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1. Introduction

The main application of Lie symmetries is the construction of mappings that reduce
the number of independent variables in a system of partial differential equations. Bluman
and Cole [1,2] derived a novel method for constructing reduction mappings that are not
equivalent to the Lie ones, and they called them non-classical (symmetries) reductions.
Later, these reductions were called conditional symmetries, Q-conditional symmetries
and reduction operators by various authors [3–5]. Applications, further theory and more
examples on non-classical symmetries can be found, for example, in [6–13]. The target of
this approach is to derive operators which are not equivalent to Lie operators. Unlike the
Lie method, where the determining system are linear partial differential equations, here the
system consists nonlinear equations. This difference makes the nonclassical method more
complicated to apply. There is no guarantee that this approach will lead to new operators
different than the Lie ones, and this is a disadvantage of the method. In fact, not many
results appear in the literature. More details and applications about this method can be
found in Ref. [14]. Here, we also consider the notion of equivalence transformations, which
play an important role in the theory of applications of Lie group to differential equations.
The set of all equivalence transformations of a given family of differential equations forms
a group which is called the equivalence group.

The system of nonlinear diffusion equations of the form

ut = (umvlux)x, (uv)t = ϵ(un+1vpvx)x + (umvl+1ux)x (1)

is used as a model to describe the consequence of nonlinearly coupled mass and heat
diffusion in a plasma, which slowly diffuses in a strong magnetic field [15,16]. The depen-
dent variables u and v represent the density and ionic temperature of the plasma, and the
parameters m, n, l, p and ϵ are considered to be real numbers. Lie symmetry analysis of
System (1) is presented in the recent works [17,18].
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In the case where m = n, l = p and ϵ = 1, System (1) can be written in the form

ut = (un−pwpux)x, wt = (un−pwpwx)x, (2)

where w = uv. In the case where m = n, l = p and ϵ = −1, System (1), after eliminating ut
in the second equation using the first, takes the form

ut = (unvpux)x, vt = −(unvpvx)x. (3)

We introduce the mapping u = ϕx and w = ψx, where ϕ and ψ are functions of x and
t, to write System (2) in the potential form

ϕt = ϕ
n−p
x ψ

p
x ϕxx, ψt = ϕ

n−p
x ψ

p
x ψxx. (4)

Similarly, we can write (3) in the potential form

ϕt = ϕn
x ψ

p
x ϕxx, ψt = −ϕn

x ψ
p
x ψxx. (5)

In the present work, we consider the special case of System (4) with n = −1 and p = 0,

ϕt =
ϕxx

ϕx
, ψt =

ψxx

ϕx
(6)

and the special case of System (5) with n = −1 and p = 0

ϕt =
ϕxx

ϕx
, ψt = −ψxx

ϕx
(7)

We derive non-Lie operators for the above two systems. The idea is similar to that
of deriving potential (non-local) symmetries [19,20]. The notion of potential symmetries
is applied when an equation can be written in a conserved form. In [7], two equivalent
algorithms for finding nonclassical potential symmetries are presented. In the first one,
the potential (auxiliary) systems are used, while in the second approach, the potential
equation is used. Here, we used the second algorithm. Potential symmetries for System (1)
can be found in [18].

We note that if n = p = −1 in (4), we obtain the symmetrical form of Equation (6)
(interchange ϕ and ψ). Furthermore with n = 0 and p = −1 in (5), we obtain the system

ϕt =
ϕxx

ψx
, ψt = −ψxx

ψx
(8)

which is connected with (7) under the mapping t 7→ −t, x 7→ x, ϕ 7→ ψ, ψ 7→ ϕ.
In the next section, we derive equivalence transformations for the potential form

of a general diffusion-type system. From the general result on potential equivalence
transformations, we deduce interesting special cases. In Section 3, we derive non-Lie
reduction operators for Systems (6) and (7). Finally, we construct exact solutions using the
reduction operators and the equivalence transformations. Most of the calculations were
performed with the assistance of the algebraic manipulation package REDUCE.

2. Potential Equivalence Transformations

We call two partial differential equations similar if they are connected by a point trans-
formation. Such equations have similar sets of solutions, symmetries and other properties.
It is important to derive such point transformations that link two equations from the same
class of partial differential equations. We call these transformations form-preserving [21]
or admissible [22]. When such transformations preserve the differential structure of the
class, and may only change the arbitrary functions, they are called equivalence transfor-
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mations, and they form a group. More on different kinds of equivalence groups and their
applications can be found, for example, in reference [14].

We consider the system of the general class

ut = [ f (u, v)ux]x, vt = [g(u, v)vx]x (9)

and, introducing the potential variables ϕ and ψ, such that u = ϕx and v = ψx, we can
write it as a system of four equations

ϕx = u, ϕt = f (u, v)ux, ψx = v, ψt = g(u, v)vx.

We eliminate the variables u and v to obtain the corresponding potential system

ϕt = f (ϕx, ψx)ϕxx, ψt = g(ϕx, ψx)ψxx. (10)

We refer to equivalence transformations of System (10) as potential equivalence trans-
formations of System (9). Examples of such transformations for diffusion-type equations
are derived in [23,24]. Lie symmetries of (10) that induce potential symmetries of (9) can be
found in [25]. Lie symmetries for System (9) are presented in [26].

We have two methods for calculation of equivalence transformations: the direct,
which was used first by Lie [27], and the Lie infinitesimal method, which was introduced by
Ovsyannikov [28]. Here, we use the direct method. However, we only present the results
without presenting any detailed analysis. We tabulate the results in Theorem 1.

Theorem 1. System (10) admits the equivalence transformations

t̃ = α1t + α2, x̃ = β1x + β2, ϕ̃ = γ1x + γ2ϕ + γ3, ψ̃ = δ1x + δ2ψ + δ3, (11)

f̃ = α−1β2
1 f , g̃ = α−1β2

1g.

In the case where g(ϕx, ψx) = f (ϕx, ψx), System (10) admits the equivalence transformations

t̃ = α1t + α2, x̃ = β1x + β2ϕ + β3ψ + β4, ϕ̃ = γ1x + γ2ϕ + γ3ψ + γ4, (12)

ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4, f̃ = α−1
1 (β1 + β2ϕx + β3ψx)

2 f .

The corresponding equivalence group for the nonlinear filtration equation vt = f (vx)vxx
can be found in [29]. This book is an excellent source of references for the filtration equation,
as well as for its physical applications.

It is important to give the special results for the two systems under study. These
transformations will be used to construct exact solutions. From Theorem 1, we deduce that
equivalence transformations for System (6) have the form

t̃ = β1γ1t + α2, x̃ = β1x + β2, ϕ̃ = γ1ϕ + γ2, ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4

and
t̃ = β1γ1t + α2, x̃ = β1ϕ + β2, ϕ̃ = γ1x + γ2, ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4.

We note that a special case is the hodograph transformation

t̃ = t, x̃ = ϕ, ϕ̃ = x, ψ̃ = ψ (13)

which leaves (6) invariant. The corresponding result for the nonlinear fast diffusion equa-
tion vt =

vxx
vx

can be found in [29].
From Theorem 1, we deduce the equivalence transformations for (7) have the form

t̃ = β1γ1t + α2, x̃ = β1x + β2, ϕ̃ = γ1ϕ + γ2, ψ̃ = δ1x + δ2ψ + δ3.
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Furthermore, we state some interesting special cases of the equivalence transforma-
tions (12). Initially, we write (6) in tilded variables

ϕ̃t̃ =
ϕ̃x̃x̃

ϕ̃x̃
, ψ̃t̃ =

ψ̃x̃x̃

ϕ̃x̃
. (14)

Equivalence transformation (12) maps (14) into equation

ϕt =
ϕxx

(β1 + β2ϕx + β3ψx)(γ1 + γ2ϕx + γ3ψx)
, (15)

ψt =
ψxx

(β1 + β2ϕx + β3ψx)(γ1 + γ2ϕx + γ3ψx)
.

We fix certain constants to deduce some interesting mappings. Equation (14) is
connected with

ϕt =
ϕxx

µ1ϕx + µ2ψx + µ3
, ψt =

ψxx

µ1ϕx + µ2ψx + µ3
(16)

under the transformation

t̃ = β1γ1t + α2, x̃ = β1x + β2, ϕ̃ = γ1µ1ϕ + γ1µ2ψ + γ1µ3x + γ2,

ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4

or the transformation

t̃ = β1γ1t + α2, x̃ = β1µ1ϕ + β1µ2ψ + β1µ3x + β2, ϕ̃ = γ1x + γ2,

ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4,

where β1γ1(δ2µ1 − δ3µ2) ̸= 0. Equation (14) is connected with

ϕt =
ϕxx

µ1ϕ2
x + µ2ϕx + µ3

, ψt =
ψxx

µ1ϕ2
x + µ2ϕx + µ3

(17)

under the transformation

t̃ = β1γ1t + α2, x̃ = β1(µ2 − γ2µ1)x + β1µ1ϕ + β2, ϕ̃ = γ1ϕ + γ1γ2x + γ3,

ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4,

where µ3 = (µ2 − γ2µ1)γ2 and β1γ1δ1(µ2 − 2γ2µ1) ̸= 0. Equation (14) is connected with

ϕt =
ϕxx

ϕxψx
, ψt =

ψxx

ϕxψx
(18)

under the transformation

t̃ = β1γ1t + α2, x̃ = β1ψ + β2, ϕ̃ = γ1ϕ + γ2, ψ̃ = δ1x + δ2ϕ + δ3ψ + δ4,

where β1γ1δ1 ̸= 0. A special case is the hodograph transformation t̃ = t, x̃ = ψ, ϕ̃ = ϕ,
ψ̃ = x.

3. Non-Lie Operators

We construct non-Lie operators for the potential systems (6) and (7) which, originally,
were used by Bluman and Cole [1], and they called them non-classical reductions. In order
to obtain such reduction operators, we seek invariance of the differential equation in
conjunction with its invariant surface condition. Precise and rigorous definitions for these
reductions can be found in [8,14,30]. A number of examples of non-classical reductions for
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diffusion-type systems are given in the book [31], and in the recent works [32–36]. We can
refer to the results derived in this section as potential non-Lie operators for the systems

ut = (u−1ux)x, wt = (u−1wx)x, (19)

and
ut = (u−1ux)x, vt = −(u−1vx)x. (20)

Here, we require invariance of System (6) (or System (7)) in conjunction with its
invariance surface conditions,

τ(t, x, ϕ, ψ)ϕt + ξ(t, x, ϕ, ψ)ϕx = η(t, x, ϕ, ψ), (21)

τ(t, x, ϕ, ψ)ψt + ξ(t, x, ϕ, ψ)ψx = µ(t, x, ϕ, ψ)

under the infinitesimal transformations generated by the operator

Γ = τ(t, x, ϕ, ψ)∂t + ξ(t, x, ϕ, ψ)∂x + η(t, x, ϕ, ψ)∂ϕ + µ(t, x, ϕ, ψ)∂ψ. (22)

This invariance results in an overdetermined non-linear system of partial differential
equations with unknown functions for the coefficients of the operator, τ(t, x, ϕ, ψ), ξ(t, x, ϕ, ψ),
η(t, x, ϕ, ψ) and µ(t, x, ϕ, ψ). We require that (τ, ξ) ̸= (0, 0). Clearly, the non Lie reduction
operator also has the form (22). In the case where τ ̸= 0, without loss of generality, we take
τ = 1. In the case where τ = 0, we can take ξ = 1. Hence, two exclusive cases need to be
considered. However, in the preset work, we only consider the case where τ = 1.

The nonclassical method also unfolds Lie symmetries admitted by the system. It is
essential to list only those reduction operators which are not equivalent to Lie symmetries.
The symmetry Lie algebra for (6) is 10-dimensional, and is spanned by the operators

X1 = ∂t, X2 = ∂x, X3 = ∂ϕ, X4 = ∂ψ, X5 = t∂t + x∂x, X6 = x∂x − ϕ∂ϕ,

X7 = x∂ψ, X8 = ψ∂ψ, X9 = ϕ∂ψ, X10 = (xϕ + 2t)∂ψ.

The symmetry Lie algebra for (7) is 8-dimensional, and is spanned by the above Lie
operators X1 − X8. Also, the symmetry Lie algebra for System (19) is 7-dimensional, and is
spanned by the operators

Y1 = ∂t, Y2 = ∂x, Y3 = ∂v, Y4 = 2t∂t + x∂x, Y5 = t∂t + u∂u, Y6 = v∂v, Y7 = u∂v

and System (20) admits the Lie symmetries Y1 − Y6.
For the nonclassical analysis, we use the corresponding results on the fast diffusion

equation, which appear in [30]. Without presenting any detailed analysis, we give the
non-Lie operators for Systems (6) and (7). We tabulate the determining equations that lead
to the desired reduction operators in Appendix A.

3.1. Non-Lie Reduction Operators for System (6)

We present the non-Lie reduction operators (non-classical symmetries) admitted by
the potential system (6). These results do not appear in the literature.

Case 1.1: Γ1 = ∂t − 2
x ∂ϕ + c

x ∂ψ, Γ2 = ∂t − 2
x ∂ϕ + x2∂ψ.

Case 1.2: We find that Γ = ∂t − 2 cot(x)∂ϕ + θ(x)∂ψ, where the function θ(x) satisfies
the differential equation θ′′(x)− 2 csc2(x)θ(x) = 0 which has the solution θ(x) = c(1 −
x cot(x)) + k cot(x). Hence, we have two non-Lie operators

Γ1 = ∂t − 2 cot(x)∂ϕ + c[1 − x cot(x)]∂ψ, Γ2 = ∂t − 2 cot(x)∂ϕ + k cot(x)∂ψ.
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Case 1.3: We have Γ = ∂t − 2 tanh(x)∂ϕ + θ(x)∂ψ, where the function θ(x) satisfies the
differential equation θ′′(x) + 2 sech2(x)θ(x) = 0. The solution is θ(x) = c(x tanh(x)− 1) +
k tanh(x) and, therefore, we have two non-Lie operators

Γ1 = ∂t − 2 tanh(x)∂ϕ + c[x tanh(x)− 1]∂ψ, Γ2 = ∂t − 2 tanh(x)∂ϕ + k tanh(x)∂ψ.

Case 1.4: As in the previous case, we find the two non Lie operators:

Γ1 = ∂t − 2 coth(x)∂ϕ + c(x coth(x)− 1)∂ψ, Γ2 = ∂t − 2 coth(x)∂ϕ + k coth(x)∂ψ.

Case 2.1: Γ1 = ∂t − 2
ϕ+x ∂x − 2

ϕ+x ∂ϕ +
c

ϕ+x ∂ψ, Γ2 = ∂t − 2
ϕ+x ∂x − 2

ϕ+x ∂ϕ + (ϕ + x)2∂ψ.

Case 2.2: Coefficient µ(t, x, ϕ, ψ) in the operator Γ satisfies the same differential equa-
tion as in Case 1.2 with independent variable η = x + ϕ. Hence, we have the two reduc-
tion operators:

Γ1 = ∂t − 2 cot(x + ϕ)∂x − 2 cot(x + ϕ)∂ϕ + k cot(x + ϕ)∂ψ,

Γ2 = ∂t − 2 cot(x + ϕ)∂x − 2 cot(x + ϕ)∂ϕ + c[1 − (x + ϕ) cot(x + ϕ)]∂ψ.

Case 2.3: Using the results in Case 1.3, we derive the two reduction operators

Γ1 = ∂t − 2 tanh(x + ϕ)∂x − 2 tanh(x + ϕ)∂ϕ + k tanh(x + ϕ)∂ψ,

Γ2 = ∂t − 2 tanh(x + ϕ)∂x − 2 tanh(x + ϕ)∂ϕ + c[(x + ϕ) tanh(x + ϕ)− 1]∂ψ.

Case 2.4: We replace tanh by coth in Case 2.3 to obtain

Γ1 = ∂t − 2 coth(x + ϕ)∂x − 2 coth(x + ϕ)∂ϕ + k coth(x + ϕ)∂ψ,

Γ2 = ∂t − 2 coth(x + ϕ)∂x − 2 coth(x + ϕ)∂ϕ + c[(x + ϕ) coth(x + ϕ)− 1]∂ψ.

Case 3: Finally, we have the reduction operator

Γ = ∂t +
2x

2t − ϕx
∂x +

2ϕ

2t − ϕx
∂ϕ +

2ψ

2t − ϕx
∂ψ.

In the next section, using these operators, we construct reduction mappings with the
target to solve the reduced systems.

3.2. Non-Lie Reduction Operators for System (7)

Similarly, we derive the non-Lie operators for the potential system (7), which are all
new results. We have the following operators:

Case 1.1: Γ1 = ∂t − 2
x ∂ϕ + c

√
x cos

(√
7 log(x)

2

)
∂ψ, Γ2 = ∂t − 2

x ∂ϕ + c
√

x sin
(√

7 log(x)
2

)
∂ψ.

Case 1.2: Γ = ∂t − 2 cot(x)∂ϕ + θ(x)∂ψ, where the function θ(x) satisfies the differen-
tial equation

θ′′(x) + 2 csc2(x)θ(x) = 0. (23)

Case 1.3: Γ = ∂t − 2 tanh(x)∂ϕ + θ(x)∂ψ, where the function θ(x) satisfies the differen-
tial equation

θ′′(x)− 2 sech2(x)θ(x) = 0. (24)

Case 1.4: Γ = ∂t − 2 coth(x)∂ϕ + θ(x)∂ψ, where the function θ(x) satisfies the differen-
tial equation

θ′′(x) + 2 csch2(x)θ(x) = 0. (25)

Differential Equations (23)–(25) can be solved in terms of the Legendre functions.
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4. Exact Solutions

Similarly to the case of Lie symmetries, the operators derived in the previous section
can be used to construct reduction mappings that transform System (6) into a system
with ordinary differential equations. The reductions are obtained by solving the invariant
surface conditions (21). In certain cases, the reduced systems can be solved and, with the
use of the mappings, we obtain exact solutions for the original system. We consider the
cases of the previous section. Since the hodograph transformation (13) leaves System (6)
invariant, it can be used to construct new solutions from known ones.

4.1. Exact Solutions for System (19)

We separately consider each case derived in Section 3.1. It appears that the exact
solutions obtained using non-Lie reductions are new. However, we need to emphasize
that, since the corresponding search for exact solutions using Lie symmetries does not
appear in the literature, it is possible certain solutions may be derived from Lie reductions.
For example, the exact solutions of case 1.1 can be obtained using the Lie symmetries
admitted by System (19).

Case 1.1: The operator Γ1 provides the similarity mapping ϕ(t, x) = − 2t
x + F(x),

ψ(t, x) = ct
x + G(x) that reduces (6) into the system

xF′′(x) + 2F′(x) = 0, xG′′(x)− cF′(x) = 0.

Solving this system, we obtain the simple exact solution

ϕ(t, x) =
c1 + c2x − 2t

x
, ψ(t, x) =

2c3x2 + 2c4x + 2ct − cc1

2x

of System (6). Using the hodograph transformation (13) and the above solution, we obtain
the same solution (with different constants). The corresponding solution for System (19) is

u(t, x) =
2t − c1

x2 , w(t, x) =
2c3x2 − 2ct + c1c

2x2 .

Similarly, the second operator Γ2 leads to the solution

ϕ(t, x) =
c1 + c2x − 2t

x
, ψ(t, x) =

1
2

(
−c1x2 + 2c3x + 2c4 + 2tx2

)
.

We use the hodograph transformation (13) to obtain the solution

ϕ(t, x) =
c1 − 2t
x − c2

,

ψ(t, x) =
2c4x2 + 2(c1c3 − 2c2c4 − 2c3t)x + 8t3 − 12c1t2 + 2(3c2

1 + 2c2c3)t + 2c2
2c4 − c3

1 − 2c1c2c3

2(x − c2)2

The corresponding solutions for System (19) are

u(t, x) =
2t − c1

x2 , w(t, x) = 2tx − c1x + c3

and

u(t, x) =
2t − c1

(x − c2)2 , w(t, x) =
2c3tx − c1c3x − 8t3 + 12c1t2 − (6c2

1 + 2c2c3)t + c3
1 + c1c2c3

(x − c2)3 .
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Case 1.2: From the operator Γ1 we obtain the reduction ϕ(t, x) = −2t cot(x) + F(x),
ψ(t, x) = ct(1 − x cot(x)) + G(x), and the reduced system has the form

F′′(x) + 2 cot(x)F′(x) = 0, G′′(x)− ct(1 − x cot(x))F′(x) = 0.

Solving the above system, we find the solution

ϕ(t, x) = −(c1 + 2t) cot(x) + c2, ψ(t, x) =
1
2

c(c1 + 2t)(1 − x cot(x)) + c3x + c4

of System (6). Similarly, the reduction operator Γ2 leads to the solution

ϕ(t, x) = −(c1 + 2t) cot(x) + c2, ψ(t, x) =
1
2

k(c1 + 2t) cot(x) + c3x + c4.

Using the above solutions and transformation (13), we derive two new solutions:

ϕ(t, x) = cot−1
(

c2 − x
c1 + 2t

)
, ψ(t, x) =

1
2

c
[

c1 + 2t − (c2 − c3 − x) cot−1
(

c2 − x
c1 + 2t

)]
+ c4,

ϕ(t, x) = cot−1
(

c2 − x
c1 + 2t

)
, ψ(t, x) =

1
2

k(c2 − x) + c3 cot−1
(

c2 − x
c1 + 2t

)
+ c4.

Here, the upper index −1 denotes inverse function. The corresponding solutions of
System (19) have the form

u(t, x) = (2t + c1) csc2(x), w(t, x) =
1
2
[c(2t + c1)(x csc2(x)− cot(x)) + 2c3],

u(t, x) = (2t + c1) csc2(x), w(t, x) = −1
2

k(2t + c1) csc2(x) + c3,

u(t, x) =
2t + c1

(x − c2)2 + (2t + c1)2 , w(t, x) =
c
2

[
cot−1

(
c2 − x
c1 + 2t

)
+

(2t + c1)(x + c3 − c2)

(x − c2)2 + (2t + c1)2

]
,

u(t, x) =
2t + c1

(x − c2)2 + (2t + c1)2 , w(t, x) = − k
2
− 2c3(2t + c1)

(x − c2)2 + (2t + c1)2 .

Case 1.3: Here, the reductions are similar to the previous case. Using the operators Γ1
and Γ2, we find the solutions of System (6)

ϕ(t, x) = (c1 − 2t) tanh(x) + c2, ψ(t, x) =
1
2

k(2t − c1) tanh(x) + c3x + c4

and

ϕ(t, x) = (c1 − 2t) tanh(x) + c2, ψ(t, x) =
1
2

c(2t − c1)(x tanh(x)− 1) + c3x + c4.

Hodograph transformation (13) produces the new solutions

ϕ(t, x) = tanh−1
(

x − c2

c1 − 2t

)
, ψ(t, x) =

1
2

k(c2 − x) + c3 tanh−1
(

x − c2

c1 − 2t

)
+ c4

and

ϕ(t, x) = tanh−1
(

x − c2

c1 − 2t

)
, ψ(t, x) =

1
2

c
[
(c2 + c3 − x) tanh−1

(
x − c2

c1 − 2t

)
+ c1 − 2t

]
+ c4.

The corresponding solutions of System (19) have the form

u(t, x) = (c1 − 2t)sech2(x), w(t, x) =
1
2
(2t − c1)sech2(x) + c3,
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u(t, x) = (c1 − 2t)sech2(x), w(t, x) =
1
2
[c(2t − c1)(xsech2(x) + tanh(x)) + 2c3],

u(t, x) =
2t − c1

(x − c2)2 − (2t − c1)2 , w(t, x) = − k
2
+

c2(2t − c1)

(x − c2)2 − (2t − c1)2 ,

u(t, x) =
2t − c1

(x − c2)2 − (2t − c1)2 , w(t, x) =
c
2

[
tanh−1

(
x − c2

2t − c1

)
+

(2t − c1)(c3 + c2 − x)
(x − c2)2 − (2t − c1)2

]
.

Case 1.4: The results are obtained by replacing tanh with coth in case 1.3.
In case 2, we only present the solutions of System (6). The corresponding solutions of

System (19), u = ϕx(t, x), w = ψx(t, x), are very lengthy, and we shall not tabulate them.
Case 2.1: The reduction operator Γ1 leads to the same solutions as in the case 1.1, with

different constants. From Γ2, we obtain the reduction mapping

ϕ(t, x) = x + F(ω), ψ(t, x) = − 1
16

(ϕ + x)4 + G(ω), ω = xϕ(t, x) + 2t

which reduces (6) to the system

F′′(ω) = 0,
3
4
[
F(ω)F′(ω) + 2

]2 − G′′(ω) = 0.

Solving this reduced system, we find the solution

ϕ(t, x) =
x + 2c1t + c2

1 − c1x
,

ψ(t, x) = − 1
16

(ϕ + x)4 +
(xϕ + 2t)2

16

[
c2

1(xϕ + 2t) + 2(c1c2 + 2)
]2

+
1
8
(c1c2 + 2)2(xϕ + 2t)2 + c3(xϕ + 2t) + c4.

We point out that the hodograph transformation (13) does not provide a new solution.
Case 2.2: We use the reduction operator Γ2 to produce the following two solutions:

ϕ(t, x) = − tan−1[tanh(2t) cot(x)],

ψ(t, x) =
c
4

log
[

cos(ϕ + x)
cos(ϕ − x)

]
+

c
2

xϕ + c1ϕ + c2x

and

ϕ(t, x) = tan−1
[

1 − tanh(2t) + (1 + tanh(2t)) tan(x)
1 + tanh(2t) + (1 − tanh(2t)) tan(x)

]
,

ψ(t, x) =
c
4

log
[

cos(ϕ + x)
sin(ϕ − x)

]
+

c
2

xϕ + c1ϕ + c2x.

Case 2.3: Similarly, the reduction operator Γ2 produces the solutions

ϕ(t, x) = − tanh−1[tanh(x) coth(2t)],

ψ(t, x) =
c
4

log
[

sinh(ϕ + x)
sinh(ϕ − x)

]
− c

2
xϕ + c1ϕ + c2x

and

ϕ(t, x) = tanh−1
[

1 − tanh(2t)− (1 + tanh(2t)) tanh(x)
1 + tanh(2t) + (1 − tanh(2t)) tanh(x)

]
,

ψ(t, x) =
c
4

log
[

sinh(ϕ + x)
cosh(ϕ − x)

]
− c

2
xϕ + c1ϕ + c2x.
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Case 2.4: As before, the reduction operator Γ2 leads to the exact solutions

ϕ(t, x) = coth−1[tanh(x) coth(2t)],

ψ(t, x) =
c
4

log
[

cosh(ϕ + x)
cosh(ϕ − x)

]
+

c
2

xϕ + c1ϕ + c2x

and

ϕ(t, x) = − coth−1
[

1 − tanh(2t)− (1 + tanh(2t)) tanh(x)
1 + tanh(2t) + (1 − tanh(2t)) tanh(x)

]
,

ψ(t, x) =
c
4

log
[

cosh(ϕ − x)
sinh(ϕ + x)

]
− c

2
xϕ + c1ϕ + c2x.

Case 3. The solutions are similar to case 1.1.
As we pointed out earlier, some exact solutions can be derived using Lie reductions.

Based on the results for the fast diffusion equation ut = (u−1ux)x [24,30,37–39], we deduce
that the solutions of case 1.1 can be obtained using Lie reductions.

4.2. Exact Solutions for System (20)

We use the reduction operators of Section 3.2 to derive similarity mappings for Sys-
tem (7). Solving the reduced systems, we obtain exact solutions for System (7) and, con-
sequently, u(t, x) = ϕx and v(t, x) = ψx are the corresponding solutions of the original
system (20). We list the solutions of System (7). Not all solutions obtained appear in
the literature.

Case 1.1: Reduction operator Γ1 provides the solution

ϕ(t, x) =
c1 + c2x − 2t

x
,

ψ(t, x) = ct
√

x cos

(√
7 log(x)

2

)
− 1

2
cc1

√
x cos

(√
7 log(x)

2

)
+ c3x + c4

and Γ2 produces the solution

ϕ(t, x) =
c1 + c2x − 2t

x
,

ψ(t, x) = ct
√

x sin

(√
7 log(x)

2

)
− 1

2
cc1

√
x sin

(√
7 log(x)

2

)
+ c3x + c4.

Case 1.2: Using the reduction operator Γ, we find the solution

ϕ(t, x) = (c1 − 2t) cot(x), ψ(t, x) = tθ(x) + G(x),

where θ(x) satisfies Equation (23) and G′′(x) = c1θ(x) csc2(x).
Case 1.3: Similarly, we have the solution

ϕ(t, x) = (c1 − 2t) tanh(x), ψ(t, x) = tθ(x) + G(x),

where θ(x) satisfies Equation (24) and G′′(x) = −c1θ(x)sech2(x).
Case 1.4: Finally, we find the solution

ϕ(t, x) = (c1 − 2t) coth(x), ψ(t, x) = tθ(x) + G(x),

where θ(x) satisfies Equation (25) and G′′(x) = c1θ(x)csch2(x).

5. Final Remarks

Group analysis of differential equations provides systematic methods for deducing
exact solutions of nonlinear general partial differential equations. Such a method was
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introduced by Bluman and Cole [1], and they called it non-classical. The target is to derive
similarity reductions that are not equivalent to Lie reductions. This method was used
in this article to derive non-Lie operators for (6) and (7), which are potential systems
of (19) and (20), respectively. The obtained results are employed to construct exact so-
lutions for the corresponding systems. Motivated by the present work, one can search
for non-Lie operators directly for Systems (19) and (20). The related results for the single
equation, the fast diffusion equation ut = (u−1ux)x, can be found in [39]. A more diffi-
cult task is to search for such operators for the general system (1), or for its special cases
(2) and (3), or for their potential forms. Furthermore, as pointed out earlier, similarity
solutions that result from Lie symmetries for the special systems (19) and (20) do not
appear in the literature, and therefore this can be the subject of a further study. For ex-
ample, the Lie symmetry X5 = t∂t + x∂x admitted by System (6) produces the solutions
(ϕ, ψ) = {(− 2t

x ,− 2t
x ), (2 tan−1 x

t , tan−1 x
t ), (−2 coth−1 x

t ,− coth−1 x
t )}. Consequently, we

have the solutions of System (19) (u, w) = {( 2t
x2 , 2t

x2 ), (
2t

x2+t2 , t
x2+t2 ), (

2t
x2−t2 , t

x2−t2 )}.
An equivalence transformation for a class of partial differential equations has the

property that it transforms any member of the class to an equation, which is also a member
of the class. This is useful, for example, when converting equations to a known form on
which an established theory can be called. Here, we have derived the equivalence group
for a potential form of the system under study. This potential form is obtained using the
conservation laws admitted by the system. The complete list of conservation laws for
the general class of systems (9) and the corresponding potential systems can be found
in [25]. One new task is to construct the equivalence group for these potential systems.
Furthermore, these potential systems lead to additional transformations. We present one
example. Introducing the potential variables ϕ and ψ, System (19) can be written as a
system with four equations,

ϕx = u, ϕt =
ux

u
, ψx = w, ψt =

wx

u
.

This system remains invariant under the mapping

t 7→ t, x 7→ ϕ, u 7→ 1
u

, w 7→ w
u

, ϕ 7→ x, ψ 7→ ψ

which leads to the transformation

dt 7→ dt, dx 7→ udx +
ux

u
dt, u 7→ 1

u
, w 7→ w

u

that leaves System (19) invariant. The above mapping can be written in an integrated
form [40].
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Appendix A

We apply the second extension Γ(2) of Operator (22) (with τ = 1) on System (6). We
eliminate ϕxx and ψxx from (6), and ϕt, ψt, ϕxt, ϕtt, ψxt, ψtt from the invariant surfaces (21),
to obtain two identities: E1(t, x, ϕ, ψ, ξ, η, µ, ϕx, ψx) = 0 and E2(t, x, ϕ, ψ, ξ, η, µ, ϕx, ψx) = 0.
E1 and E2 are polynomials in the derivatives ϕx and ψx. We take the coefficients of powers
of ϕx and ψx in E1 = 0 to find the following system of nonlinear determining equations:
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ξϕϕ − ξξϕ = 0, 2ξϕψ − ξξψ = 0, 2ξxϕ + ηξϕ − ηϕϕ − ξηϕ − ξt − ξξx = 0,

ξψψ = 0, 2ξxψ + ηξψ − 2ηϕψ − ξηψ = 0, ηψψ = 0, (A1)

ηt − 2ηxϕ + ηηϕ − ξηx + ξxx + ηξx = 0, 2ηxψ − ηηψ = 0, ηxx − ηηx = 0,

and the corresponding coefficients in E2 = 0 give the nonlinear equations

ξψψ = 0, 2ξϕψ − ξξψ = 0, 2ξxψ − ξηψ − µψψ = 0, ξϕϕ − ξξϕ = 0,

2ξxϕ + µξψ − ξηϕ − 2µϕψ − ξt − ξξx = 0, µηψ − ξηx − 2µxψ + ξxx = 0, (A2)

µϕϕ − µξϕ = 0, µηϕ + µt − 2µxϕ + µξx = 0, µηx − µxx = 0.

The solution of the determining system (A1) and (A2) leads to the desired reduc-
tion operators.

Similarly, we find the following determining equations for System (7):

ξϕϕ − ξξϕ = 0, 2ϕξϕψ + ξψ = 0, ξψψ = 0, ηψψ = 0,

2ξxϕ + ηξϕ − ηϕϕ − ξηϕ − ξt − µξψ − ξξx = 0,

2ϕξxψ + ϕηξψ − 2ϕηϕψ − 2ϕξηψ − ηψ − ϕ2ξξψ = 0, (A3)

ηt − 2ηxϕ + ηηϕ + µηψ − ξηx + ϕµξψ + ξxx + ηξx = 0,

2ηxψ − ηηψ − ϕξηψ = 0, ηxx + ϕµηψ − ηηx = 0

and

ξψψ = 0, 2ϕξϕψ + ξψ = 0, ηψ − ϕµψψ + 2ϕξxψ − 2ϕ2ξξψ = 0,

ξϕϕ − ξξϕ = 0, ϕηϕ − 2ϕ2µϕψ + 2ϕ2ξxϕ + ϕ2ηξϕ − ϕ3ξξϕ − η = 0,

ηx − 2ϕµϕψ − ϕ2ξt − ϕ2ηξϕ + 2ϕ2µξψ + ϕξxx − 2ϕ2ξξx − ϕξη = 0, (A4)

ϕµϕϕ − ϕξµϕ − µϕ = 0, 2ϕµxϕ + ϕηµϕ + ϕ2ξµϕ − µx − 2ϕ2µξϕ = 0,

2ϕµxϕ + ϕηµϕ + ϕ2ξηϕ − µx − 2ϕ2µξϕ = 0.

The solution for the determining system (A3) and (A4) produces the results of
Section 3.2.
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