
Citation: Zhang, C.; Liang, Y.; Tavares,

A.; Wang, L.; Gomes, T.; Pinto, S. An

Improved Public Key Cryptographic

Algorithm Based on Chebyshev

Polynomials and RSA. Symmetry 2024,

16, 263. https://doi.org/10.3390/

sym16030263

Academic Editor: Aviv Gibali

Received: 26 January 2024

Revised: 16 February 2024

Accepted: 18 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Improved Public Key Cryptographic Algorithm Based on
Chebyshev Polynomials and RSA
Chunfu Zhang 1,2 , Yanchun Liang 3,* , Adriano Tavares 2,*, Lidong Wang 1,*, Tiago Gomes 2

and Sandro Pinto 2

1 School of Statistics and Data Science, Zhuhai College of Science and Technology, Zhuhai 519041, China;
cfzhang@zcst.edu.cn

2 Department of Industrial Electronics, University of Minho, 4800-058 Guimaraes, Portugal;
mr.gomes@dei.uminho.pt (T.G.); sandro.pinto@dei.uminho.pt (S.P.)

3 School of Computer Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
* Correspondence: ycliang@jlu.edu.cn (Y.L.); atavares@dei.uminho.pt (A.T.); wld@zcst.edu.cn (L.W.)

Abstract: Due to its very desirable properties, Chebyshev polynomials are often used in the design
of public key cryptographic systems. This paper discretizes the Chebyshev mapping, general-
izes the properties of Chebyshev polynomials, and proposes an improved public key encryption
algorithm based on Chebyshev chaotic mapping and RSA, i.e., CRPKC − Ki. This algorithm intro-
duces alternative multiplication coefficients Ki, the selection of which is determined by the size of
Tr(Td(x))mod N = Td(Tr(x))mod N, and the specific value selection rules are shared secrets among
participants, overcoming the shortcomings of previous schemes. In the key generation and encryp-
tion/decryption stages, more complex intermediate processes are used to achieve higher algorithm
complexity, making the algorithm more robust against ordinary attacks. The algorithm is also com-
pared with other RSA-based algorithms to demonstrate its effectiveness in terms of performance
and security.

Keywords: public-key cryptosystem; Chebyshev polynomials; RSA; alternative multiplication
coefficients; semi-group property

1. Introduction

At its essence, cryptography design and analysis is a mathematical technique for ensur-
ing secure communication over insecure channels, closely related to computer technology
and electronic communication technology. Although traditional symmetric encryption
systems are highly efficient, the security of the ciphertext is entirely dependent on the
secrecy of the key in the process of key distribution and management, and once the key
is leaked, the confidentiality is lost [1]. When the sending and receiving ends are far
apart and the key needs to be changed frequently, it is difficult to pass the key between
each other. The concept of public-key cryptography was first proposed by Diffie and
Hellman in their 1976 paper “New Directions in Cryptography” [2], which addresses
the confidentiality problems in symmetric encryption systems, particularly in multi-user
communication networks.

In 1977, Rivest, Shamir, and Adleman proposed the first relatively complete public-key
cryptographic algorithm, the RSA algorithm [3]. Since then, a large number of public-key
cryptographic algorithms have been proposed based on different computational prob-
lems, such as the Mer–Hellman knapsack algorithm, McEliece algorithm, ElGamal al-
gorithm, elliptic curve cryptography, lattice-based cryptography, and password-based
public-key cryptography.

The RSA public-key cryptographic system is still recognized as a well-performing
cryptographic system. It is the first algorithm that can be used for both digital encryption
and digital signatures. Its security is based on integer factorization, and the construction
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of the system is based on Euler’s theorem, which has an extremely important position
in modern cryptography. With the rapid development of computer technology, many
encryption methods for RSA have become relatively easy to crack [4–8]. Traditional public-
key cryptographic algorithms are constantly facing various challenges, so it is necessary to
study new practical public-key cryptographic algorithms as supplements or replacements
for current public-key cryptographic algorithms.

According to relevant methods, the author conducted a systematic search for research
articles on standard or modified RSA algorithms and their various applications, and a total
of approximately 84 related articles were found [9]. These articles were then divided into
several domains or categories, such as cloud security [10,11], image cryptography [12,13],
wireless security, and others. In recent years, lightweight cryptographic systems using
hybrid variants of RSA have been proposed, showing effective results in smart devices and
IoT devices [14,15]. Based on the literature [9], we also analyzed the literature from the past
two years [16,17]. Figure 1 categorizes the progress of all RSA variants based on different
categories of publications each year. We can see that enhancements to the RSA algorithm
have always been a popular research direction, which is also the goal pursued in this paper.
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In Table 1, we focus on introducing popular RSA algorithms that are relevant to this
research and have improved the performance and security of RSA to varying degrees.
Some of these methods are borrowed and compared with the proposed method, while
others are evaluated theoretically.

Table 1. Algorithm analysis-and-evaluation of the recent related enhanced models.

Algorithm Model Total Modulus
Intermediate

Variables as of
Standard RSA

Encryption
Scheme Key Generation Decryption

Scheme
Shortcomings/

Comments

Rivest, R.L. et al. [3] 1, i.e., N Not Any C = MemodN ed = 1modφ(N) M = CdmodN Security is not efficient

Minni et al. [18] 1, i.e., N X(↔ N) C = MemodX ed = 1modφ(X) M = CdmodX Higher time
Complexity [19]

Thangavel et al. [19] 3, i.e., n,m, N e1, e2, e = e1
e2 C = MemodN ed = 1mod(φ(N) ·e1) M = CdmodN Same security level as

RSA [20]

Mathur et al. [21] 1, i.e., N, L → N P, Q, O, N, s.t.,
Q = P · e C = MemodN ed = 1modφ(N) M = CdmodN Slower, i.e., higher

time [22]
Panda and

Chattopadhyay [23] 1, i.e., N P1, W C = MemodW ed = 1mod(φ(N) ·P1) M = CdmodW Security is not
efficient [24]

Raza Imam et al. [17] 3, i.e., N e1, e2 = e XOR N C = Me2 modN e1d1 = 1modφ(N) M = Cd2 modN Lack of proof

The natural relationship between the basic properties of chaos transformations, such as
the mixture, sensitivity to parameters and initial values, and cryptography were mentioned
in Shannon’s classic paper [25]. Research on chaotic public-key cryptography is still
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relatively weak compared to chaotic sequences and block cipher systems, and there are
few practical and efficient encryption schemes based on chaos. Paying attention to the
good properties of chaotic mappings and traditional cryptology criteria is still a new
research field [26]. In [27], L. Kocarov and Z. Tasev proposed a public-key encryption
method based on Chebyshev polynomials. Unfortunately, P. Bergamo pointed out its
insecurity and inefficiency [28]. Zhao et al. proposed a new key agreement scheme
based on chaotic mappings using the traditional RSA algorithm and discrete logarithm
problems over finite fields. The scheme is based on the values of Chebyshev polynomials
over finite fields, thereby avoiding various active attacks in the past and ensuring key
agreement security. At the same time, the key agreement scheme can also achieve identity
authentication functions [29]. Benasser et al. proposed an identity-based encryption
scheme based on Chebyshev polynomials, but it has security flaws. Wang et al. proposed a
corresponding identity authentication scheme, and the key exchange protocol based on
Chebyshev polynomials is gradually being improved and perfected [30].

In recent years, there have been some new research advances in chaotic public-key
cryptography [31–34]. In [35], Hsiao proposed an RSA encryption algorithm based on
chaotic synchronization. However, RSA must use at least 1024 bits of digits to be considered
secure under today’s computational capabilities. Ruzai, W.N.A. proposed a solution by
giving examples to illustrate that near-square prime numbers could potentially lead to RSA
being completely broken in [36]. Lawnik proposed two new cryptographic systems based
on modified Chebyshev polynomials in the paper [37]. Gupta proposed a new lightweight
image encryption algorithm based on session key using Chebyshev chaotic mapping and
hybrid mix [38]. Patgiri proposed future solutions for RSA on traditional computers in
the paper [39]. Ryu proposed an improved and secure Chebyshev chaotic mapping user
authentication scheme in the paper [40].

This article discretizes the Chebyshev mapping, promotes the properties of Chebyshev
polynomials, and designs an improved public key encryption algorithm based on the
Chebyshev chaotic mapping and RSA, i.e., CRPKC − Ki. This algorithm overcomes the
shortcomings of previous schemes and provides higher security. The analysis and experi-
mental results show that this algorithm has strong robustness against ordinary attacks.

The article is organized as follows. Section 2 is the foundation of the rest of the article,
as it includes the description of public key encryption algorithm, the extensive properties
of Chebyshev mapping, and the Chebyshev-RSA public key cryptosystem. In Section 3, we
propose an improved public key encryption algorithm based on Chebyshev polynomials
and RSA. Section 4 describes the software implementation and provides examples. Section 5
presents some performance analyses. Finally, the conclusion and future scope is drawn in
the last section.

2. Preliminaries
2.1. The General Public Key Cryptography Algorithm Can Be Described as Follows [1]

1. Each user generates a key pair k = (kd, ke), where kd represents the private key and
ke represents the public key. The public key cryptography algorithm requires that kd
can be derived theoretically from ke, but in practice, it is not feasible due to the large
computational complexity.

2. The information sender encrypts the plaintext p using the publicly available key ke
of the information receiver: E(p, ke) = C, where p represents the plaintext and C
represents the encrypted ciphertext.

3. The information receiver decrypts using their privately held secret key kd: D(C, kd) = p.

2.2. Chebyshev Polynomials and Their Properties

Let C[−1, 1] be a vector space consisting of all continuous real-valued functions on
[−1, 1], then

{
cos(ncos−1(x

)
)}n=∞

n=0 is a set of bases on C[−1, 1]. Let

Tn = cos(ncos−1(x)), (1)
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then Tn is called the n order Chebyshev polynomial of the first kind. It has the follow-
ing properties:

• First,

T0 = 1, T1 = x, and Tn+2(x) = 2xTn+1(x)− Tn(x); (2)

• Second, define the mapping ρn : x → Tn on [−1, 1], then the following semi-group
property holds:

ρmn(x) = ρm(ρn(x)) = ρn(ρm(x)). (3)

To clearly state the design idea of the chaotic key scheme, we need to extend its properties.

Theorem 1. The semi-group property of Chebyshev polynomials holds on the interval (−∞,+∞);

Theorem 2. If x is a positive integer and p is an odd prime number, then

Tp(x) ≡ x(modp); (4)

Theorem 3. Let p and q be relatively prime, and x and e be positive integers. If Te(x) ≡ x(modp)
and Te(x) ≡ x(modq), then

Te(x) ≡ x(modpq). (5)

Proof. Since (p, q) = 1, there exist integers s and t such that sp + tq = 1, therefore, Te(x) =
spTe(x) + tqTe(x) ≡ spx + tqx ≡ x(modpq). □

Corollary 1. If Tφ(x) ≡ 1 for all x and there exist positive integers e and d satisfy-
ing ed ≡ 1(modφ), then

Ted(x) ≡ x(modpq), (6)

where p and q are coprime primes.

2.3. Rivest–Shamir–Adleman

The security of RSA is based on the difficulty of factoring large numbers. Its public
key and private key consist of a pair of large primes. The difficulty of recovering plaintext
from a public key and ciphertext is equivalent to factoring the product of two large primes.

A detailed description of the RSA algorithm is as follows:

1. Select two random large primes p and q, each with at least 512 bits, ensuring that the
difference between them is not too large or too small;

2. Calculate the modulus n = pq and the Euler’s totient function value φ(n);
3. Select a number e and use the extended Euclidean algorithm to find d that satisfies

ed = 1(modφ(n));
4. The information receiver publishes the public key (e, n), with d as the private key;
5. The information sender divides the plaintext into blocks, such that each block is a

positive integer m less than n, and encrypts it using c = me(modn);
6. The information receiver decrypts using the privately saved key d according to the

equation m = cd(modn).

From the above algorithm, it can be observed that:

m = cd = (me)d = med = m

Usually, attacks on RSA target the protocols rather than the specific algorithm itself,
but that discussion is beyond the scope of this explanation.
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2.4. Chebyshev-RSA Public Key Cryptosystem

Kocarev et al. [41] proposed a Chebyshev-based RSA-type public key cryptography
algorithm (Chebyshev-RSA Public Key Cryptosystem, CRPKC) based on the periodicity of
Tn(x), as shown below.

Assuming that Alice is the sender and Bob is the receiver, the communication process
is as follows.

1. Key generation. Bob randomly generates two different large prime numbers p and q,
calculates N = pq and φ =

(
p2 − 1

)(
q2 − 1

)
, chooses a random number e such that

1 < e < φ and gcd(e, φ) = 1, and calculates the integer d such that 1 < d < φ and
ed ≡ 1modφ; Bob’s public key is (N, e) and the private key is d;

2. Message encryption. Alice converts the message to be encrypted into an integer
m(0 ≤ m < N), calculates the ciphertext c = Te(m)(modN) based on Bob’s public key
(N, e), and sends it to Bob;

3. Message decryption. Bob receives the ciphertext c and uses the private key d to obtain
the plaintext m = Td(c)(modN).

Although CRPKC has its unique characteristics, due to the lack of widespread applica-
tion and research, it has certain uncertainties in terms of security, such as man-in-the-middle
attacks and tampering attacks. Additionally, it does not provide identity authentication.

3. Improved Public Key Encryption Algorithm

The improved public key encryption algorithm is based on the aforementioned CRPKC
algorithm and uses alternative multiplication factors Ki. The selection of Ki is determined
by the magnitude of Tr(Td(x))modN = Td(Tr(x))modN, where T(x) represents the Cheby-
shev polynomial, i = 1, 2 · · · n. The specific rules for selecting Ki values and the size
of n are secrets shared only among the participants. Therefore, this algorithm not only
enhances computational complexity but also introduces digital signatures to prevent ci-
phertext from being subjected to man-in-the-middle attacks and tampering. The improved
algorithm, CRPKC − Ki, inherits the advantages of the CRPKC algorithm while also taking
into account the good properties of Chebyshev polynomials, resulting in better security
and reliability.

The introduction of selective factors Ki follows the following selection rules:

K1, 0 ≤ Tr(Td(x))modN = Td(Tr(x))modN ≤ N
n

K2, N
n ≤ Tr(Td(x))modN = Td(Tr(x))modN ≤ 2N

n
...

Ki,
(i−1)N

n ≤ Tr(Td(x))modN = Td(Tr(x))modN ≤ iN
n

...
Kn, (n−1)N

n ≤ Tr(Td(x))modN = Td(Tr(x))modN ≤ N

. (7)

In the above equation, N is a large prime number, and n represents the number
of Ki. It is easy to see from Chebyshev’s semigroup property that Tr(Td(x))modN =
Td(Tr(x))modN.

(AmodN)(modp) = A(modp), where A represents Chebyshev polynomial, and N = p · q,
where p and q are two large prime numbers.

The algorithm is described as follows (assuming Alice wants to communicate with Bob):

3.1. Key Generation

1. Alice randomly generates two distinct large prime numbers p and q, with similar
sizes, but p − q is a large integer;

2. Calculate N = pq and φ = (p − 1)(q − 1);
3. Randomly select an integer e, choose a random number x ∈ ZN such that 1 < e < φ

and gcd(e, φ) = 1;
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4. Use the extended Euclidean algorithm to calculate d, such that 1 < d < φ and
ed ≡ 1modφ, and calculate A = Td(x)(modN);

At this point, the keys have been generated. Alice’s public key is (N, A, e), and the
private key is d.

3.2. Encryption

1. Bob obtains Alice’s public key (N, A, e);
2. Randomly choose r < N, calculate Tr(A)(modN) = Tr(Td(x))(modN), and select KiB

based on Equation (6);
3. Express the message to be encrypted as an integer m, calculate M = KiBm, and satisfy

0 ≤ M < N;
4. Use the public key to calculate C = Re(M) = Me(modN), and B = Tr(x)(modN).

YA = Ek(SigA(C, B)), where Ek(□) is a mature symmetric encryption system;
5. Send the ciphertext (C, B, YA) to Alice.

3.3. Decryption

1. Alice receives the ciphertext (C, B, YA), decrypts YA, and checks SigA(C, B). If it is
correct, continue; otherwise, stop;

2. Calculate M = Red(C) = Cd(modN) using the private key d, Td(B)(modN) =
Td(Tr(x))(modN), and select KiA based on Equation (7);

3. Calculate m = M/KiA.

4. Algorithm Implementation
4.1. Feasibility Analysis

Since the semigroup property of Chebyshev polynomials holds on the interval (−∞,+∞),
the decryption calculation is feasible. It is an important problem to evaluate Chebyshev
polynomials in order to reduce the calculation time of Tn(x). There are two ways to
implement a fast algorithm for Chebyshev polynomial Tn(x).

The first method is to use the semigroup property of Chebyshev polynomials to
implement a fast algorithm. The algorithm is described as follows:

Let the integer s be decomposed as:

s = s1 · · · s1︸ ︷︷ ︸
k1

s2 · · · s2︸ ︷︷ ︸
k2

· · · si · · · si︸ ︷︷ ︸
ki

= sk1
1 sk2

2 · · · ski
i (8)

Then, due to the semigroup property of Chebyshev polynomials, it can be obtained that:

Ts(x) = Tk1
s1 (T

k2
s2 (· · · Tki

si (x))) (9)

To calculate Ts(x), the number of iterations required is k1 + k2 + · · · ki << s. And the
efficiency is higher when the value of s has more factors.

Although this algorithm is much faster than recursively calculating according to the
definition, it is also composed of many loops and has high memory requirements for
computers. Especially when n is a large number, the amount of computation is quite large.
Therefore, the second matrix-based calculation method, which has been experimentally
proven to be more efficient, is introduced below.

From the definition of Chebyshev polynomials Tn+1(x) = 2xTn(x)− Tn−1(x), T0 = 1,
T1 = x, if we transform the above equation into a matrix expression, it can be represented
as follows:

Let the integer s be decomposed as:[
Tn

Tn+1

]
=

[
0 1
−1 2x

][
Tn−1

Tn

]
=

[
0 1
−1 2x

]n[T0
T1

]
(10)
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From the above equation, it can be seen that the key to calculating Tn(x) lies in finding

the value of the matrix
[

0 1
−1 2x

]n

. The flowchart of the specific algorithm is shown

in Figure 2.
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4.2. An Example

Here we list a simple example to illustrate the algorithm and basic steps.
We now discuss the software implementation of the algorithm and provide a practical

example. PYTHON is a popular and powerful programming software currently available
for calculations. In our software implementation, we used an algorithm library in the
Windows environment.

4.2.1. Generation of Secret Key

1. Alice randomly generates two distinct large prime numbers, p = 127 and q = 113;
2. Compute N = pq = 14,351 and φ(n) = (p − 1)(q − 1) = 14,112;
3. Select a random integer e = 5 and a random number x = 13 ∈ ZN , where gcd(e, φ) =

gcd(5, 14,112) = 1;
4. Use the extended Euclidean algorithm to calculate d = 5645, satisfying 1 < d < φ,

and ed ≡ 1modφ. Calculate the Chebyshev polynomial A = Td(x)(modN) = 13,558;



Symmetry 2024, 16, 263 8 of 15

At this point, Alice’s public key is (N, A, e) = (14,351, 13,558, 5), and the private key
is d = 5645.

4.2.2. Encryption

1. Bob obtains Alice’s public key (N, A, e) = (14,351, 13,558, 5);
2. Choose a random r = 15 < N and calculate Tr(A)(modN) = Tr(Td(x))(modN) = 9257.

Select KiB according to Equation (7). For simplicity, take n = 5 and KiB = 2i + 1 as an
arithmetic progression. In this case, calculate Equation (11) and select KiB = K4 = 9.

Ki =


3, 0 ≤ Tr(Td(x))modN ≤ 2870.2
5, 2870.2 ≤ Tr(Td(x))modN ≤ 5740.4
7, 5740.4 ≤ Tr(Td(x))modN ≤ 8610.6
9, 8610.6 ≤ Tr(Td(x))modN ≤ 11,480.8
11, 11,480.8 ≤ Tr(Td(x))modN ≤ 14,351

(11)

In this example, 8610.6 < Tr(A)(modN) = 9257 < 11,480.8; therefore, choose
KiB = K4 = 9;

3. Express the message to be encrypted as an integer m = 1234 and calculate
M = KiBm = 11,106, satisfying 0 ≤ M < 14,351;

4. Compute the ciphertext C = Re(M) = Me(modN) = 8438;

5. B = Tr(x)(modN) = 12,347.

Send the ciphertext (C, B) = (8438, 12,347) to Alice.

4.2.3. Decryption

1. Alice receives the ciphertext (C, B) = (8438, 123,47);
2. Calculate M = Red(C) = Cd(modN) = 84385456(mod14,351) = 11,106 using the

private key d. At this point, 8610.6 < Td(B)(modN) = Td(Tr(x))(modN) = 9257 <
11,480.8. Similarly, calculate Equation (12) and select KiA = K4 = 9;

Ki =


3, 0 ≤ Td(Tr(x))modN ≤ 2870.2
5, 2870.2 ≤ Td(Tr(x))modN ≤ 5740.4
7, 5740.4 ≤ Td(Tr(x))modN ≤ 8610.6
9, 8610.6 ≤ Td(Tr(x))modN ≤ 11,480.8
11, 11,480.8 ≤ Td(Tr(x))modN ≤ 14,351

(12)

3. Calculate m = M/KiA = 11,106/9 = 1234.

Then, send it to Alice. Finally, Alice recovers the message m.
In this example, p, q should be set as large primes in practical applications to achieve

higher security, and the selection of other integers follows a similar approach.

4.3. Mathematical Proof of The Proposed CRPKC − Ki Algorithm

Mathematically, the proposed algorithm CRPKC − Ki is proven as follows.
The encrypted text C is calculated using:

C = Re(M) = Me(modN) = (m · KiB)
e(modN) (13)

Plaintext message m is calculated using:

m = M/KiA = Cd(modN)/KiA (14)

Now, the objective is to fetch back the message M from Cd(modN), then calculate the
original message m = M/KiA.
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Proof. Since Equations (13) and (14), we can say, Cd(modN) = Med(modN) = (KiB ·m)ed(modN),
where, Bob calculates KiB = Tr(A)(modN) = Tr(Td(x))(modN), Furthermore, ed = 1modφ(N)
such that Cd(modN) = (KiB · m)1+k·φ(N)(modN) = (KiB · m)1(KiB · m)k·φ(N)(modN) =
(KiB · m)1(modN) = KiB · m = M, Since KiA = Td(Tr(x))(modN) =Tr(Td(x))(modN) = KiB,
using Equation (14), therefore, m = M/KiA = (K iB · m)/KiA = m, which is the origi-
nal plaintext.

5. Implementation Results and Analysis

This paper conducts a security analysis on the improved public key encryption al-
gorithm. The theoretical analysis shows that the improved algorithm is a public key
cryptographic algorithm based on polynomials and RSA, which takes into account the
security advantages of both and can effectively resist common attacks.

We can list the following advantages:

• Attackers cannot use the periodicity of Chebyshev polynomials to break it, because the
cosine representation of Chebyshev polynomials defined on the interval (−∞,+∞) is
not valid.

• The three typical scenarios of RSA cipher attacks cannot be the same as the proposed
scheme, because the following inequalities hold:

Rn(m1)Rn(m2) ̸= Rn(m1m2) (15)

Rn1+n2(m)(modn) ̸= Rn1(m)Tn2(m)(modn) ̸= Rn1(Rn2(m))(modn) (16)

where Equation (15) is an analogy to the multiplication property of RSA.
• It can resist common modular attacks.
• After encryption transformation, the linear independence between plaintexts cannot

be maintained, which is immune to low exponent attacks.

The proposed CRPKC-Ki algorithm is implemented using SageMath’s Jupyter Note-
book. SageMath (or simply Sage) is a free and open-source mathematical software system
that integrates numerous functionalities of symmetric and asymmetric key encryption,
providing a unified interface and API. SageMath is developed based on the Python program-
ming language and supports various functionalities such as mathematical computation,
data analysis, graph plotting, and programming, and it can run on various operating
systems. In this paper, the implementation and analysis were conducted using an 11th Gen
Intel® Core™ i5-11320H @ 3.20 GHz processor, with 16.0 GB of RAM (15.8 GB available),
and the operating system is Windows 10, 64-bit. The following two sections focus on the
performance and security evaluation of CRPKC-Ki compared to RSA and its variants.

In reference [17], Raza Imam et al. performed a performance analysis of the XRSA
algorithm, including key generation time, encryption time, and decryption time, and
compared it with Rivest et al.’s standard RSA, as well as two other enhanced versions of
RSA, namely ESRKGS [19] and MRSA [42]. The analysis results showed that the XRSA
algorithm outperforms other similar algorithms in terms of performance, and the algorithm
achieves higher algorithm complexity by introducing parameters in the key generation
and encryption/decryption stages, which enhances the algorithm’s security. This is similar
to the motivation for improving the algorithm in this paper; hence, we introduce this
algorithm as a comparative algorithm for performance analysis.

5.1. Performance Analysis
5.1.1. Key Generation

The Miller–Rabin primality testing algorithm is used for generating primes and tested
and analyzed on different bit sizes of initial primes, ranging from 64 to 128, 256, 512, 1024,
and 2048. Table 2 shows the comparative analysis of CRPKC-Ki with RSA, XRSA, and
CRPKC. Figure 3 shows the comparison of key generation time under different key sizes,
and it is evident that CRPKC has the longest key generation time, while standard RSA has
the shortest and the best key generation time. For ease of comparison, the vertical axis uses
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a logarithmic scale with a base of 10 when plotting. The proposed CRPKC-Ki algorithm
is essentially similar to the XRSA algorithm and falls in the middle. Due to the addition
of the selective coefficient Ki in the proposed algorithm, which adds an initial parameter
compared to RSA, the increase in time is acceptable considering the enhanced security.

Table 2. Analysis and comparison of CRPKC-Ki model with RSA, XRSA, and CRPKC models.

Model Length of Primes
(in bits)

Key Generation Time
(in ms)

Encryption Time
(in ms)

Decryption Time
(in ms)

Total Execution Time
(in ms)

RSA

64 20.27 0.26 0.22 20.75
128 25.47 0.37 0.33 26.17
256 40.50 0.97 0.85 42.32
512 76.55 1.75 1.68 79.99

1024 820.14 15.28 14.54 849.96
2048 4575.03 52.26 37.39 4664.67

XRSA

64 32.00 0.57 0.54 33.11
128 47.61 1.30 1.05 49.95
256 93.54 2.02 2.01 97.56
512 188.91 10.53 9.56 209.00

1024 922.81 39.68 36.06 998.56
2048 8706.22 185.98 221.41 9113.61

CRPKC

64 50.03 0.96 0.94 51.93
128 76.33 1.46 1.42 79.21
256 147.21 4.61 3.77 155.59
512 228.62 11.81 12.14 252.57

1024 1582.39 40.12 39.25 1661.76
2048 14,203.75 198.01 232.38 14,634.14

CRPKC-Ki

64 35.02 0.65 0.64 36.32
128 54.19 1.29 1.08 56.57
256 105.99 3.12 3.09 112.19
512 177.18 10.93 10.01 198.12

1024 1250.09 39.87 39.24 1329.19
2048 10,036.74 1896.98 235.31 12,169.03
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5.1.2. Encryption and Decryption

Considering the encryption and decryption time shown in Figures 4 and 5, it can
be observed that the standard RSA has the lowest execution time in both encryption
and decryption, making it the best in terms of encryption and decryption time. Due to
the additional steps involved in the encryption and decryption stages of the CRPKC-Ki
algorithm, the overall complexity of the proposed algorithm is increased. The introduction
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of a selection coefficient in the final encryption and decryption steps prevents attackers
from determining the private key or plaintext using the product of the public key and the
prime numbers. Furthermore, until the typical size of 1024 bits, CRPKC-Ki achieves similar
performance in terms of encryption and decryption time compared to XRSA. Compared
to CRPKC, CRPKC-Ki has better efficiency in terms of encryption, decryption, and key
generation time per bit. For higher sizes of 2048 bits, CRPKC-Ki is slightly behind XRSA
in encryption and decryption time, but the recommended prime size is usually 1024 bits,
and the proposed CRPKC-Ki is more efficient and performs better among all the discussed
algorithms. From the overall performance evaluation, the CRPKC-Ki algorithm is equally
efficient and performs at the same level as the XRSA algorithm discussed, making it the
best algorithm after the standard RSA. CRPKC is the least efficient among the discussed
variations. Compared to the standard RSA, the added key generation time in CRPKC-Ki
is reasonable because the introduction of Ki increases the complexity, making it more
time-consuming to crack the CRPKC-Ki system and, thus, improving security.
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5.2. Security Analysis
5.2.1. Security Resistance to Man-in-the-Middle Attack Which Is Described Above

The man-in-the-middle attack refers to the ability of an attacker to intercept, replay,
substitute, or modify the information exchanged between the communication parties.
Malicious attackers can change ciphertext by hiding alternate multiplication coefficients k,
and then calculate m = m′/k to obtain plaintext. However, during the encryption process,
we cleverly apply alternative multiplication coefficients Ki, which are not only determined
by the values of Tr(A)(modN) = Tr(Td(x))(modN) and Td(B)(modN) = Td(Tr(x))(modN),
but also only share specific value selection strategies with participants. For example, in the
example given in this paper, Ki is selected by an arithmetic sequence, which is just a simple
example. In actual applications, we can adopt more complex rules, so we do not need to
worry about the security of Ki selection.

5.2.2. Security against Tampering Attacks and Identity Authentication

Since Alice will sign the ciphertext during the actual encryption process,
YA = Ek(SigA(C, B)), Bob can use this to check if the result has been tampered with or
forged. Bob can easily verify Alice’s identity through her public key during the decryp-
tion process.

5.2.3. Practicability Analysis

Modulus N is a large prime number, and Ki ∈ ZN , providing a large selection space
that can be systematically changed. Here, i = 1, 2 · · · n is an optional parameter, and we
can choose Ki as needed. Additionally, if the number of users increases, we can increase
the quantity accordingly. In practical cryptographic applications, periodically changing
the values of Ki to enhance cryptographic security has the advantages of convenience,
efficiency, and operability.

5.2.4. Comparison between Improved Algorithm and Original Algorithm

Both algorithms achieve encryption functionality, but the CRPKC − Ki algorithm
has higher security and reliability. Its innovation lies in the clever use of alternative
multiplication coefficients Ki to prevent common ciphertext attacks. The use of digital
signatures helps verify identity and avoid tampering attacks. The performance comparison
analysis is shown in Table 3.

Table 3. Performance comparisons.

Attacks/Functions The Algorithm, CRPKC The Improve Algorithm,
CRPKC−Ki

Man-in-the-middle attack Not safe Safe
Tampering attack Not safe Safe

Authentication Not given Safe
Practicability Ordinary Better

From the process of the public key encryption algorithm, we can see that although
its computational complexity is slightly higher than the former, the order of magnitude
is basically the same. The application of digital signatures will adopt more mature so-
lutions. Therefore, in practical applications, the improved algorithm is superior to the
original algorithm.

6. Conclusions and Future Scope

Compared to the private key cryptographic system, the public key cryptographic
system has unique advantages in key exchange, communication between unknown entities,
secure services, and authentication services. This paper introduces the CRPKC public
key encryption algorithm and proposes an improved public key cryptographic algorithm
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based on Chebyshev polynomials and RSA, named CRPKC − Ki. The improved algorithm
introduces an alternative multiplication coefficient Ki to forge ciphertext and uses digital
signatures to ensure Alice’s identity. These measures enable the system to resist chosen
ciphertext attacks and tampering attacks while providing identity authentication function-
ality. In conclusion, after performance and security analysis, the proposed CRPKC − Ki
algorithm based on an RSA variant shows better results with improved security.

The proposed algorithm is equivalent to encrypting the plaintext twice. Although it
requires some extra computation time compared to other methods, we believe its advantage
lies in the fact that even if an attacker guesses the private key in the same amount of time,
they still need to decipher the true plaintext from the forged plaintext. This enhances
the algorithm’s security. However, in the case of large prime bit sizes, the efficiency of
the algorithm decreases significantly, especially beyond 2048 bits, and the multiplication
coefficient cannot be set too large, otherwise it will have a negative impact on encryp-
tion/decryption time. This can be seen as a drawback. Therefore, as future work, we plan
to extend this algorithm to parallel machines so that multiple related operations can be
executed simultaneously on multi-core processors. We will also discuss the optimal values
for the multiplication coefficient in detail to reduce computational costs. Additionally,
combining the algorithm protocol with symmetric cryptography and ensuring its wide
acceptability in IoT devices will be explored.
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