206 0.209 D1
I2 0.208 0.314 0.244 0.501 0.439 D4
I3 0.300 0.176 0.470 0.167 0.234 D3
I4 0.421 0.176 0.270 0.124 0.090 D1

Table 17. Diagnostic results of the Tanimoto distance measures.

Measures dm(Ii, D1) dm(Ii, D2) dm(Ii, D3) dm(Ii, D4) dm(Ii, D5) Classification

I1 0.412 0.528 0.553 0.794 0.791 D1
I2 0.792 0.686 0.756 0.499 0.561 D4
I3 0.700 0.824 0.530 0.833 0.766 D3
I4 0.579 0.824 0.730 0.876 0.910 D1

Table 18. The results of different measures.

Measures I1 I2 I3 I4

TFFS Stress SP VI Stress
Tθ

FFS Stress SP VI Stress
DTFFS Stress SP VI Stress
DTθ

FFS Stress SP VI Stress
Xiao and Ding Stress SP VI Stress

Zhou Stress SP VI Stress
Deng Stress SP VI Stress

Based on the findings presented in Tables 16 and 17, it is observed that I1 exhibits the highest
Tanimoto similarity measure and the smallest Tanimoto distance measure towards D1; I2 displays
the highest Tanimoto similarity measure and the smallest Tanimoto distance measure towards D4; I3
demonstrates the highest Tanimoto similarity measure and the smallest Tanimoto distance measure
towards D3, and I4 showcases the highest Tanimoto similarity measure and the smallest Tanimoto
distance measure towards D1. Thus, we can conclude that Ragu exhibits signs of stress, while
Mathi is suffering from spinal issues, Velu is experiencing vision-related difficulties, and Karthi is
under stress.

We compared and analyzed the proposed measures with other technologies to verify their
effectiveness, and the outcomes have been outlined in Table 18. The information revealed in Table 18
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reveals that our suggested measures yield diagnostic outcomes that align with those derived from
Ding and Xiao’s method [77] and Deng’s method [69], indicating the potential of our measures to
address medical diagnostic challenges. The experimental findings lend support to the viability of
our introduced similarity and distance measures. These measures assist healthcare professionals
in identifying the diagnosis that best matches the patient’s symptoms, thereby facilitating the
formulation of the most appropriate treatment plan. By comparing the similarity between the
patient’s symptoms and established diagnoses, a probabilistic diagnosis can be derived, which is
particularly useful for cases characterized by atypical symptoms or multiple morbidities.

4.2. A Novel Model for MADM

Consider a discrete collection of options denoted by I = {I1, I2 . . . , Im}, along with
an attribute set A = {A1, A2 . . . , An}. Let ω = {ω1, ω2 . . . , ωn} represent the vector of

attribute weights for Aj (where j = 1, 2, . . . , n), where ω > 0,
n
∑

j=1
wj = 1. Consider that

R = (ρij, σij)m×n is the Fermatean fuzzy matrix, where ρij represents the degree to which
alternative Ii fulfills attribute Aj, and σij represents the degree to which alternative Ii

falls short of attribute Aj, ρij ⊂ [0, 1], σij ⊂ [0, 1], (ρij)
3 + (σij)

3 ≤ 1, i = 1, 2, 3, . . . , m,
j = 1, 2, 3, . . . , n. The proposed model is described below:

Step 1 Introducing the Fermatean fuzzy positive ideal solution I+:

(ρ+, σ+) = ((ρ+1 , σ+
1 ), (ρ+2 , σ+

2 ), . . . , (ρ+j , σ+
j )) = ((1, 0), (1, 0), . . . (1, 0)) (36)

When an attribute Aj is a negative influence, we define the positive ideal solution
as (0, 1).

Step 2 Computing the weighted Tanimoto similarity measures(or the Tanimoto distance
measures) between Ii(i = 1, 2, 3, . . . , m) and I+ through the following formula:

Tω
FFS(Ii, I+) =

n

∑
i=1

ωi(ρ
3
ij(ρ

+
j )

3
+ σ3

ij(σ
+
j )

3
)

ρ6
ij + σ6

ij + (ρ+j )
6
+ (σ+

j )
6 − ρ3

ij(ρ
+
j )

3 − σ3
ij(σ

+
j )

3 (37)

Tθω
FFS(Ii, I+) =

n

∑
i=1

ωi(ρ
3
ij(ρ

+
j )

3
+ σ3

ij(σ
+
j )

3
+ θ3

ij(θ
+
j )

3
)

ρ6
ij + σ6

ij + θ6
ij + (ρ+j )

6
+ (σ+

j )
6
+ (θ+j )

6 − ρ3
ij(ρ

+
j )

3 − σ3
ij(σ

+
j )

3 − θ3
ij(θ

+
j )

3 (38)

or

DTω
FFS(Ii, I+) = 1 −

n

∑
i=1

ωi(ρ
3
ij(ρ

+
j )

3
+ σ3

ij(σ
+
j )

3
)

ρ6
ij + σ6

ij + (ρ+j )
6
+ (σ+

j )
6 − ρ3

ij(ρ
+
j )

3 − σ3
ij(σ

+
j )

3 (39)

DTθω
FFS(Ii, I+) = 1 −

n

∑
i=1

ωi(ρ
3
ij(ρ

+
j )

3
+ σ3

ij(σ
+
j )

3
)

ρ6
ij + σ6

ij + (ρ+j )
6
+ (σ+

j )
6 − ρ3

ij(ρ
+
j )

3 − σ3
ij(σ

+
j )

3 (40)

Step 3 Evaluate and order all available options Ii(i = 1, 2, 3, . . . , m) and determine the
most preferable choice(s) based on their respective weighted Tanimoto similarity
measures or the weighted Tanimoto distance measures. If an alternative exhibits a
higher weighted Tanimoto similarity or the smaller weighted Tanimoto distance,
it is a more important alternative. If any alternative has the highest weighted
Tanimoto similarity value or the smallest Tanimoto distance value, then, it would
be considered the most significant alternative.

Example 9. A certain company intends to procure a set of computers from a pool of five alternative
model options, denoted as Ii(i = 1, 2, 3, 4, 5). The company has identified four crucial attributes
for selection, namely, manufacturing materials, response speed, service life, and after-sales quality
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Aj(j = 1, 2, 3, 4, 5). These attributes are allocated weights, denoted as ωj(j = 1, 2, 3, 4)), where
ω = (0.4, 0.1, 0.2, 0.3), which together form the Fermatean fuzzy decision matrix R:

R =


(0.6089, 0.5983) (0.6236, 0.3782) (0.3024, 0.3979) (0.4229, 0.2788)
(0.7098, 0.2052) (0.7238, 0.3782) (0.6089, 0.2052) (0.7238, 0.3782)
(0.1950, 0.7008) (0.3224, 0.5780) (0.4057, 0.5983) (0.1189, 0.4780)
(0.6720, 0.5592) (0.2213, 0.4780) (0.4057, 0.4974) (0.6236, 0.4780)
(0.3024, 0.2999) (0.2213, 0.4780) (0.5076, 0.2052) (0.3224, 0.2788)


We advocate for the application of the MADM model to identify the most suitable solution.

Step 1 Introducing the Fermatean fuzzy positive ideal solution I+:

(ρ+, σ+) = ((ρ+1 , σ+
1 ), (ρ+2 , σ+

2 ), (ρ+3 , σ+
3 ), (ρ+4 , σ+

4 ))

= ((1, 0), (1, 0), (1, 0), (1, 0)).

Here, all attributes are considered positive attributes, so they are defined as (1, 0)
Step 2 Computing the weighted Tanimoto measures between Ii(i = 1, 2, 3, . . . , m) and I+ as

Tables 19 and 20:

Table 19. The computational results derived from the Tanimoto similarity measures.

Measures I1 I+ I2 I+ I3 I+ I4 I+ I5 I+

Tω
FFS 0.1662 0.4315 0.0274 0.1860 0.4270

Tθω
FFS 0.1107 0.2934 0.0132 0.1784 0.0280

Table 20. The computational results derived from the Tanimoto distance measures.

Measures I1 I+ I2 I+ I3 I+ I4 I+ I5 I+

DTω
FFS 0.8367 0.5620 0.9799 0.7489 0.9477

DTθω
FFS 0.8893 0.7066 0.9867 0.8216 0.9720

Step 3 For ease of observation, the results are presented as Figures 7 and 8. We can find that the
weighted similarity between I2 and I+ achieves its maximum level, similarly, the weighted
distance between I2 and I+ is at its minimum, so we choose I2 the best alternative.
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Figure 7. The computational results derived from the Tanimoto similarity measures.
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Figure 8. The computational results derived from the Tanimoto distance measures.

Furthermore, we obtained the same selection result using the TOPSIS method proposed by
Murat [70], and the calculation outcomes are presented in Table 21. The closeness index γ and the
positive ideal solution proposed by Murat U+ are utilized in this study. As the γ gets smaller, I2 is
taken as the best alternative.

Table 21. The results of Murat.

Methods I1U+ I2U+ I3U+ I4U+ I5U+

γ 0.5121 0.4412 0.5588 0.4913 0.5165

Example 10. At present, there are five students Ii(i = 1, 2, 3, 4, 5) available, from whom a certain
company needs to select two interns. A suite of selection criteria Aj(j = 1, 2, 3, 4, 5) has been
developed, which considers the student’s academic performance, competition participation, school
activities, mastery of professional knowledge related to the position and violations of discipline on
campus. However, violations of discipline on campus are not considered positive attributes. Weights
ω = (0.4, 0.2, 0.1, 0.2, 0.1) have been assigned to each attribute, resulting in the formation of a
Fermatean fuzzy decision matrix R:

R =


(0.471, 0.939) (0.806, 0.269) (0.132, 0.819) (0.348, 0.977) (0.547, 0.297)
(0.227, 0.538) (0.181, 0.403) (0.119, 0.125) (0.440, 0.387) (0.469, 0.383)
(0.332, 0.204) (0.646, 0.356) (0.779, 0.375) (0.457, 0.400) (0.941, 0.124)
(0.850, 0.121) (0.974, 0.195) (0.512, 0.904) (0.653, 0.048) (0.605, 0.273)
(0.900, 0.037) (0.190, 0.148) (0.221, 0.607) (0.576, 0.039) (0.881, 0.321)


The proposed MADM model is being utilized for selecting the most suitable interns:

Step 1 Introducing the Fermatean fuzzy positive ideal solution I+:

(ρ+, σ+) = ((ρ+1 , σ+
1 ), (ρ+2 , σ+

2 ), (ρ+3 , σ+
3 ), (ρ+4 , σ+

4 )), (ρ+5 , σ+
5 )

= ((1, 0), (1, 0), (1, 0), (1, 0), (0, 1)).

Here, campus disciplinary behavior is not considered a positive factor and is therefore
defined as (0, 1).

Step 2 Computing the weighted Tanimoto measures between Ii(i = 1, 2, . . . , m) and I+ as
Tables 22 and 23:
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Table 22. The results of Tanimoto similarity measures.

Measures I1 I+ I2 I+ I3 I+ I4 I+ I5 I+

Tω
FFS 0.1733 0.0303 0.1658 0.6012 0.4134

Tθω
FFS 0.1419 0.0171 0.1102 0.5196 0.3621

Table 23. The results of Tanimoto distance measures.

Measures I1 I+ I2 I+ I3 I+ I4 I+ I5 I+

DTω
FFS 0.8267 0.9697 0.8342 0.3988 0.5866

DTθω
FFS 0.8581 0.9829 0.8898 0.4804 0.6379

Step 3 Table 24 presents the sorted similarity measures and distance measures based on the
obtained data, in accordance with the principles of maximum similarity and minimum
distance. Adhering to the principles of maximum similarity and minimum distance, we
choose I4 and I5 as the optimal choices.

Table 24. Ranking of Tanimoto measures results.

Measures Ranking Orders Optimal Choices

Tω
FFS I4 > I5 > I2 > I1 > I3 I4&I5

Tθω
FFS I4 > I5 > I2 > I1 > I3 I4&I5

DTω
FFS I3 > I1 > I2 > I5 > I4 I4&I5

DTθω
FFS I3 > I1 > I2 > I5 > I4 I4&I5

5. Conclusions

Fermatean fuzzy sets (FFSs) are an effective tool for representing uncertain informa-
tion. However, the accurate measure of similarity and distance between two FFSs remains a
long-term research issue. In the present investigation, we present a suite of novel similarity
and distance measures for FFSs, drawing upon the Tanimoto measure. Computational
experiments validate that our proposed measures circumvent the counter-intuitive out-
comes prevalent in many current measures while offering more discernible differentiation
when distinguishing FFSs. Our measures exhibit enhanced efficacy and superiority when
contrasted with certain existing FFSs measures. Furthermore, we utilized our measures
in the context of pattern recognition, medical diagnostics, and multi-attribute decision-
making within Fermatean fuzzy settings, yielding outcomes that are both effective and
rational. Consequently, our methods are adeptly suited for assessing feature similarity
and facilitating decision-making in intricate and uncertain situations. Moving forward,
we intend to explore synergies with a variety of complementary methodologies, such as
learning operators with coupled attention [78], the extension of the COPRAS method [79],
complex cubic q-rung ortho-pair fuzzy sets [80], minimum weight optimization [81], Frank
aggregation operators [82], and IVq-ROF weighted geometric operators [83]. We aim to
apply these integrated approaches to address uncertainty within image segmentation, ob-
ject recognition, and image classification tasks, as well as to tackle data analysis challenges
in clustering, classification, and regression. By leveraging these advanced techniques, we
aspire to enhance the robustness and accuracy of our methodologies in managing the
intricacies of uncertainty across these diverse application domains.

Author Contributions: Conceptualization, H.W.; Methodology, H.W.; Visualization, H.W.; Software,
Z.W.; Investigation, Z.W.; Data curation, C.T.; Writing—original draft, H.W.; Writing—review &
editing, C.L.; Project administration, C.L.; Funding acquisition, C.L. and G.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
62102235 and Natural Science Foundation of Shandong Province grant number ZR2020QF029.



Symmetry 2024, 16, 277 22 of 24

Data Availability Statement: Both data and algorithms are listed in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yager, R.R. On using the Shapley value to approximate the Choquet integral in cases of uncertain arguments. IEEE Trans. Fuzzy

Syst. 2017, 26, 1303–1310. [CrossRef]
2. Wang, X.; Song, Y. Uncertainty measure in evidence theory with its applications. Appl. Intell. 2018, 48, 1672–1688. [CrossRef]
3. Hariri, R.H.; Fredericks, E.M.; Bowers, K.M. Uncertainty in big data analytics: Survey, opportunities, and challenges. J. Big Data

2019, 6, 44. [CrossRef]
4. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
5. Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [CrossRef]
6. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
7. Hung, W.L.; Yang, M.S. Fuzzy entropy on intuitionistic fuzzy sets. Int. J. Intell. Syst. 2010, 21, 443–451. [CrossRef]
8. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
9. Deng, Y. Uncertainty measure in evidence theory. Sci. China Inf. Sci. 2020, 63, 210201. [CrossRef]
10. Kabir, S.; Papadopoulos, Y. A review of applications of fuzzy sets to safety and reliability engineering. Int. J. Approx. Reason. 2018,

100, 29–55. [CrossRef]
11. Thong, N.T.; Son, L.H. HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender

systems for medical diagnosis. Expert Syst. Appl. 2015, 42, 3682–3701. [CrossRef]
12. Haseli, G.; Sheikh, R.; Wang, J.; Tomaskova, H.; Tirkolaee, E.B. A novel approach for group decision making based on the

best–worst method (G-bwm): Application to supply chain management. Mathematics 2021, 9, 1881. [CrossRef]
13. Ma, Z.; Liu, Z.; Luo, C.; Song, L. Evidential classification of incomplete instance based on K-nearest centroid neighbor. J. Intell.

Fuzzy Syst. 2021, 41, 7101–7115. [CrossRef]
14. Mardani, A.; Hooker, R.E.; Ozkul, S.; Yifan, S.; Nilashi, M.; Sabzi, H.Z.; Fei, G.C. Application of decision making and fuzzy sets

theory to evaluate the healthcare and medical problems: A review of three decades of research with recent developments. Expert
Syst. Appl. 2019, 137, 202–231. [CrossRef]

15. Hwang, G.J.; Tu, Y.F. Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping
analysis and systematic review. Mathematics 2021, 9, 584. [CrossRef]

16. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
17. Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 42.
18. Wang, G. Rough reduction in algebra view and information view. Int. J. Intell. Syst. 2003, 18, 679–688. [CrossRef]
19. Alcantud, J.C.R.; Khameneh, A.Z.; Kilicman, A. Aggregation of infinite chains of intuitionistic fuzzy sets and their application to

choices with temporal intuitionistic fuzzy information. Inf. Sci. 2020, 514, 106–117. [CrossRef]
20. Balasubramaniam, P.; Ananthi, V. Image fusion using intuitionistic fuzzy sets. Inf. Fusion 2014, 20, 21–30. [CrossRef]
21. Ngan, R.T.; Ali, M.; Fujita, H.; Abdel-Basset, M.; Giang, N.L.; Manogaran, G.; Priyan, M. A new representation of intuitionistic

fuzzy systems and their applications in critical decision making. IEEE Intell. Syst. 2019, 35, 6–17.
22. Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting

(IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 57–61.
23. Premalatha, R.; Dhanalakshmi, P. Enhancement and segmentation of medical images through Pythagorean fuzzy sets—An

innovative approach. Neural Comput. Appl. 2022, 34, 11553–11569. [CrossRef]
24. Naeem, K.; Riaz, M.; Karaaslan, F. Some novel features of Pythagorean m-polar fuzzy sets with applications. Complex Intell. Syst.

2021, 7, 459–475. [CrossRef]
25. Li, L.; Zhang, R.; Wang, J.; Zhu, X.; Xing, Y. Pythagorean fuzzy power Muirhead mean operators with their application to

multi-attribute decision making. J. Intell. Fuzzy Syst. 2018, 35, 2035–2050. [CrossRef]
26. Ali, G.; Ansari, M.N. Multiattribute decision-making under Fermatean fuzzy bipolar soft framework. Granul. Comput. 2022,

7, 337–352. [CrossRef]
27. Senapati, T.; Yager, R.R. Fermatean fuzzy sets. J. Ambient. Intell. Humaniz. Comput. 2019, 11, 663–674. [CrossRef]
28. Kirisci, M. Correlation coefficients of fermatean fuzzy sets with a medical application. J. Math. Sci. Model. 2022, 5, 16–23.
29. Ejegwa, P.; Muhiuddin, G.; Algehyne, E.; Agbetayo, J.; Al-Kadi, D. An Enhanced Fermatean Fuzzy Composition Relation Based

on a Maximum-Average Approach and Its Application in Diagnostic Analysis. J. Math. 2022, 2022, 1786221. [CrossRef]
30. Chang, K.H.; Chung, H.Y.; Wang, C.N.; Lai, Y.D.; Wu, C.H. A new hybrid Fermatean fuzzy set and entropy method for risk

assessment. Axioms 2023, 12, 58. [CrossRef]
31. Akram, M.; Shahzadi, G.; Davvaz, B. Decision-making model for internet finance soft power and sportswear brands based on

sine-trigonometric Fermatean fuzzy information. Soft Comput. 2023, 27, 1971–1983. [CrossRef]
32. Keshavarz-Ghorabaee, M.; Amiri, M.; Hashemi-Tabatabaei, M.; Zavadskas, E.K.; Kaklauskas, A. A new decision-making approach

based on Fermatean fuzzy sets and WASPAS for green construction supplier evaluation. Mathematics 2020, 8, 2202. [CrossRef]
33. Garg, H.; Shahzadi, G.; Akram, M. Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with

application in COVID-19 testing facility. Math. Probl. Eng. 2020, 2020, 7279027. [CrossRef]

http://doi.org/10.1109/TFUZZ.2017.2718966
http://dx.doi.org/10.1007/s10489-017-1024-y
http://dx.doi.org/10.1186/s40537-019-0206-3
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0165-0114(78)90029-5
http://dx.doi.org/10.1002/int.20418
http://dx.doi.org/10.1002/int.20131
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1007/s11432-020-3006-9
http://dx.doi.org/10.1016/j.ijar.2018.05.005
http://dx.doi.org/10.1016/j.eswa.2014.12.042
http://dx.doi.org/10.3390/math9161881
http://dx.doi.org/10.3233/JIFS-210991
http://dx.doi.org/10.1016/j.eswa.2019.07.002
http://dx.doi.org/10.3390/math9060584
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1002/int.10109
http://dx.doi.org/10.1016/j.ins.2019.12.008
http://dx.doi.org/10.1016/j.inffus.2013.10.011
http://dx.doi.org/10.1007/s00521-022-07043-5
http://dx.doi.org/10.1007/s40747-020-00219-3
http://dx.doi.org/10.3233/JIFS-171907
http://dx.doi.org/10.1007/s41066-021-00270-6
http://dx.doi.org/10.1007/s12652-019-01377-0
http://dx.doi.org/10.1155/2022/1786221
http://dx.doi.org/10.3390/axioms12010058
http://dx.doi.org/10.1007/s00500-022-07060-5
http://dx.doi.org/10.3390/math8122202
http://dx.doi.org/10.1155/2020/7279027


Symmetry 2024, 16, 277 23 of 24

34. Aydemir, S.B.; Yilmaz Gunduz, S. Fermatean fuzzy TOPSIS method with Dombi aggregation operators and its application in
multi-criteria decision making. J. Intell. Fuzzy Syst. 2020, 39, 851–869. [CrossRef]

35. Shahzadi, G.; Akram, M. Group decision-making for the selection of an antivirus mask under fermatean fuzzy soft information.
J. Intell. Fuzzy Syst. 2021, 40, 1401–1416. [CrossRef]

36. Gul, M.; Lo, H.W.; Yucesan, M. Fermatean fuzzy TOPSIS-based approach for occupational risk assessment in manufacturing.
Complex Intell. Syst. 2021, 7, 2635–2653. [CrossRef]

37. Sergi, D.; Sari, I.U. Fuzzy capital budgeting using fermatean fuzzy sets. In Intelligent and Fuzzy Techniques: Smart and
Innovative Solutions, Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, 21–23 July 2020; Springer: Cham, Switzerland, 2021;
pp. 448–456.

38. Sivadas, A.; John, S.J. Fermatean Fuzzy Soft Sets and Its Applications; Springer: Singapore, 2021; pp. 203–216.
39. Xu, C.; Shen, J. Multi-criteria decision making and pattern recognition based on similarity measures for Fermatean fuzzy sets.

J. Intell. Fuzzy Syst. 2021, 41, 5847–5863. [CrossRef]
40. Zeng, L.; Ren, H.; Yang, T.; Xiong, N. An Intelligent Expert Combination Weighting Scheme for Group Decision Making in

Railway Reconstruction. Mathematics 2022, 10, 549. [CrossRef]
41. Akram, M.; Shah, S.M.U.; Al-Shamiri, M.M.A.; Edalatpanah, S. Fractional transportation problem under interval-valued

Fermatean fuzzy sets. AIMS Math. 2022, 7, 17327–17348. [CrossRef]
42. Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model. 2011, 53, 91–97.

[CrossRef]
43. Salton, G. Introduction to Modern Information Retrieval; McGraw-Hill: New York, NY, USA, 1983.
44. Garg, H.; Rani, D. Novel similarity measure based on the transformed right-angled triangles between intuitionistic fuzzy sets

and its applications. Cogn. Comput. 2021, 13, 447–465. [CrossRef]
45. Huang, J.; Jin, X.; Lee, S.J.; Huang, S.; Jiang, Q. An effective similarity/distance measure between intuitionistic fuzzy sets based

on the areas of transformed isosceles right triangle and its applications. J. Intell. Fuzzy Syst. 2021, 40, 9289–9309. [CrossRef]
46. Olgun, M.; Türkarslan, E.; Ünver, M.; Ye, J. A cosine similarity measure based on the Choquet integral for intuitionistic fuzzy sets

and its applications to pattern recognition. Informatica 2021, 32, 849–864. [CrossRef]
47. Kumar, R.; Kumar, S. A novel intuitionistic fuzzy similarity measure with applications in decision-making, pattern recognition,

and clustering problems. Granul. Comput. 2023, 7, 1027–1050. [CrossRef]
48. Duan, J.; Li, X. Similarity of intuitionistic fuzzy sets and its applications. Int. J. Approx. Reason. 2021, 137, 166–180. [CrossRef]
49. Garg, H. A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. Int.

J. Intell. Syst. 2016, 31, 1234–1252. [CrossRef]
50. Li, J.; Wen, L.; Wei, G.; Wu, J.; Wei, C. New similarity and distance measures of Pythagorean fuzzy sets and its application to

selection of advertising platforms. J. Intell. Fuzzy Syst. 2021, 40, 5403–5419. [CrossRef]
51. Hussian, Z.; Yang, M.S. Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with

application to fuzzy TOPSIS. Int. J. Intell. Syst. 2019, 34, 2633–2654. [CrossRef]
52. Mahmood, T.; Ur Rehman, U.; Ali, Z.; Mahmood, T. Hybrid vector similarity measures based on complex hesitant fuzzy sets and

their applications to pattern recognition and medical diagnosis. J. Intell. Fuzzy Syst. 2021, 40, 625–646. [CrossRef]
53. Thao, N.X.; Chou, S.Y. Novel similarity measures, entropy of intuitionistic fuzzy sets and their application in software quality

evaluation. Soft Comput. 2022, 53, 2009–2020. [CrossRef]
54. Farhadinia, B. Similarity-based multi-criteria decision making technique of pythagorean fuzzy sets. Artif. Intell. Rev. 2022,

55, 2103–2148. [CrossRef]
55. Ilieva, G.; Yankova, T. Extension of interval-valued Fermatean fuzzy TOPSIS for evaluating and benchmarking COVID-19

vaccines. Mathematics 2022, 10, 3514. [CrossRef]
56. Albaity, M.; Mahmood, T. Medical diagnosis and pattern recognition based on generalized dice similarity measures for managing

intuitionistic hesitant fuzzy information. Mathematics 2022, 10, 2815. [CrossRef]
57. Naeem, M.; Qiyas, M.; Al-Shomrani, M.M.; Abdullah, S. Similarity measures for fractional orthotriple fuzzy sets using cosine and

cotangent functions and their application in accident emergency response. Mathematics 2020, 8, 1653. [CrossRef]
58. Li, R.; Zhang, H.; Zhang, X.; Wu, Q. A similarity measure based on fuzzy entropy for image segmentation. Entropy 2019, 21, 610.
59. Grzegorzewski, P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric.

Fuzzy Sets Syst. 2004, 148, 319–328. [CrossRef]
60. Gohain, B.; Dutta, P.; Gogoi, S.; Chutia, R. Construction and generation of distance and similarity measures for intuitionistic

fuzzy sets and various applications. Int. J. Intell. Syst. 2021, 36, 7805–7838. [CrossRef]
61. Mahanta, J.; Panda, S. A novel distance measure for intuitionistic fuzzy sets with diverse applications. Int. J. Intell. Syst. 2021,

36, 615–627. [CrossRef]
62. Xiao, F. A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems. IEEE Trans. Syst.

Man Cybern. Syst. 2019, 51, 3980–3992. [CrossRef]
63. Li, D.; Zeng, W. Distance measure of Pythagorean fuzzy sets. Int. J. Intell. Syst. 2018, 33, 348–361. [CrossRef]
64. Zeng, W.; Cui, H.; Liu, Y.; Yin, Q.; Xu, Z. Novel distance measure between intuitionistic fuzzy sets and its application in pattern

recognition. Iran. J. Fuzzy Syst. 2022, 19, 127–137.
65. Talebi, S.P.; Godsill, S.J.; Mandic, D.P. Filtering structures for α-stable systems. IEEE Control Syst. Lett. 2022, 7, 553–558. [CrossRef]

http://dx.doi.org/10.3233/JIFS-191763
http://dx.doi.org/10.3233/JIFS-201760
http://dx.doi.org/10.1007/s40747-021-00417-7
http://dx.doi.org/10.3233/JIFS-201557
http://dx.doi.org/10.3390/math10040549
http://dx.doi.org/10.3934/math.2022954
http://dx.doi.org/10.1016/j.mcm.2010.07.022
http://dx.doi.org/10.1007/s12559-020-09809-2
http://dx.doi.org/10.3233/JIFS-201763
http://dx.doi.org/10.15388/21-INFOR460
http://dx.doi.org/10.1007/s41066-023-00366-1
http://dx.doi.org/10.1016/j.ijar.2021.07.009
http://dx.doi.org/10.1002/int.21827
http://dx.doi.org/10.3233/JIFS-202212
http://dx.doi.org/10.1002/int.22169
http://dx.doi.org/10.3233/JIFS-200418
http://dx.doi.org/10.1007/s00500-021-06373-1
http://dx.doi.org/10.1007/s10462-021-10054-8
http://dx.doi.org/10.3390/math10193514
http://dx.doi.org/10.3390/math10152815
http://dx.doi.org/10.3390/math8101653
http://dx.doi.org/10.1016/j.fss.2003.08.005
http://dx.doi.org/10.1002/int.22608
http://dx.doi.org/10.1002/int.22312
http://dx.doi.org/10.1109/TSMC.2019.2958635
http://dx.doi.org/10.1002/int.21934
http://dx.doi.org/10.1109/LCSYS.2022.3202827


Symmetry 2024, 16, 277 24 of 24

66. Li, Z.; Lu, M. Some novel similarity and distance measures of pythagorean fuzzy sets and their applications. J. Intell. Fuzzy Syst.
2019, 37, 1781–1799. [CrossRef]

67. Zhang, X.; Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014,
29, 1061–1078. [CrossRef]

68. Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016,
42, 246–259. [CrossRef]

69. Deng, Z.; Wang, J. New distance measure for Fermatean fuzzy sets and its application. Int. J. Intell. Syst. 2022, 37, 1903–1930.
[CrossRef]
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