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Abstract: A topological descriptor is a numerical parameter that describes a chemical structure using
the related molecular graph. Topological descriptors have significance in mathematical chemistry,
particularly for studying QSPR and QSAR. In addition, if a topological descriptor has a reciprocal
link with a molecular attribute, it is referred to as a topological index. The use of topological indices
can help to examine the physicochemical features of chemical compounds because they encode
certain attributes of a molecule. The Randić index is a molecular structure descriptor that has several
applications in chemistry and medicine. In this paper, we introduce a new version of the Randić
index to the inclusion of the intermolecular forces between bonds with atoms, referred to as an
entire Harmonic index (EHI), and we present the entire Harmonic polynomial (EHP) of a graph.
Specific formulas have been obtained for certain graph classes, and graph operations have been
obtained. Bounds and some important results have been found. Furthermore, we demonstrate that
the correlation coefficients for the new index lie between 0.909 and 1. In the context of enthalpy of
formation and π-electronic energy, the acquired values are significantly higher than those observed
for the Harmonic index and the Randić index.

Keywords: entire indices; Harmonic index; entire Harmonic index; entire Harmonic polynomial

1. Introduction

We restrict our attention to finite, undirected, and simple graphs, and we refer to such
a graph as G = (V, E), where V is the vertex set, and E is the edge set. The symbols Pn,
Cn, Sn, and Kn denote a path, cycle, star, and complete graph of order n, respectively. For
any element on the graph, either vertex or edge, the degree deg(x) of the element x is the
number of edges joining to x; in particular, the degree of the edge uv is the sum of the
degrees of the vertices u and v minus two. Readers seeking in-depth explanations of the
terms or notations not elaborated upon here are directed to [1].

A topological descriptor is a numerical representation of a chemical structure using
the molecular graph. When this descriptor also correlates with a molecular property,
it is referred to as a topological index. These indices are used to gain insights into the
physicochemical properties of chemical compounds. The significance of these indices lies
in their ability to capture multiple properties of a molecule in a single numerical value.
As a result, numerous topological indices have been developed and analyzed. There
is a rich history of topological indices. The relationship between graph properties and
chemical characteristics has been explored for decades through the development of diverse
topological indices. The pioneering work by Wiener (1947) [2] established the Wiener
index, which quantifies the total distance between all pairs of vertices in a graph, and
showed its correlation with the boiling point of paraffins. This marked the foundation
for distance-based indices. Building on this, Gutman and Trinajstić (1972) [3] introduced
the first and second Zagreb indices, based on vertex degrees, to relate to the π-electron
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energy of molecules. These pioneering works inspired a surge in the development of
topological indices for diverse chemical applications. Within distance-based indices, degree-
based indices have gained notable relevance (cf. [4,5]). For a comprehensive overview
of degree and distance-based indices, readers can refer to [6–8]. More recently, Ali and
Trinajstić (2018) [9] revisited the first, second, and modified first Zagreb connection indices.
Subsequently, the connection distance and degree connection indices were investigated
in [10]. The value of connection number-based indices was further solidified by Javaid
et al. (2014) [11], who demonstrated their strong correlation with various thermodynamic
properties. In order to examine the many chemical characteristics of molecular networks
(structures), these findings encouraged other mathematicians and chemists to create new
topological indices. Extensive research has delved into numerous aspects of the Zagreb
indices, including their bounds, extremal graphs, and connections to other graph invariants.
For in-depth studies, refer to [12–24]. Alwardi et al. introduced and studied some versions
of entire Zagreb indices of graphs, see [25–27]. Some bounds for the first and second entire
Zagreb indices were introduced in [28]. The generalization of entire topological indices was
introduced very recently in [29]. The Randić index, a versatile topological descriptor [30],
developed by Randić in 1975, captures the branching structure of carbon skeletons and
exhibits correlations with numerous chemical properties. Initially termed the “branching
index” and later the “molecular connectivity index”, it remains a prominent tool in diverse
chemical assessments and was defined as:

χ(G) = ∑
uv∈E(G)

(deg(u)deg(v))−1/2.

The Harmonic index, an alternative to the Randić index [31], is defined for a graph
G as:

H(G) = ∑
uv∈E(G)

2
deg(u) + deg(v)

.

The sum-connectivity index of a graph G [32], denoted by sχ(G), is defined as

sχ(G) = ∑
uv∈E(G)

1√
deg(u) + deg(v)

.

In the same way, in [33], the Harmonic polynomial is defined as

H(G, x) = ∑
uv∈E(G)

xdeg(u)+deg(v)−1.

Motivated by the works [25–27,29–32] and the large applications of these topological
indices, here, we introduce the entire Harmonic index of the graph along with the entire
Harmonic polynomial.

Definition 1. Consider a simple graph G with vertices V and edges E. We define a set B(G)
containing pairs of elements {x, y} such that x and y are adjacent or incident. Then, the entire
Harmonic index is defined as,

HE (G) = 2 ∑
{x,y}∈B(G)

(deg(x) + deg(y))−1.

Additionally, the entire Harmonic polynomial can be defined as

HE (G, z) = 2 ∑
{x,y}∈B(G)

zdeg(x)+deg(y)−1.

Precise formulae of this index along with the associated polynomial for significant
graph families are derived, and some important properties and relations are established.
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The motivation for developing this new index is that the existing Harmonic index is limited
in its ability to capture the interactions (forces) between edges and vertices, in addition to
the interactions between vertices alone.

2. The Informative Power for Chemical Modeling

The field of mathematical chemistry utilizes math and chemistry to analyze chemical
reactions and properties. In their work ([34]), Randić and Trinajstić highlight the potential
of relating theoretical indices to experimental properties of benchmark datasets to assess the
chemical significance of graph invariants. Following this approach, this section explores the
applicability of the entire Harmonic index to elucidating structural features of molecules
through the quantitative structure–property relationship (QSPR) methodology. Specifically,
we focus on evaluating the effectiveness of the entire Harmonic index as a descriptor for
QSPR modeling of various physicochemical properties across diverse molecules. The choice
of benzenoid hydrocarbons, with their well-defined structures, allows us to represent both
cyclic and acyclic chemical systems for this investigation. So, we examine the significance
of the entire Harmonic index for predicting for key properties like the total π-electronic
energy (Eπ), enthalpy of formation (∆o

f ), and boiling points (Bp) of 16 lower benzenoid
hydrocarbons, see Figure 1.

Figure 1. The 16 lower benzenoid hydrocarbons.
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The experimental data of the total π-electronic energy (Eπ), enthalpy of formation
(∆o

f ), and boiling points (Bp) are taken from NIST databases [35] and retrieved from [36].
Analysis of the data in Table 1 highlights the emergence of the entire Harmonic index

as a promising descriptor for diverse physicochemical properties. Constructed linear
models in SPSS demonstrate statistically significant correlations with the boiling point
(r = 0.996), enthalpy of formation (r = 0.909), and, notably, a perfect correlation with total
π-electronic energy (r = 1), suggesting exceptional predictive potential for this property.
Furthermore, Table 2 reveals the consistent advantage of the entire Harmonic index over
the traditional Harmonic index, underlining its significance as a novel topological index
for modeling chemical and physical properties.

Table 1. Experimental total π-electronic energy (Eπ), enthalpy of formation (EF), boiling points (BP)
and theoretical indices for benzenoid hydrocarbons.

SN The Compounds Eπ EF BP EH H R SC

1 naphthalene 13.6832 141 218 19.8475 4.9333 4.9663 5.1971

2 phenanthrene 19.4483 202.7 338 27.8665 6.8999 6.9495 7.408

3 anthracene 19.3137 222.6 340 27.7618 6.8666 6.9327 7.3942

4 chrysene 25.1922 271.1 431 35.8856 8.8666 8.9327 9.619

5 tetraphene or Benz(a)anthracene 25.1012 277.1 425 35.78 8.8333 8.9158 9.6051

6 triphenylene 25.2745 275.1 429 36.057 8.8999 8.9495 9.6328

7 naphthacene or TETRACENE 24.9308 310.5 440 35.6761 9.7999 8.899 9.5913

8 benzo[a]pyrene 28.222 296 496 39.9618 9.8333 9.9158 10.8299

9 benzo[e]pyrene 28.3361 289.9 493 40.1998 9.8666 9.9327 10.8437

10 perylene 28.2453 319.2 497 40.0998 9.8666 9.9327 10.8437

11 benzo[ghi]perylene 31.4251 301.2 542 44.1428 10.8333 10.9158 12.0546

12 dibenzo[a,c]anthracene 30.9418 348 535 43.9713 10.8333 10.9158 11.8299

13 dibenz[a,h]anthracene 30.8805 335 536 43.7999 10.7999 10.899 11.8161

14 dibenz[a,j]anthracene 30.8795 336.3 531 44.0618 10.7999 10.899 11.8161

15 picene 30.9432 336.9 519 43.9046 10.8333 10.9158 11.8299

16 coronene 34.5718 296.7 590 48.5189 11.8 11.899 13.2655

Table 2. Correlations of the entire Harmonic index and key descriptors with diverse properties of
benzenoid hydrocarbons.

Boiling Point Enthalpy of
Formation

Pi Electronic
Energy

Entire Harmonic index 0.996 0.909 1

Harmonic index 0.990 0.933 0.984

Randić index 0.996 0.915 0.999

The sum-connectivity index 0.997 0.901 1

Figure 2 visually portrays the linear relationships between the entire Harmonic index
and three critical properties of benzenoid hydrocarbons: the boiling point (BP), enthalpy of
formation (EF), and π-electronic energy.

The linear QSPR model yielded the following predictive regression equations, linking
the entire Harmonic index (EH) to critical physicochemical properties:

Boiling point (Bp): Bp = −20.7621 + EH(12.6613).
Enthalpy of formation (EF): EF = 32.5122 + EH(6.6483).
π-electronic energy (Eπ): Eπ = −0.75589 ++EH(0.7233).
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Figure 2. Linear fitting of the BP, EF, and π electronic energy predicted by the entire Harmonic index.

3. Mathematical Results on Some Significant Families of Graphs

In this section, we obtain precise formulae for the entire Harmonic index along with
the associated polynomial for significant graph families of standard graphs.

Observation 1. Let G be a graph with q edges and a first Zagreb index M1. Then,

1. HE (G) =
∫ 1

0 HE (G, z) dz.

2. |B(G)| = 2m +
M1

2
.

3. HE (G) = H(G) + He(G) + 2 ∑v incident to e(deg(v) + deg(e))−1.

The line graph L(G) captures the relationships between the edges of the original graph.
Each vertex in L(G) represents an edge in the original graph, and two edges in L(G) are
connected if the corresponding edges in the original graph are “neighbors” (meaning they
share a common vertex) [1].

Proposition 1. For a regular graph G of n vertices with degree k greater than 2,

i. HE (G) = 12nk−4n+3nk2

4(3k−2) .

ii. HE (G, z) = nkz2k−1 + nk(k − 1)z4k−5 + 2nkz3k−3.

Proof. G. a regular graph, contains n vertices and each vertex has a degree equal to or
more than 2. Hence, it contains nk/2 edges, and the number of edges on L(G) is

1
2 ∑

v∈V(G)

(
deg(v)

)2 − q =
nk2

2
− nk

2
=

kn(k − 1)
2

.

Hence,
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HE (G) =
kn
2

2
2k

+
kn(k − 1)

2
2

(4k − 4)
+ kn

2
3k − 2

=
12nk − 4n + 3nk2

4(3k − 2)
.

In the same procedure, we obtain

HE (G, z) = nkz2k−1 + nk(k − 1)z4k−5 + 2nkz3k−3.

Corollary 1. For the complete graph Kn and the cycle Cn, where n ≥ 3,

1. HE (Kn) =
3n3+6n2−13n

4(3n−5) .

2. HE (Kn, z) = n2z2n−3 − nz2n−3 + n3z4n−9 − 3n2z4n−9 + 2nz4n−9 + 2n2z3n2−3n−6

−2nz3n2−3n−6.
3. HE (Cn) = 2 n.
4. HE (Cn, z) = 8nz3.

Proposition 2. For any path Pn, with n ≥ 4 vertices,

1. HE (Pn) =
4n−1

2 .
2. HE (Pn, z) = 2z + 6z2 + (4n − 13)z3.

Proof. In a path Pn with n ≥ 4 vertices and n − 1 edges, the degree of each vertex and
edge is 2, except for the endpoints. Both the first and last vertices, v1 and vn, have degree
1, as they only connect to one other vertex. Similarly, the edges connecting them to other
vertices, e1 and en, also have degree 1. Therefore,

HE (Pn) =(n − 3)/2 + 4/3 + (n − 4)/2

+
4
3
+ n +

4
3
− 3 + 2

=
4n − 1

2
.

By using the same data about the degrees of the vertices and edges, we have achieved
part (ii).

HE (Pn, z) = 2z + 6z2 + (4n − 13)z3.

Proposition 3. For any complete bipartite graph Ka,b, HE (Ka,b) = 2ab
a+b + ab

2 + 2ab(
1

2a+b−2 + 1
2b+a−2

)
.

Proof. Let the vertices of Ka,b be labeled as v1, v2, . . . , va, va+1, va+2, . . . , vb. Then,

HE (Ka,b) =
2ab

a + b
+

(
1
2
(
a2b + b2a

)
− ab

)
2

2(a + b − 2)

+ 2ab
1

a + (a + b − 2)
+ 2ab

1
b + (a + b − 2)

=
2ab

a + b
+

ab
2

+ 2ab
(

1
2a + b − 2

+
1

2b + a − 2

)
.
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A graph that has r distinct paths connecting two specific vertices is called an r-bridge
graph. We denote it as Q(k1, ..., kr), where k1, ..., kr represent the lengths of each of the r
paths. The r-bridge is a generalization of theta graphs, see Figure 3.

Figure 3. r-bridge graph.

Lemma 1. For any multi-bridge graph G ∼= Q(k1, k2, ..., kr),

H(G) =
4r

r + 2
− r +

1
2

r

∑
i=1

ki.

Proof. For a multi-bridge graph G ∼= Q(k1, k2, ..., kr), we have

H(G) =(k1 − 2)
2
4
+ (k2 − 2)

2
4
+ ... + (kr − 2)

2
4
+ 4

r
r + 2

=
4r

r + 2
− r +

1
2

r

∑
i=1

ki.

Lemma 2. For the multi-bridge graph G = Q(k1, k2, ..., kr), we have

He(G) =
4r

r + 2
− r + 2

2
+

1
2

r

∑
i=1

ki.

Proof. By the definition of the edge version of the Harmonic index, we obtain

He(G) =(k1 − 3)
1
2
+ (k2 − 3)

1
2
+ ... + (kr − 3)

1
2
+

4r
r + 2

+
−2 − r

2

=
4r

r + 2
− r + 2

2
+

1
2

r

∑
i=1

ki

Theorem 1. Let G ∼= Q(k1, ..., kr) be the multi-bridge graph. Then,

HE (G) =
12r

r + 1
− 7r − 2

2
+ 2

r

∑
i=1

ki.

Proof. Since G ∼= Q(k1, ..., kr), applying Observation 1, we obtain

HE (G) = H(G) + He(G) + 2 ∑
v incident to e

(deg(v) + deg(e))−1.

It is easy to see that
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2 ∑
v incident to e

(deg(v) + deg(e))−1 =2(k1 − 2)
2
4
+ 2(k2 − 2)

2
4
+ ... + 2(kr − 2)

2
4
+ 2 +

4r
r + 2

=
4r

r + 2
− 2(r − 1) +

r

∑
i=1

ki.

So using Lemmas 1 and 2, we obtain

HE (G) =
12r

r + 1
− 7r − 2

2
+ 2

r

∑
i=1

ki.

To prove some results, we need some specific sets defined for a graph G = (V, E), as
follows:

• Va,b(G) = {{u, v}}, if there is an edge between u and v.
• Ea,b(G) = {{e, f }}, if edges e and f share both endpoints and have degrees a and b,

respectively.
• Aa,b(G) = {{v, f }}, if vertex v and edge f are incident and have degrees a and b,

respectively.

In the realm of hydrocarbons, pentacene stands out for its unique structure. Comprised
of five fused benzene rings, this vibrant purple powder exhibits semiconducting properties.
However, its beauty is fleeting, as exposure to light and air causes pentacene to gradually
degrade. The linear form, known as [n]-pentacene, is pictured in Figure 4.

Figure 4. Linear [n]-Pentacene.

Lemma 3. For any linear [n]-Pentacene graph G,

H(G) =
160n + 1

15
.

Proof. Let G be the [n]-Pentacene graph, from the definition of the [n]-Pentacene graph G;
clearly, it has 22n vertices and 28n − 2 edges, and the degrees of the vertices are either two
or four. We can see that |V2,2| = 6, |V2,3| = 20n − 4, and |V3,3| = 8n − 4; so,

H(G) =
2
4
|V2,2|+

2
5
|V2,3|+

2
6
|V3,3| =

160n + 1
15

.

Lemma 4. For any linear [n]-Pentacene graph G,

He(G) =
1455n − 107

105
.

Proof. Let G be the [n]-Pentacene graph, from the definition of the [n]-Pentacene graph G;
clearly, it has 28n − 2 edges, and the degrees of the edges are either two, three, or four. By
simple counting, we obtain |E2,2| = 4, |E2,3| = 4, |E3,3| = 18n − 4, |E4,3| = 24n − 8, and
|E4,4| = 4n − 4; so,

H(G) =
2
4
|E2,2|+

2
5
|E2,3|+

2
6
|E3,3|+

2
7
|E4,3|+

2
8
|E4,4|.

Therefore,
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H(G) =
8
4
+

8
5
+

2
6
(18n − 4) +

2
7
(24n − 8) +

2
8
(4n − 4) =

1455n − 107
105

.

Theorem 2. For any linear [n]-Pentacene graph G,

HE (G) =
4595n + 42

105
.

Proof. Let G be any [n]-Pentacene graph, by using Observation 1, we obtain

HE (G) = H(G) + He(G) + 2 ∑
v incident to e

(deg(v) + deg(e))−1.

To obtain 2 ∑v incident to e(deg(v) + deg(e))−1, we have |A2,3| = 20n − 4, |A2,2| = 12,
|A3,3| = 20n − 4, and |A3,4| = 16n − 6. Then,

2 ∑
v incident to e

(deg(v) + deg(e))−1 =
24
4

+
2
5
(20n − 4) +

2
6
(20n − 4) +

2
7
(16n − 6)

=
2020n + 142

105
. (1)

Then by Lemmas 3 and 4, and Equation (1), we obtain

HE (G) =
160n + 1

15
+

1455n − 107
105

+
2020n + 142

105
=

4595n + 42
105

.

Proposition 4. Let G ∼= Wn be a wheel graph that contains n + 1 vertices. Then,

HE (G) =
278n6 + 5097n5 + 30725n4 + 75075n3 + 70445n2 + 23292n

84(n + 1)(n + 3)(n + 4)(n + 5)(2n + 1)
.

Proof. For the graph G ∼= Wn, we can see that |V3,3| = n, |V3,n| = n,|E4,4| = n, |E4,n+1| =
2n, |E(n+1),(1+n)| = n(n − 1)/2, |A3,4| = 2n, |A3,(n+1)| = n, and |An,n+1| = n. Then, by
Observation 1,

HE (G) = n
3 + 2n

n+3 + n
4 + 4n

n+5 + n(n−1)
2(n+1) +

4n
7 + 2n

n+4 + 2n
2n+1 ,

= 278n6+5097n5+30725n4+75075n3+70445n2+23292n
84(n+3)(n+5)(n+1)(n+4)(2n+1) .

4. Entire Harmonic Index under Some Common Graph Operations

In this section, we focus on determining the Harmonic index for a variety of graph
operations applied to common graph types.

We present the Cartesian product of two graphs G1□G2, where V(G1), V(G2), E(G1),
and E(G2) are the vertex sets and edge set of G1 and G2, respectively. The resulting graph
has the vertex set V(G1)× V(G2), and two vertices (a, b) and (c, d) are adjacent, if and only
if either (a = c and bd ∈ E(G2)) or (b = d and ac ∈ E(G1)) [1].



Symmetry 2024, 16, 208 10 of 16

Lemma 5. For any positive integers s and t with s, t ≥ 4, if G is the Cartesian product between the
paths Pt and Ps, then

H(G) =
210st − 5s − 5t − 36

420
.

Proof. Let s, t be any positive integers such that s, t ≥ 4 and G ∼= Pt□ Ps. Let Va,b =
{{u.v} : uv ∈ E(G) such that deg(u) = a and deg(v) = b}; so, we have |V2,3| = 8, |V3,3| =
(2s + 2t − 12), |V3,4| = 2s + 2t − 8, and |V4,4| = 2st − 5s − 5t + 12. Then,

H(G) =
16
5

+ (2s + 2t − 12)
2
6
+ (2s + 2t − 8)

2
7
+ (2st − 5s − 5t + 12)

2
8

.

Hence, H(G) = 210st−5s−5t−36
420 .

Lemma 6. If s, t ≥ 4, and G ∼= Pt□ Ps, then

He(G) =
6930st − 3605s − 3605t − 456

6930
.

Proof. Let s, t ≥ 4, and G ∼= Pt□ Ps. Then, we can see that |E3,3| = 4, |E3,4| = 8, |E4,4| =
2(s − 4) + 2(t − 4), |E3,5| = 8, |E4,5| = 4(s − 3) + 4(t − 3), |E5,5| = 4, |E6,5| = 4(s − 3) +
4(t − 3) + 2(t − 2) + 2(s − 2) = 6s + 6t − 32, and |E6,6| = (s − 4)(t − 2) + 4(s − 4)(t − 3) +
4(t − 3) + (s − 2)(t − 4) = 6st − 18s − 18t + 52, and then,

He(G) =
8
6
+

16
7

+ (2s + 2t − 16)
2
8
+

16
8

+ (4s + 4t − 24)
2
9
+

8
10

+ (6s + 6t − 32)
2

11
+ (6st − 18s − 18t + 52)

2
12

.

Hence,

He(G) =
6930st − 3605s − 3605t − 456

6930
.

Theorem 3. For any positive integers s and t with s, t ≥ 4, if G is the Cartesian product between
the paths Pt and Ps, then

HE (G) =
10626st − 2055s − 2055t − 4660

4620
.

Proof. By applying Observation 1, we obtain

HE (G) = H(G) + He(G) + 2 ∑
v incident to e

(deg(v) + deg(e))−1.

To obtain 2 ∑v incident to e(deg(v) + deg(e))−1, we have |A2,3| = 8, |A3,3| = 8, |A3,4| =
4(s − 3) + 4(t − 3) = 4s + 4t − 24, |A3,5| = 2(s − 2) + 2(t − 2) = 2s + 2t − 8, |A4,5| =
2s + 2t − 8, and |A4,6| = 2(s − 3)(t − 2) + 2(t − 3)(s − 2) = 4st − 10s − 10t + 24. Then,

2 ∑
v incident to e

(deg(v) + deg(e))−1 =
16
5

+
16
9

+ (4s + 4t − 24)
2
7

+ (2s + 2t − 8)
2
8
+ (2s + 2t − 8)

2
9
+ (4st − 10s − 10t + 24)

2
10

=
504st + 55s + 55t − 540

630
. (2)

Building upon Lemmas 5 and 6, and applying Equation (2), we obtain
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HE (G) =
210st − 5s − 5t − 36

420
+

6930st − 3605s − 3605t − 456
6930

+
504st + 55s + 55t − 540

630

= −2055s − 10626st + 2055t + 4660
4620

.

Lemma 7. Let S and t be positive integers such that s ≥ 4 and t ≥ 3; if G is the Cartesian product
between the path Ps and the cycle Ct, then

H(G) =
42ts − t

84
.

Proof. Suppose that S and t are positive integers such that s ≥ 4 and t ≥ 3, and G is
the Cartesian product between the path Ps and the cycle Ct; then, it is easy to see that
|V3,3| = 2t, |V3,4| = 2t, and |V4,4| = t(s − 2) + t(s − 3), and then, H(G) = 2t 2

6 + 2t 2
7 +

(t(s − 2) + t(s − 3)) 2
8 . Therefore,

H(G) =
42ts − t

84
.

Lemma 8. Let S and t be positive integers such that s ≥ 4 and t ≥ 3; if G is the Cartesian product
between the path Ps and the cycle Ct, then

He(G) =
198ts − 103t

198
.

Proof. Let s ≥ 4 and t ≥ 3; if G ∼= Ps□Ct, it is easy to see that |E4,4| = 2t, |E4,5| = 4t,
|E5,6| = 6t, and |E6,6| = 6ts − 18t. Therefore,

He(G) = 2t
2
8
+ 4t

2
9
+ 6t

2
11

+ (6ts − 18t)
2

12
.

Hence,

He(G) =
198ts − 103t

198
.

Theorem 4. Let S and t be positive integers such that s ≥ 4 and t ≥ 3; if G is the Cartesian
product between the path Ps and the cycle Ct, then

HE (G) =
t(3542s − 685)

1540
.

Proof. Let s, t be any positive integers such that s ≥ 4 and t ≥ 3, if G ∼= Ps□Ct; then, using
Observation 1, we have

HE (G) = H(G) + He(G) + 2 ∑
v incident to e

(deg(v) + deg(e))−1.

To obtain 2 ∑v incident to e(deg(v) + deg(e))−1, let Aa,b be the set of all subsets {v, e}
where v is a vertex in G, e is an edge in G, and v is incident with e, such that deg(v) = a and
deg(e) = b; then, we have, |A3,4| = 4t, |A3,5| = 2t, |A4,5| = 2t, and |A4,6| = 4t(s− 4)+ 6t =
4ts − 10t, and then,

2 ∑
v incident to e

(deg(v) + deg(e))−1 = 4t
2
7
+ 2t

2
8
+ 2t

2
9
+ (4ts − 10t)

2
10

=
504ts + 55t

630
. (3)
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By virtue of Lemmas 7 and 8 and invoking Equation (3), we obtain

HE (G) =
42ts − t

84
+

198ts − 103t
198

+
504ts + 55t

630
=

t(3542s − 685)
1540

.

Lemma 9. Let G be the Stacked Book Graph Sm□Pn, where n ≥ 5 and m ≥ 1. Then,

H(G) =
(5n − 3)(m − 1)

15
+

4(m − 1)
m + 2

+
2(m − 1)(n − 2)

m + 4
+

4
2m + 1

+
2(n − 3)
2m + 2

.

Proof. Let G ∼= Sm□Pn; then, it is easy to see that |V2,3| = 2(m − 1), |V2,m| = 2(m − 1),
|V3,3| = (m − 1)(n − 2), |Vm+1,3| = (m − 1)(n − 2), |Vm+1,m| = 2, and |Vm+1,m+1| = n − 3,
and then,

H(G) =
4(m − 1)

5
+

4(m − 1)
m + 2

+
2(m − 1)(n − 3)

6
+

2(m − 1)(n − 2)
m + 4

+
4

2m + 1
+

2(n − 3)
2m + 2

=
(5n − 3)(m − 1)

15
+

4(m − 1)
m + 2

+
2(m − 1)(n − 2)

m + 4
+

4
2m + 1

+
2(n − 3)
2m + 2

.

Lemma 10. Let G be the Stacked Book Graph Sm□Pn, where n ≥ 5 and m ≥ 1. Then,

He(G) =
(m − 1)(m − 2)

m
+

4(m − 1)
m + 3

+
4(m − 1)
3m − 1

+
(7n − 12)(m − 1)

28
+

(m − 4)
2m

+
4(m − 1)
3m + 1

+
4(n − 3)(m − 1)

3m + 2
+

4(n − 3)(m − 1)
m + 6

+
4(m − 1)

m + 5
+

4
4m − 1

+
(n − 2)(m − 1)(m − 2)

2m + 4
.

Proof. Let G ∼= Sm□Pn; then, we can obtain |Em,m| = (m − 1)(m − 2), |Em,3| = 2(m −
1), |Em,2m−1| = 2(m − 1), |E4,4| = (m − 1)(n − 4), |E3,4| = 2(m − 1), |E2m,2m| = n −
4, |Em+2,2m−1| = 2(m − 1), |Em+2,2m| = 2(n − 3)(m − 1), |Em+2,4| = 2(n − 3)(m − 1),
|Em+2,3| = 2(m − 1), |E2m−1,2m| = 2, and |Em+2,m+2| = 1/2(n − 2)(m − 1)(m − 2), and
then

He(G) =
(m − 1)(m − 2)

m
+

4(m − 1)
m + 3

+
4(m − 1)
3m − 1

+
(m − 1)(n − 4)

4
+

4(m − 1)
7

+
(m − 4)

2m

+
4(m − 1)
3m + 1

+
4(n − 3)(m − 1)

3m + 2
+

4(n − 3)(m − 1)
m + 6

+
4(m − 1)

m + 5

+
4

4m − 1
+

(n − 2)(m − 1)(m − 2)
2m + 4

=
(m − 1)(m − 2)

m
+

4(m − 1)
m + 3

+
4(m − 1)
3m − 1

+
(7n − 12)(m − 1)

28
+

(m − 4)
2m

+
4(m − 1)
3m + 1

+
4(n − 3)(m − 1)

3m + 2
+

4(n − 3)(m − 1)
m + 6

+
4(m − 1)

m + 5
+

4
4m − 1

+
(n − 2)(m − 1)(m − 2)

2m + 4
.

Theorem 5. Let G be the Stacked Book Graph Sm□Pn, where n ≥ 5 and m ≥ 1. Then,
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HE (G) =
8(m − 1)

m + 2
+

2n(m − 1)
m + 5

+
6m2 − 9m + 2

6m
+

(m − 1)(485n − 368)
420

+
4

3m − 1
+

4(n − 3)
3m + 1

+
2(m − 1)(n − 2)

2m + 3
+

4(m − 1)
m + 3

+
4(m − 1)
3m − 1

+
4(m − 1)
3m + 1

+
4(n − 3)(m − 1)

3m + 2
+

4(n − 3)(m − 1)
m + 6

+
4

4m − 1

+
(n − 2)(m − 1)(m − 2)

2m + 4
+

2(m − 1)(n − 2)
m + 4

+
4

2m + 1
+

2(n − 3)
2m + 2

.

Proof. Let G be any Stacked Book Graph Sm□Pn, where n ≥ 5 and m ≥ 1, as in Figure 5;
using Observation 1, we have

HE (G) = H(G) + He(G) + 2 ∑
v incident to e

(deg(v) + deg(e))−1.

We have |A2,3| = |A2,m| = |A3,3| = 2(m − 1), |A3,4| = 2(n − 3)(m − 1), |A3,m+2| =
(n − 2)(m − 1), |Am,m| = 2(m − 1), |Am,2m−1| = |Am+1,2m−1| = 2, |Am+1,2m| = 2(n − 3),
and |Am+1,m+2| = (m − 1)(n − 2). Therefore,

2 ∑
v incident to e

(deg(v) + deg(e))−1 =
4(m − 1)

5
+

4(m − 1)
m + 2

+
4(m − 1)

6
+

4(m − 1)(n − 3)
7

+
2(m − 1)(n − 2)

m + 5
+

(m − 1)
m

+
4

3m − 1
+

4
3m

+
4(n − 3)
3m + 1

+
2(m − 1)(n − 2)

2m + 3

=
2(30n − 13)(m − 1)

105
+

4(m − 1)
m + 2

+
2(m − 1)(n − 2)

m + 5
+

(m − 1)
m

+
4

3m − 1
+

4
3m

+
4(n − 3)
3m + 1

+
2(m − 1)(n − 2)

2m + 3
. (4)

By virtue of Lemmas 9 and 10 and invoking Equation (4), we obtain

HE (G) =
(m − 1)(485n − 368)

420
+

4(m − 1)
m + 2

+
2(m − 1)(n − 2)

m + 5
+

(m − 1)
m

+
4

3m − 1
+

4
3m

+
4(n − 3)
3m + 1

+
2(m − 1)(n − 2)

2m + 3

+
(m − 1)(m − 2)

m
+

4(m − 1)
m + 3

+
4(m − 1)
3m − 1

+
(m − 4)

2m

+
4(m − 1)
3m + 1

+
4(n − 3)(m − 1)

3m + 2
+

4(n − 3)(m − 1)
m + 6

+
4(m − 1)

m + 5
+

4
4m − 1

+
(n − 2)(m − 1)(m − 2)

2m + 4

+
4(m − 1)

m + 2
+

2(m − 1)(n − 2)
m + 4

+
4

2m + 1
+

2(n − 3)
2m + 2

=
8(m − 1)

m + 2
+

2n(m − 1)
m + 5

+
6m2 − 9m + 2

6m
+

(m − 1)(485n − 368)
420

+
4

3m − 1
+

4(n − 3)
3m + 1

+
2(m − 1)(n − 2)

2m + 3
+

4(m − 1)
m + 3

+
4(m − 1)
3m − 1

+
4(m − 1)
3m + 1

+
4(n − 3)(m − 1)

3m + 2
+

4(n − 3)(m − 1)
m + 6

+
4

4m − 1

+
(n − 2)(m − 1)(m − 2)

2m + 4
+

2(m − 1)(n − 2)
m + 4

+
4

2m + 1
+

2(n − 3)
2m + 2

.
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Figure 5. Stacked Book Graph.

5. Relationships between the Entire Harmonic Index and Other Indices

Proposition 5. For any nontrivial connected graph G, HE (G) ≤ RE (G). The equality holds, if
and only if G is a cycle Cn.

Proof. Let G be any nontrivial connected graph, and let G = (V, E) be a simple graph.
Then, for any element {x, y} in B(G), obviously, deg(x) + deg(y) ≥ 2(deg(x)deg(y))1/2.
Then,

HE (G) = 2 ∑
{x,y}∈B(G)

(deg(x) + deg(y))−1 ≤ ∑
{x,y}∈,B(G)

(deg(x)deg(y))−1 = RE (G).

If the graph is a cycle Cn, then, clearly, HE (G) = RE (G) = 2n. Suppose that HE (G) =
RE (G). Then, 2 ∑{x,y}∈B(G)(deg(x)+ deg(y))−1 = 2 ∑{x,y}∈,B(G)(deg(x)deg(y))−1/2, which
implies that deg(x) = deg(y), and the only nontrivial connected graph with edges and
vertices all of the same degree is the cycle graph Cn.

Theorem 6. For the graph G, which has m edges, we obtain

HE (G) ≤ (2m +
M1(G)

2
)α,

where α = ∑{x,y} ∈ B(G)
1

deg(x)+deg(y) , and M1(G) is the first Zagreb index of G.

Proof. For the graph G with n, m vertices and edges, we obtain

HE (G) = ∑
{x,y}∈B(G)

2
deg(x) + deg(y)

.

Leveraging the Cauchy–Schwarz inequality, we can deduce

HE (G) = ∑{x,y}∈B(G)
2

deg(x) + deg(y)

≤ |B(G)|∑{x,y}∈B(G)
2

deg(x) + deg(y)
= |B(G)|ME∗

1 (G)

= (2m +
M1(G)

2
)α.

6. Conclusions

In this article, we introduced a new version of the Randić index referred to as the entire
Harmonic index, along with its associated polynomial. This index was conceptualized, and
its discriminating power was investigated with regard to the predictability of the boiling



Symmetry 2024, 16, 208 15 of 16

point, enthalpy of formation, and π electronic energy of the chemical substances; the
correlation coefficients between 0.909 and 1 were acquired, higher than the ones received in
the case of the Harmonic index and the Randić index in terms of the enthalpy of formation
and π-electronic energy. Furthermore, it was higher than the one achieved in the case of
the Harmonic index for the boiling point. Specific formulae for some families of graphs
and graph operations were achieved; bounds and some important results were found.

Finally, as this represents the initial introduction of the entire Harmonic Index (EHI),
several intriguing open problems and potential research avenues require further explo-
ration. These include:

1. More mathematical study for this new index to discover its relations with the other
graph parameters;

2. Investigation of the broader applicability of this new index across diverse network
types, including social networks, biological networks, and technological networks;

3. Exploration of the potential of this index in various domains, such as drug discovery
in medicine and material design in engineering.
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