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Abstract: We propose a new non-convex fractional-order Weber multiplicative denoising variational
generalized function, which leads to a new fractional-order differential equation, and prove the
existence of a unique solution to this equation. Furthermore, the model is solved using the partial
differential equation (PDE) method and the alternating direction multiplier method (ADMM) to verify
the theoretical results. The proposed model is tested on some symmetric and asymmetric medical
computerized tomography (CT) images, and the experimental results show that the combination of
the fractional-order differential equation and the Weber function has better performance in medical
image restoration than the traditional model.
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1. Introduction

Images are one of the most important ways for human beings to acquire and share
information. Nowadays, image processing techniques have been applied to numerous
aspects, such as image denoising, image segmentation, and image enhancement. As a
matter of fact, the uncertainty of internal and external factors affect the visual quality of
the image. Therefore, image denoising is an essential preprocessing step for digital image
processing.

Compared to additive noise, multiplicative noise is more destructive and causes more
damage to the image, making image recovery more difficult. In recent years, the removal
of multiplicative noise has attracted much attention. Multiplicative noise exists in coherent
imaging systems, such as laser imaging, ultrasound imaging, and synthetic aperture radar
imaging [1–5]. Therefore, the removal of multiplicative noise is of great significance in
various image processing methods. The mathematical formulation of such degradation
processes can be expressed as follows [6]:

f = uη (1)

where f is the observed noisy image, u is the noise-free image, and η is multiplicative noise.
Due to its characteristics, its removal is more difficult and challenging than additive noise.
Therefore, multiplicative noise will be investigated in this paper.

At present, researchers have proposed many methods to remove multiplicative noise,
such as Lee’s method [7], the scale threshold method [8], and variational methods [1,2].
Among the variational approaches to image reconstruction methods, Rudin, Lions, and
Osher [1] first proposed a classical total variation regularization model (RLO) that is
effective and simple. However, this method uses total variation (TV) regularization and
produces a staircase effect, which can degrade the quality of image restoration. To improve
this result, it was proposed in [2] to use higher-order TV (HOTV) as a regular term. It is
effective in suppressing the staircase effect when removing noise; however, it can cause
blurring of the image edges because it spreads too fast at the edges.
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Fractional-order total variation regularization utilizes the properties of fractional-
order calculus and takes into account the use of non-local information of the image for
reconstruction. Figure 1 shows the amplitude–frequency characteristic curves of each
order, from which it can see that the differentiation of each order has a certain enhancing
effect on the high-frequency part of the signal, and with increases in order and frequency,
the enhancing effect becomes stronger. The differentiation of each order has a certain
attenuating effect on the low-frequency part of the signal, and this effect becomes weaker
with the decrease in order. The fractional-order TV regularization term is better able to
handle the texture details of the image. Therefore, fractional-order TV regularization
terms have been considered by many scholars to reduce the step effect. For more details,
please refer to [9–16]. In [16], the authors combine a non-convex norm with fractional-
order variational to denoise images containing impulse noise, and the model is effective in
overcoming the step effect and maintaining neat contours.
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All images are eventually perceived by the human visual system. From an imaging
perspective, image processing takes visual perception into account, yet most conventional
image processing modalities rarely take this into account by weighting background stimuli
to influence human perception and response to fluctuations in the intensity of visual signals,
which is Weber’s law at work in psychology. Weber’s law was first described by the German
physiologist Weber in 1834 [17] and later quantified by the experimental psychologist
Fechner, the founder of modern psychophysics. In [18], the authors combined Weber’s law
with the classical variational model ROF to propose the Weberized nonlinear TV restoration
model, theoretically analyzed it, and experimentally derived that the minimum permissible
fluctuation δu is larger in the restored image on the region with higher background intensity
u and weaker human visual sensitivity. In [19,20], the authors combined Weber with
AA [21] and I-div multiplicative denoising models, respectively, and proved experimentally
that their proposed model performs well in image denoising. They have shown that for a
large range of stimuli u, Weber’s law provides a good approximation. Therefore, Weber’s
law will be the basis for the development of our model in this paper.

This paper is organized as follows. In Section 2, we review some classic variational
models for removing additive noise or multiplicative noise as well as the alternating direc-
tion multiplier method (ADMM) algorithm. In Section 3, we propose our new restoration
model and prove that the minimum value exists. In Section 4, the ADMM iterative algo-
rithm is introduced for the solution of the proposed model. Some numeric results of the
experiments are presented in Section 5, and the paper concludes with Section 6.
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2. Model Review and Related Algorithm

In this section, several classical multiplicative denoising models and Weberized total
variational restoration models are introduced as well as the alternating direction multiplier
method algorithm.

2.1. Multiplicative Denoising Model
2.1.1. The RLO Model

Rudin, Lions, and Osher [1] firstly proposed the denoising model for multiplicative
noise (RLO) in 2003, and its basic idea is the same as the ROF model. Both models are used
to build a minimization model of energy generalization to remove the noise in the image,
and they successfully exploit the intrinsic regularity of the image to reflect the geometrical
regularity of the real image from the solution of the model. The RLO model is expressed
as follows:

min
u∈BV(Ω)

{
E(u) =

∫
Ω|∇u|dx +

∫
Ω

[
λ

f
u
+ µ

(
f
u
− 1

)2
]

dx

}
(2)

where λ and µ are the regularization parameters.
The RLO model is a classic variational model for multiplicative Gaussian noise. How-

ever, since this model is based on the statistical properties of multiplicative noise, the model
is not generalizable to other multiplicative noise.

2.1.2. The AA Model

In 2008, assuming that the noise is a mean gamma noise, Aubert and Aujol [21] derived
a data fidelity term based on a maximum a posteriori estimation. Considering gamma
noise, a non-convex model, AA model, is proposed:

min
u∈BV(Ω)

{
E(u) =

∫
Ω|∇u|dx + λ

∫
Ω

(
logu +

f
u

)
dx

}
(3)

The only sufficient condition for a minimal solution of this model to exist is u ∈ (0, 2 f ).
The AA model can effectively remove gamma multiplicative noise. However, since the

AA model’s fidelity term is non-convex, it tends to block the denoising process, resulting in
poor denoising.

2.1.3. The SO Model

Shi and Osher [22] proposed a convex variational model using the corresponding
relaxation inverse scale space flow as a denoising method by using the data fidelity term of
the AA model with |log u|BV instead of |u|BV in the regular term part:

min
w∈BV(Ω)

{
E(w) =

∫
Ω|∇w|dx + λ

∫
Ω

[
a f e−w +

b
2

f 2e−2w + (a + b)w
]

dx
}

(4)

Here, w = log u and a, b are nonnegative constants.

2.1.4. The I-Divergence Model

Inspired by the AA model, Steidl and Teuber [23] proposed the I-divergence model,
also called the generalized Kullback–Leibler divergence (KL divergence) model, in 2010.

I-divergence of f and u: I( f , u) =
∫

Ω

(
f log f

u − f + u
)

dx.
Since f is the observed image, ignoring the constant term simplifies the equation to

the following:
∫

Ω(u − f log u) . The model uses general KL divergence, i.e., I-divergence,
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as the fidelity term, and the total variation as regular term. The mathematical expression is
as follows:

min
u∈BV(Ω)

{
E(u) =

∫
Ω|∇u|dx + λ

∫
Ω

(
f log

f
u
− f + u

)
dx

}
(5)

The advantage of the Weberized model is that it improves the contrast retained in the
image. Now, we introduce several denoising models with the Weberized model.

2.2. The Weberized Denoising Model
2.2.1. The Weberized ROF Denoising Model

In 2003, Jianhong Shen merged Weber’s law with the ROF model proposed by Rudin,
Osher, and Fatemi in 1993 and proposed a Weberized classical TV model to remove additive
noise [18]:

min
u∈BV(Ω)

{
Ew[u| f ] =

∫
Ω|∇u|w dx +

λ

2

∫
Ω(u − f )2 dx

}
(6)

Here,
∫

Ω|∇u|w dx =
∫

Ω
|∇u|

u dx. The first term is the Weber regularity term. The
second term is a non-convex data fidelity term, consistent with the ROF model.

2.2.2. The Weberized AA Denoising Model

Lili Huang, Liang Xiao, and Zhihui Wei [19] proposed an image multiplicative noise
removal model based on the combination of Weber’s total variational regularization and
the AA model in 2009.

min
u∈BV(Ω)

Ew[u| f ] =
∫

Ω|∇u|w dx + λ
∫

Ω

(
f
u
+ logu

)
dx =

∫
Ω
|∇u|

u
dx + λ

∫
Ω

(
f
u
+ logu

)
dx (7)

Its corresponding Euler Lagrange equation is expressed as follows:

− 1
u

div
(

∇u
|∇u|

)
+ λ

(
1
u
− f

u2

)
= 0 (8)

2.2.3. Weberized I-Divergence Denoising Model

In 2023, Xinyao Yu and Donghong Zhao [20] proposed an image multiplicative denois-
ing model combining Weber’s total variation regularization term and the I-div data fidelity
term:

min
u∈BV(Ω)

{
E(u) =

∫
Ω
|∇u|

u
dx + λ

∫
Ω(u − f logu)dx

}
(9)

Its corresponding Euler Lagrange equation is expressed as follows:

− 1
u

div
(

∇u
|∇u|

)
+ λ

(
1 − f

u

)
= 0 (10)

2.3. ADMM Introduction

The alternating direction multiplier method(ADMM) [24,25] combines the decom-
posability of the pairwise ascent method with the superior convergence of the multiplier
method. A recent study [26] revealed that the ADMM algorithm is also closely related
to the Douglas–Rachford splitting method, Spingain’s partial inverse method, Dykstra’s
alternating projection, and the splitting Bregman iterative algorithm. Given a constrained
optimization problem, the equation is denoted as follows:

min
x,z

{ f (x) + g(z)} s.t. Ax + Bz = C

where x ∈ Rn, z ∈ Rn, A ∈ Rm×n, B ∈ Rm×n, and C ∈ Rm. Assume also that f (·), g(·)
are convex. The above constrained optimization problem can be written as:
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the objective function: f (x) + g(z) x ∈ Rn, z ∈ Rn.
the restrictive condition: Ax + Bz = C.

Its augmented Lagrangian function is expressed as follows: L(x, z; τ) = f (x) + g(z) +
τT(Ax + Bz − C) + ρ

2∥Ax + Bz − C∥2
2, where ρ

2 ||Ax + Bz − C||22 is the penalty, τ is the aug-
mented Lagrange multiplier, and ρ is an augmentation penalty parameter.

Using the alternating iteration method to find the minima for the augmented and
generalized Lagrange equations, the following ADMM iteration is obtained:

xk+1 = argmin L
(

x, zk, τk
)

zk+1 = argmin L
(

xk+1, z, τk
)

τk+1 = τk + ρ
(

Axk+1 + Bzk+1 − C
) (11)

The ADMM method can transform the complex multi-optimization variable problem
into a simple single optimization variable subproblem, so that different solutions can be
adopted for different subproblems. Moreover, the experimental results of ADMM method
for the quadratic penalty term are generally convergent [25,27]. Therefore, this paper uses
ADMM method to solve the proposed model.

3. Modeling and Analysis

In this section, we use the Grünwald-Letnikov(G-L) fractional-order derivatives, com-
bine Weber’s law with the I-div model to construct a multiplicative denoising model
of fractional order, and provide a proof of the existence of uniqueness of the model in
this paper.

3.1. The Proposed Model

Combining Weberized I-divergence denoising model [20] and the fractional-order
variational model, we propose the model of this paper:

min
u∈S(Ω)

E(u) =
∫

Ω
|∇αu|

u
dx + λ

∫
Ω(u − f logu)dx (12)

where α is a fractional order and λ is the regularization parameter.
The first term is the regularity term, which is a fractional-order Weber variation term.

The second term is the data fidelity term, which is derived from the constraints, and ensures
that the denoised image and the observed image are still as consistent as possible in terms
of information other than noise. The two terms are minimized in terms of the difference
between the noise signal interference, i.e., it is hoped that the loss of information will be
minimized. Here, λ is the regularization parameter that is used to balance the regularity
term and the data fidelity term.

The space of solutions is noted as follows: S(Ω) =
{

u > 0
∣∣u ∈ L1(Ω), TVα(logu) < ∞

}
.

3.2. Theoretical Analyses
3.2.1. Existence

Proof of boundedness of a solution is provided before proving the existence of a
solution to the model.

Lemma 1 (Boundness). Let f ∈ L∞(Ω) and in f
Ω

f > 0. If the model has a solution v, then

in f
Ω

f < v < sup
Ω

f .

Proof of Lemma 1. Note α = in f
Ω

f , β = sup
Ω

f . When u > f , function u − f logu increases

monotonically, so there is
∫

Ω(inf(u, β)− f loginf(u, β))dx ≤
∫

Ω(u − f logu)dx.
Moreover, based on Lemma 1 in the literature [28], TVα(loginf(u, β)) ≤ TVα(logu) exists.
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Thus, there is E(inf(u, β)) ≤ E(u), and the equation holds if and only if u ≤ β.
Since v is the minimum solution of this model, the equation holds when u = v and

hence v ≤ β.
Similarly, if E(u) ≤ E(sup(u, α)), then v ≥ α can be obtained.
In summary, in f

Ω

f < v < sup
Ω

f . □

In the following, we will give an existence proof for the solution of the model.

Lemma 2 (Existence). Let f ∈ L∞(Ω) and in f
Ω

f > 0, then the optimization problem has at least

one solution in its solution space S(Ω).

Proof of Lemma 2. Define α = in f
Ω

f , β = sup
Ω

f . Since there is u ≡ β ∈ S(Ω), the solution

space S(Ω) is nonempty [18].
Set {un} ∈ S(Ω) as the minimizing sequence of this optimization problem. Based on

the boundedness, there is α ≤ un ≤ β; thus,
∫

Ω
|∇αu|

β dx ≤
∫

Ω
|∇αun |

un
dx ≤

∫
Ω

|∇αu|
α dx.

Since {un} is a bounded sequence in Banach space BVα(Ω), the space of bounded
variational functions BVα(Ω) be defined as BVα(Ω) =

{
f : f ∈ L1(Ω), TVα( f ) < ∞

}
,

forming Banach spaces under the BV norm ∥ f ∥BV = ∥ f ∥L1 + TVα( f ). Because Ω is
bounded, ∥un∥L1 < ∞.

Furthermore, based on the definition of the minimization sequence of {un}, a con-
stant C > 0 exists, so E(un) ≤ C. According to TVα(log un) < ∞, and when un = f ,∫

Ω(un − f log un)dx can hit the minimum
∫

Ω( f − f log f )dx. Thus, TVα(un) < C.
Consequently, {un} is uniformly bounded in space BVα(Ω) with respect to n. Based

on the tightness of BVα(Ω) space, there exist subcolumns of {un} (still {un} is denoted for
convenience) and a function u in the space BVα(Ω) that {un} converges strongly to u in
L1(Ω)-space, i.e., un(x) n→∞→ u(x), a.e. x ∈ Ω.

Using the Lebesgue control convergence theorem, there is lim
n→∞

∫
Ω(un − f logun)dx =∫

Ω(u − f logu)dx.
Let wn = logun, w = logu, then wn

n→∞→ w, a.e. x ∈ Ω.
Set

→
p = (p1, p2) ∈ Cα

0
(
Ω, R2) is a vector-valued function, and

∥∥∥→p∥∥∥ =
√

p1
2 + p22 ≤ 1.

Then, wn∇α·→p n→∞→ w∇α·→p ,
∣∣∣wn∇α·→p

∣∣∣ ≤ |wn|·
∣∣∣∇α·→p

∣∣∣ ≤ logβ·
∣∣∣∇α·→p

∣∣∣ a.e. x ∈ Ω.

Since
→
p is tightly supported, therefore, function wn∇α·→p belongs to space L1(Ω).

Using the Lebesgue control convergence theorem again, the following equations
are obtained:

lim
n→∞

∫
Ωwn∇α·→p dx =

∫
Ωw∇α·→p dx (13)

lim
n→∞

∫
Ω∇αwn·

→
p dx =

∫
Ω∇αw·→p dx (14)

According to the lower semicontinuity of the function [29], the following equations
are obtained: ∫

Ω∇αw·→p dx ≤ lim
n→∞

inf
∫

Ω∇αwn·
→
p dx (15)∫

Ω

∣∣∣∇αw·→p
∣∣∣dx ≤ lim

n→∞
inf

∫
Ω

∣∣∣∇αwn·
→
p
∣∣∣dx (16)

According to
∥∥∥→p∥∥∥ =

√
p1

2 + p22 ≤ 1, it is known that

∫
Ω|∇αw|dx ≤ lim

n→∞
inf

∫
Ω|∇αwn|dx (17)
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Because
∫

Ω
|∇αu|

u dx = TVα(logu) =
∫

Ω|∇αw|dx, the above equations can be com-
bined to yield E(u) ≤ lim

n→∞
in f E(un).

Since {un} is a minimization sequence, u is the minimum solution to the optimization
problem. Thus, there is u ∈ S(Ω). □

The model is non-convex, so it is not straightforward to understand that the minimum
solution is unique [30]. The uniqueness of the minimum solution of its model will be
proven below.

To prove uniqueness, there is the following lemma.

Lemma 3. There exists a function φ(u) : (0, ∞) → (0, ∞) of C1, J[u] =
∫

Ω φ(u) |∇αu|dx.

Then, there is an Euler-Lagrange difference of J[u]: ∂J
∂u = (−1)α φ(u)divα

(
∇αu
|∇αu|

)
+ φ(u)

|∇αu| ·
∂u
∂
→
n
|∂Ω.

Proof of Lemma 3. According to the definition of difference, one can obtain the following:

δJ =
∫

Ω

(
φ′(u)|∇αu| · δu + φ(u) · ∇αu

|∇αu| · δ(∇αu)
)

dx

=
∫

Ω φ′(u)|∇αu| · δudx +
∫

∂Ω δu · φ(u)
|∇αu| ·

∂u
∂⃗n ds

−
∫

Ω δu · ∇ ·
(

φ(u) ∇αu
|∇αu|

)
dx

=
∫

Ω

[
φ′(u)|∇αu| − ∇ ·

(
φ(u) ∇αu

|∇αu|

)]
· δudx

+
∫

∂Ω δu · φ(u)
|∇αu| ·

∂u
∂⃗n ds

=
∫

Ω −φ(u)∇ ·
(

∇αu
|∇αu|

)
· δudx +

∫
∂Ω

φ(u)
|∇αu| ·

∂u
∂⃗n · δuds

=
∫

Ω (−1)α φ(u)divα
(

∇αu
|∇αu|

)
· δudx +

∫
∂Ω

φ(u)
|∇αu| ·

∂u
∂⃗n · δuds

where ds is the arc length element of the boundary and
→
n is the outer normal of the

boundary ∂Ω.
Thus, ∂J

∂u = (−1)α φ(u)divα
(

∇αu
|∇αu|

)
+ φ(u)

|∇αu| ·
∂u
∂
→
n
|∂Ω. □

3.2.2. Uniqueness

Theorem 1 (Uniqueness). Let f ∈ L∞(Ω) and in f
Ω

f > 0, then the solution of this optimization

problem in its solution space S(Ω) is unique.

Proof of Theorem 1. According to Lemma 3, it follows that the Euler–Lagrange equation
for this model is expressed as noted below:

(−1)α 1
u

divα

(
∇αu
|∇αu|

)
+ λ

(
1 − f

u

)
= 0,

∂u

∂
→
n

= 0 x ∈ ∂Ω (18)

Because u > 0, the above equation can be transformed into the following:

(−1)αdivα

(
∇αu
|∇αu|

)
+ λ(u − f ) = 0,

∂u

∂
→
n

= 0 x ∈ ∂Ω (19)

Set F′(u) = λ(u − f ), then F′′ (u) = λ, F(u) = λ
(

u2

2 − f u
)

.
Let Ew(u) = TVα(u) + F(u), then the Euler–Lagrange equations for Ew(u) and E(u)

are the same. Hence, the uniqueness for the minimum solution is the same.
Since F′′ (u) = λ and λ > 0, then F(u) is a strictly convex function. Because TVα(u)

is convex (but not strictly convex), Ew(u) is convex. Based on the existence of a minimal
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solution, it is thus obtained that the minimal solution of Ew(u) is unique; therefore, the
minimal solution of E(u) is also unique. □

4. Numerical Methods
4.1. The Gradient Descent Method

In this section, we solve the model of this paper using partial differential equations,
which is a classical method for image denoising.

According to Lemma 3 and the uniqueness proof, the corresponding Euler–Lagrange
Equation (18) for this model is equivalent to Equation (19). The corresponding diffusion
equations are expressed as follows:

∂u
∂t

= −(−1)α 1
u

divα

(
∇αu
|∇αu|

)
− λ

(
1 − f

u

)
(20)

∂u
∂t

= −(−1)αdivα

(
∇αu
|∇αu|

)
− λ(u − f ) (21)

We propose a new energy functional:

Ew(u) = TVα(u) + F(u) =
∫

Ω|∇αu|dx + λ
∫

Ω

(
u2

2
− f u

)
dx (22)

One can derive Equation (19) as the Euler–Lagrange equation for (22), so the optimiza-
tion model (22) has a solution satisfying Equation (19).

Equations (18) and (19) are equivalent; thus, it can be concluded that the optimization
problems (12) and (22) have the same Euler–Lagrange equations. The solution of model
(12) is also the solution of optimization problem (22); therefore, (12) and (21) are equivalent.

Equation (22) can be viewed as an alternative function to Equation (12) of Weber’s
variational minimization problem. Equation (22) is strictly convex and therefore has a
unique minimal value. The problem of finding the minima of Equation (12) can be converted
into finding the minima of Equation (22).

The iterative format for the solution of the Euler–Lagrange equation is given in
the following.

Let h denote the step size of the grid, and generally let h be 1 in the iteration; denote
the time step of the iteration by ∆t. The differential form of the derivative of the pixel point
at (i, j) with respect to the auxiliary variable time t can be obtained:

∂u
∂t

=
un+1(i, j)− un(i, j)

∆t
(23)

where un(i, j) is the gray value of the pixel point at (i, j) in the nth iteration.
Combining Equation (20) with Equation (23), the iterative form of Equation (12) under

the partial differential equation method can be obtained:

un+1(i, j) = un(i, j) + ∆t
[
−(−1)α 1

un divα

(
∇αun

|∇αun|

)
− λ

(
1 − f

un

)]
(24)

During the experiments, it was found that the gradient modes of the images would
appear to have very small values, which were directly processed by the computer as 0
with errors. Therefore, the model was improved using “arithmetic underflow” technique,
i.e., adding zero point zero one to the denominator avoids the above problem during
the iteration process. This modification proved to be effective and reasonable in the
experiments.

In this paper, we choose different values of parameter λ and carry out numerous
experiments to determine the best value of 0.05.

The steps of solving the model with PDE are shown in Algorithm 1.
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Algorithm 1: Partial Differential Equation Methods (PDE)

1. Initialization: u0 = f .
2. Parameters: λ = 0.05, stopping condition Maximum number of iteration: IterMax.
3. Iteration: For each n = 0, 1, 2, 3, . . ., compute

un+1(i, j) = un(i, j) + ∆t
[
−(−1)α 1

un divα
(

∇αun

|∇αun |

)
− λ

(
1 − f

un

)]
4. Let n = n + 1, go to step 3; If n = IterMax is satisfied, output the recovered image u.

4.2. The ADMM Algorithm

Based on the format of the optimization problem equation solved using the ADMM
method, the total variational image recovery regularization model can be equivalently
rewritten by introducing the auxiliary variable d as follows:

min
u,d

∫
Ωd dx + λ

∫
Ω(u − f logu)dx

s.t.
|∇αu|

u
= d

Its corresponding augmented Lagrangian equation is expressed as follows:

L(u, d; b) =
∫

Ωd dx + λ
∫

Ω(u − f logu)dx +
µ

2

∥∥∥∥ |∇αu|
u

− d + b
∥∥∥∥2

2
− µ

2
||b||22 (25)

where b =
(
bx, by

)
∈ X × X is Lagrange multiplier. Here, µ > 0 provides sufficiently large

penalty parameters.
The ADMM uses an alternating iterative updating method, which can be obtained by

decomposing the generalized Lagrangian equation into the following three subproblems:

u − subproblem : uk+1 = argmin
u

λ
∫

Ω(u − f logu)dx +
µ

2

∥∥∥∥ |∇αu|
u

− dk + bk
∥∥∥∥2

2

d − subproblem : dk+1 = argmin
d

∫
Ωd dx +

µ

2

∥∥∥∥∥∥
∣∣∣∇αuk+1

∣∣∣
uk+1 − d + bk

∥∥∥∥∥∥
2

2

b − subproblem : bk+1 = bk +


∣∣∣∇αuk+1

∣∣∣
uk+1 − dk+1


The above subproblem is solved below:

• Solve u − subproblem

The u − subproblem can be solved using Fourier transformation and Fourier inverse
transformation; the discrete case yields the following equation:[

λI + µ(∇α)∗(∇α)
]
uk+1 = λ f + µ(∇α

x)
∗
(

dk
x − bk

x

)
+ µ

(
∇α

y

)∗(
dk

y − bk
y

)
(26)

Fourier transformation of both sides of the equation at the same time yields the following:(
λF(I) + µ

(
F(∇α

x)
∗·F(∇α

x) + F
(
∇α

y

)∗
·F
(
∇α

y

)))
·F
(

uk+1
)
= λF( f ) + µ

(
F(∇α

x)
∗·F

(
dk

x − bk
x

)
+ F

(
∇α

y

)∗
·F
(

dk
y − bk

y

))
(27)

where F—2D Fourier transform; ·—Dotwise multiplication between matrices; and I—all
1 Matrix.
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This is then solved for using Fourier inverse transformation, which yields the following:

uk+1 = F−1

λF( f ) + µ
(

F(∇α
x)

∗·F
(

dk
x − bk

x

)
+ F

(
∇α

y

)∗
·F
(

dk
y − bk

y

))
λF(I) + µ

(
F(∇α

x)
∗·F(∇α

x) + F
(
∇α

y

)∗
·F
(
∇α

y

))
 (28)

• Solve d − subproblem

The solution of d − subproblem can be obtained using the soft threshold operator.

dk+1 = S 1
µ


∣∣∣∇αuk+1

∣∣∣
uk+1 + bk

 (29)

Here, Sτ(x) = max(|x| − τ, 0)· x
|x| , when |x| = 0, there is x

|x| = 0.

Let τ = 1
µ , x =

|∇αuk+1|
uk+1 + bk, then

dk+1 = S 1
µ


∣∣∣∇αuk+1

∣∣∣
uk+1 + bk

 = max

∣∣∣∣∣∣
∣∣∣∇αuk+1

∣∣∣
uk+1 + bk

∣∣∣∣∣∣− 1
µ

, 0

·
|∇αuk+1|

uk+1 + bk∣∣∣∣ |∇αuk+1|
uk+1 + bk

∣∣∣∣ (30)

The steps of solving the model with ADMM are shown in Algorithm 2.

Algorithm 2: FWADMM (Fractional-order Weber I-div model)

1. Initialization : u0 = f , d0 =
(

d0
x, d0

y

)
= (0, 0), b0 =

(
b0

x, b0
y

)
= (0, 0)

2. Parameters : λ, µ, stopping condition tol or Maximum number of iterations: IterMax.
3. Iteration: For each k = 0, 1, 2, 3, . . ., compute

uk+1 = F−1
(

λF( f )+µ(F(∇α
x)

∗ ·F(dk
x−bk

x)+F(∇α
y)

∗ ·F(dk
y−bk

y)
λI+µ(F(∇α

x)
∗ ·F(∇α

x)+F(∇α
y)

∗ ·F(∇α
y))

)
dk+1 = S 1

µ

(
|∇αuk+1|

uk+1 + bk
)
= max

(∣∣∣∣ |∇αuk+1|
uk+1 + bk

∣∣∣∣− 1
µ , 0

)
·
|∇α uk+1|

uk+1 +bk∣∣∣∣ |∇α uk+1|
uk+1 +bk

∣∣∣∣
bk+1 = bk +

(
|∇αuk+1|

uk+1 − dk+1
)

4. Let k = k + 1 go to step 3. If ∥uk+1−uk∥2
∥uk∥2

≤ tol or k = IterMax is satisfied, output the
recovered image u.

5. Numerical Results

In this section, some numerical experiments on medical images and natural images
show the performance of our proposed model, expanding the application field of the model.
In the following section, we will present several objective evaluation criteria for testing the
effect of restoring an image.

5.1. Model Evaluation Metrics

Suppose the image size is M × N, the gray value before denoising is f , and the gray
value after denoising is û. There are the following common metrics:

1. Mean-Square Error (MSE)

MSE =
1

M × N

M

∑
m=1

N

∑
n=1

( f − û)2 (31)

2. Signal-to-Noise Ratio (SNR)
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SNR = 10·log10

M
∑

m=1

N
∑

n=1
f 2

M
∑

m=1

N
∑

n=1
( f − û)2

(32)

3. Structural Similarity (SSIM)

SSIM =

(
2µ f µû + c1

)(
2σf û + c2

)
(

µ2
f + µ2

û + c1

)(
σ2

f + σ2
û + c2

) (33)

where µ f and µû are the means of f and û, respectively; σ2
f and σ2

û are the variances of f
and û, respectively; σf û is the covariance of f and û; and c1 and c2 are constants used to
maintain stability.

4. Peak Signal-to-Noise Ratio (PSNR)

PSNR = 10·log10
2552

1
M×N

M
∑

m=1

N
∑

n=1
( f − û)2

(34)

There are many more such quantitative indicators. It can be seen that PSNR is calcu-
lated from MSE, which tends to differ from human subjective feeling and has low relevance.
PSNR is both simple and intuitive and matches human subjective feeling. Currently, the
Peak Signal-to-Noise Ratio (PSNR) and structural similarity (SSIM) are the most commonly
used objective standards for measuring image quality, and the higher the values, the better
the image denoising effect. In this paper, we mainly use the PSNR and SSIM to evaluate
the image denoising.

All the tests are performed under Windows 10 and MATLAB R2017b running on a PC
with an Intel(R) Core(TM) i5-8250U CPU at 1.60 GHz with 4.0 GB of RAM.

5.2. Numerical Simulations on Medical Images
5.2.1. Experiments with Fractional Order α and Regularization Parameter λ

In this subsection, we test the sensitivity of a “Lungs” image (see Figure 2a) to fractional
order α and regularization parameter λ using the proposed model with the ADMM method.
On the one hand, the balance between a good fit to the data and a regular solution using
a regularization parameter λ is difficult to determine in image restoration. On the other
hand, since the fractional-order derivatives are nonlocal, the restoring effect will differ for
different α. As in the above experiments, we added Gaussian multiplicative noise with
mean 1 and variance 0.1 to the “Lungs” image.
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In Figure 3, (a) is a bar chart of the variation of PSNR and a line plot SSIM at different
fractional order α when λ = 20; (b) is a bar chart of the variation of PSNR and a line plot
SSIM at different regularization parameter λ when α = 0.7; and (c) is a plot of the variation
of PSNR with respect to the order α and the parameter λ. From (a) and (b), we can find that
the changes in PSNR values and SSIM values are consistent on the whole. From (a), we
can see that PSNR and SSIM reach the maximum when α = 1.7. From (b), we can see that
PSNR and SSIM reach the maximum when λ = 20, and (c) shows that PSNR values are
higher in the red region, which is consistent with our conclusions from (a) and (b). Thus,
the optimal combination of (α, λ) is (1.7, 20) for the “Lungs” image. It also proves that the
fractional-order model proposed in this paper is effective.
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5.2.2. Different Methods

In this section, we utilize the partial differential equation method and the ADMM
method to experiment on “Lungs”, “Knee”, “Gastrointestinal”, and “Tooth” images, as
shown in Figure 2.

• Partial Differential Equation Method

In this experiment, we experimented with the four images in Figure 2 using the partial
differential equation method. A Gaussian multiplicative noise level of µ = 1, σ = 0.1 was
added to the image. We chose α values from 0.3 to 2 and λ = 0.05 for the experiment.
Figure 4 illustrates the PSNR value graphs of the four test images at different order α.
The blue, red, yellow, and green lines represent “Lungs”, “Knee”, “Gastrointestinal”, and
“Tooth”, respectively. From this we can see that the PSNR value basically increases as the
order increases. Moreover, for “Knee” image, there is a larger magnitude of variation in the
PSNR value, and the PSNR value is the largest after denoising.

• ADMM Method

Now, we add the same multiplicative Gaussian noise of µ = 1, σ = 0.1 to the four
images in Figure 2 and experiment with the ADMM method. In general, the magnitude of
the value of parameter λ is different for different test images, depending on the richness of
the texture contained in the test image. For the image with more texture, the value of the
parameter λ should be lower than that for the image with less texture. Figure 5 shows the
LBP texture extraction for the four test images. Here, we find that these four images have
essentially the same texture richness, so they take the same value for the regularization
parameter λ.
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Figure 6 shows the original image, the noisy image, and the image after denoising
using ADMM method at different orders (from 0.3 to 2), where the third and fourth rows
represent their corresponding contour map. From this, it can be seen that when the order is
too low, the recovered image still retains some of the noise. However, when the order is too
high, the recovered image is excessively smooth. When the order is fractional order, the
recovered image retains more texture details, which reduces the step effect compared to
α = 1 and reduces the excessive smoothness compared to α = 2. As the order increases, the
brightness of its recovered image is darker.

At the same time, we plot the PSNR values after denoising at different orders as line
graphs in Figure 7. The horizontal axis represents the number of fractional orders, and the
vertical axis represents the PSNR values. The blue, green, red, and purple colors represent
the PSNR values of “Lungs”, “Knee”, “Gastrointestinal”, and “Tooth”, respectively. From
the figure, it can be seen that as the order increases, the overall PSNR value increases
and then decreases. In addition, the highest point basically does not occur at integer
orders, and the practicality of the fractional order model proposed in this paper is therefore
also demonstrated.
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Figure 6. The original, noisy, and denoised images (ADMM).
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The PSNR values of denoised images under the partial differential equation method
and ADMM method are shown in Table 1. Higher PSNR values are shown in bold. From the
data in this table, it can be observed that in most of the cases the PSNR values after denoising
using the ADMM method are higher than those obtained using the partial differential
equation method for “Lungs”, “Gastrointestinal”, and “Tooth” images. However, for
“Knee” images, at higher orders, the partial differential equation method gives better
denoising results than the ADMM method.

Table 1. PSNR values obtained with different methods.

Images Lungs Knee Gastrointestinal Tooth

Fractional Orders PDE ADMM PDE ADMM PDE ADMM PDE ADMM

0.3 25.67 27.31 25.10 26.69 24.60 26.28 25.63 27.31
0.4 27.35 28.79 26.94 28.76 25.48 27.15 27.11 28.57
0.5 28.93 30.65 28.83 31.39 26.62 28.26 28.77 30.07
0.6 30.31 31.89 30.34 33.13 27.70 29.28 30.14 31.23
0.7 31.39 32.75 31.43 33.32 28.62 29.78 31.23 32.14
0.8 32.19 33.07 32.20 33.72 29.35 30.20 32.07 32.51
0.9 32.76 33.39 32.68 34.04 30.00 31.13 32.77 33.13
1.0 33.16 33.54 33.13 33.98 30.46 31.56 33.16 33.34
1.1 33.34 33.56 33.52 33.62 30.86 31.95 33.09 33.52
1.2 33.46 33.39 33.76 33.76 31.13 32.28 33.15 33.17
1.3 33.51 33.47 33.99 33.27 31.39 32.47 33.03 33.28
1.4 33.47 33.50 34.08 33.40 31.55 32.61 33.17 33.22
1.5 33.56 33.53 34.18 33.48 31.75 32.61 33.09 33.18
1.6 33.56 33.54 34.37 33.51 31.93 32.70 33.03 33.23
1.7 33.58 33.59 34.48 33.58 32.06 32.61 33.15 33.08
1.8 33.52 33.51 34.59 34.13 32.17 32.49 33.16 33.08
1.9 33.50 33.45 34.64 34.05 32.37 32.32 33.06 32.89
2.0 33.48 33.39 34.72 33.99 32.41 32.18 33.03 32.92

In order to show the relationship between the PSNR values after denoising using
the two methods more intuitively, we plot them using line graphs, as shown in Figure 8.
From this figure, we find that both the PDE method and the ADMM method can effectively
remove medical image noise. However, for symmetric and asymmetric images, their
denoising results are not the same. For symmetric images, we find that the denoising
results of the PDE method and the ADMM method are basically the same as the number of
orders increases. However, for asymmetric images, as the number of orders increases, the
denoising results of the PDE method are superior to those of the ADMM method. This also



Symmetry 2024, 16, 258 16 of 24

directly demonstrates that the model proposed in this paper is better at denoising images
with symmetry.
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5.2.3. Comparison with Other Variational Models

In this section, we compare the model proposed in this paper with already existing
models, including the I-div model, the FI-div model, and the WI-div model. We determined
the value of the fractional order α through qualitative assessment, quantitative assessment,
and human physical psychology, and α values of 1.7, 1.8, 1.6, and 1.1 are chosen for
“Lungs”, “Knee”, “Gastrointestinal”, and “Tooth” images, respectively.

First, we add Gaussian multiplicative noise with µ = 1, σ = 0.1 to the test image in
Figure 2, and the images obtained after denoising using the four models are shown in
Figures 9–12, where (a) is the original image, (b) is the noisy image, and (c–f) are the I-div,
FI-div, WI-div, and our (FWI-div) denoised images, respectively. We find that the denoised
image of the I-div model produces the step effect and contains a little noise, but it can better
retain the edge information. The FI-div model can effectively reduce the step effect and
retain more texture details. The WI-div model is subjectively better at denoising compared
to the I-div model and the FI-div model, although it also has a step effect due to the fact
that its regular term is low order like the I-div regular term. The model we propose in this
paper not only retains the advantages of the FI-div model that can effectively avoid the
step effect and retain more texture details, but also possesses the advantages of the WI-div
model that is better from the supervisor’s visual effect. However, the recovered image is
not as good as the other models in terms of luminance.

Next, we add Gaussian multiplicative noise with µ = 1, σ = 0.2. Table 2 shows the
PSNR and SSIM values of different models after denoising at variance 0.1 and 0.2. In
Table 2, we find that when the variance is 0.1, our modeling method reaches the highest
values for the “Gastrointestinal” and “Tooth” images. These values are not reached for
the “Lungs” and “Knee” images, but the denoising effect is better than that obtained for
both the I-div and WI-div models. At variance 0.2, none of our models are the best. With
the exception of the “Tooth” image, the PSNR values obtained after denoising using our
model are higher than the PSNR values obtained after denoising with I-div and WI-div.
This reflects that our model proposed in this paper is effective in removing slight noise to a
certain extent, while its denoising effect is superior to that of the I-div and WI-div models
when removing more severe noise. This also proves that our proposed model in this paper
is effective to some extent.
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age (c) I-div denoised image (d) FI-div denoised image (e) WI-div denoised image (f) our denoised 
image. 

Next, we add Gaussian multiplicative noise with 𝜇 = 1, 𝜎 = 0.2. Table 2 shows the 
PSNR and SSIM values of different models after denoising at variance 0.1 and 0.2. In 
Table 2, we find that when the variance is 0.1, our modeling method reaches the highest 
values for the “Gastrointestinal” and “Tooth” images. These values are not reached for 
the “Lungs” and “Knee” images, but the denoising effect is better than that obtained for 
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(b) noisy image (c) I-div denoised image (d) FI-div denoised image (e) WI-div denoised image (f) our
denoised image.
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In order to further investigate the recovery effect of the four models, we select two
different rectangular regions of the “Knee” image and provide a three-dimensional surface
map as shown in Figures 13 and 14 after denoising by the four models. In both figures,
(b) presents the three-dimensional surface map within the red rectangular region of the
original image, and (c–f) are the three-dimensional surface maps in the red rectangular
region after denoising using the I-div, FI-div, WI-div and our model, respectively. In
Figure 13, the region noted in (a) is selected as a region with small gradient changes in the
“Knee” image. In Figure 14, the region noted in (a) is selected for as a region with large
gradient changes. From this, we find that I-div and WI-div can effectively preserve the edge
information of the image, while FI-div and our model can effectively preserve the texture
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information of the image. From Figure 14, we find that the denoising effect of WI-div and
our proposed model is not as good as that of I-div and FI-div models in places with large
gradient variations, which indicates that the model combined with Weber’s model can
better handle images with small gradient variations.

Table 2. PSNR and SSIM values at different noise levels.

σ = 0.1

I-div FI-div WI-div FWI-div
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lungs 31.50 0.7876 33.98 0.8675 33.25 0.8437 33.59 0.8538
Knee 31.52 0.7319 36.04 0.9180 34.73 0.8589 34.73 0.8591

Gastrointestinal 29.92 0.8454 32.70 0.9163 30.72 0.8732 32.70 0.9165
Tooth 31.70 0.8384 33.38 0.8858 33.07 0.8979 33.52 0.8958

σ = 0.2

I-div FI-div WI-div FWI-div
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lungs 23.31 0.4726 27.95 0.6953 25.57 0.5936 25.77 0.5978
Knee 22.60 0.3184 27.78 0.6246 25.01 0.4608 25.28 0.4694

Gastrointestinal 22.38 0.5700 26.82 0.7658 24.33 0.6573 24.98 0.6944
Tooth 23.62 0.4842 27.05 0.6992 26.10 0.6541 25.56 0.5784
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Figure 13. The three-dimensional surface maps produced by the four models for the “Knee” image 
with small gradient changes. (a) Original image with red rectangular region (b) the three-dimen-
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Figure 13. The three-dimensional surface maps produced by the four models for the “Knee” image
with small gradient changes. (a) Original image with red rectangular region (b) the three-dimensional
surface map within the red rectangular region of the original image (c) the three-dimensional surface
map in the red rectangular region after denoising using the I-div model (d) the three-dimensional
surface map in the red rectangular region after denoising using the FI-div model (e) the three-
dimensional surface map in the red rectangular region after denoising using the WI-div model (f) the
three-dimensional surface map in the red rectangular region after denoising using our model.
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Figure 14. The three-dimensional surface maps produced by the four models for the “Knee” image 
with large gradient changes. (a) Original image with red rectangular region (b) the three-dimen-
sional surface map within the red rectangular region of the original image (c) the three-dimen-
sional surface map in the red rectangular region after denoising using the I-div model (d) the 
three-dimensional surface map in the red rectangular region after denoising using the FI-div 
model (e) the three-dimensional surface map in the red rectangular region after denoising using 
the WI-div model (f) the three-dimensional surface map in the red rectangular region after de-
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5.3. Numerical Simulations on Natural Image 
In order to generalize the model proposed in this paper, Lena images are tested. 

5.3.1. Different Methods 
First, a Lena image with Gaussian multiplicative noise with a mean of 1 and vari-

ance of 0.1 is tested using the partial differential equation method and ADMM method. 

Figure 14. The three-dimensional surface maps produced by the four models for the “Knee” image
with large gradient changes. (a) Original image with red rectangular region (b) the three-dimensional
surface map within the red rectangular region of the original image (c) the three-dimensional surface
map in the red rectangular region after denoising using the I-div model (d) the three-dimensional
surface map in the red rectangular region after denoising using the FI-div model (e) the three-
dimensional surface map in the red rectangular region after denoising using the WI-div model (f) the
three-dimensional surface map in the red rectangular region after denoising using our model.

In conclusion, the model in this paper is the best of the four models in terms of quality
and quantity in terms of texture preservation performance and visualization.

5.3. Numerical Simulations on Natural Image

In order to generalize the model proposed in this paper, Lena images are tested.

5.3.1. Different Methods

First, a Lena image with Gaussian multiplicative noise with a mean of 1 and variance
of 0.1 is tested using the partial differential equation method and ADMM method.

In Table 3, the PSNR values of the Lena image after denoising using partial differential
equation method and ADMM method are given, where the larger values are bolded. We
find that the ADMM method is better than the partial differential equation method, which
proves the effectiveness of the proposed algorithm. Figure 15 is a line chart of PSNR values
obtained using the two methods. We find the above conclusions more directly. At the
same time, we also find that the PSNR values obtained after denoising using the ADMM
method present a trend of first increasing and then decreasing. The optimal PSNR value is
not reached when α is an integer. However, when α = 1.4, the PSNR value is the largest.
This also reflects that the fractional-order model proposed in this paper is reasonable
and effective.
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Table 3. PSNR values for the Lena image obtained using different methods.

PDE ADMM

α PSNR PSNR
0.3 26.00 27.44
0.4 26.98 28.59
0.5 28.07 29.79
0.6 28.91 30.65
0.7 29.50 31.16
0.8 29.88 31.48
0.9 30.22 31.72
1.0 30.68 31.89
1.1 30.58 31.98
1.2 30.72 32.03
1.3 30.84 32.09
1.4 30.5 32.10
1.5 31.07 31.97
1.6 31.19 32.01
1.7 31.26 32.00
1.8 31.38 31.91
1.9 31.42 31.90
2.0 31.49 31.88
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Figure 15. Comparison of PSNR values obtained using ADMM and PDE on the Lena image.

5.3.2. Comparison with Other Variational Models

Then, we add Gaussian multiplicative noise with µ = 1, σ = 0.1 to the Lena image,
and the images obtained after denoising using the four models are shown in Figure 16,
where (a) is the original image, (b) is the noisy image, and (c–f) are the I-div, FI-div, WI-
div, and FWI-div denoised images, respectively. We find that the denoised image of the
I-div model produces the step effect and contains a little noise, but it can better retain the
edge information. The model obtained using the Weber variational (WI-div) model has a
better visual effect after denoising the image, while the fractional variational model (FI-div)
retains more texture details to a certain extent. Our model (FWI-div) not only retains more
texture details of the image but also improves the visual effect after denoising.
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Figure 16. Comparison of the four models using the Lena image. (a) the original image (b) the noisy
image (c) the I-div denoised image (d) the FI-div denoised image (e) the WI-div denoised image
(f) ours denoised image.

Table 4 shows the PSNR and SSIM values of different models after denoising at σ = 0.1
and σ = 0.2. When σ = 0.1, our model does not achieve the best results, but it is not
different from other models. When σ = 0.02, the denoising effect of the proposed model is
the best. This shows that the model proposed in this paper has a better denoising effect for
natural images with a high degree of noise.

Table 4. PSNR and SSIM values obtained at different noise levels of the Lena image.

σ = 0.1

I-div FI-div WI-div FWI-div
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena 32.38 0.8541 32.44 0.8547 32.21 0.8536 32.10 0.8259

σ = 0.2

I-div FI-div WI-div FWI-div
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena 26.72 0.6329 28.12 0.7047 26.56 0.6344 28.59 0.7067

In general, the model proposed in this paper can be applied not only to medical
images but also to natural images, and the denoising effect of the model is effective to a
certain extent.

6. Conclusions

In this paper, we propose a non-convex fractional-order denoising model for solving
the image denoising problem contaminated by multiplicative noise using the definition
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of G-L fractional-order derivatives. The uniqueness of the existence of the solution of
this model is proven, and we solve the proposed model using the partial differential
equation (PDE) method and the alternating direction multiplier method (ADMM). Through
extensive simulation experiments, numerical and visual results show that the ADMM
method can be used to solve the non-convex multiplicative denoising model. In addition,
the model proposed in this paper outperforms the other models (I-div, FI-div, WI-div) in
terms of dimmer brightness; however, our recovered image is more realistic and natural.
This motivates us to combine our model with integer-order models in our future work
to further enhance the visual effect and improve the recovered PSNR values and to find
other optimization algorithms that can be used to solve the non-convex model to use our
proposed model for the restoration of medical images.
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