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Abstract: Prevailing studies on romantic relationships often emphasize facial symmetry as a factor in
partner selection and marital satisfaction. This study aims to explore the inverse of this hypothesis—
the relationship between facial dissimilarity and partnership duration among celebrity couples.
Utilizing the CELEB-A dataset, which includes 202,599 images of 10,177 celebrities, we conducted an
in-depth analysis using advanced artificial intelligence-based techniques. Deep learning and machine
learning methods were employed to process and evaluate facial images, focusing on dissimilarity
across various facial regions. Our sample comprised 1822 celebrity couples. The predictive analysis,
incorporating models like Linear Regression, Ridge Regression, Random Forest, Support Vector
Machine, and a Neural Network, revealed varying degrees of effectiveness in estimating partnership
duration based on facial features and partnership status. However, the most notable performance was
observed in Ridge Regression (Mean R2 = 0.0623 for whole face), indicating a moderate predictive
capability. The study found no significant correlation between facial dissimilarity and partnership
duration. These findings emphasize the complexity of predicting relationship outcomes based
solely on facial attributes and suggest that other nuanced factors might play a more critical role in
determining relationship dynamics. This study contributes to the understanding of the intricate
nature of partnership dynamics and the limitations of facial attributes as predictors.

Keywords: relationship duration; deep learning; machine learning; facial dissimilarity; facial similarity;
celebrity couples; partnerships and marriages; predictive modelling; aesthetics; face

1. Introduction

The longstanding fascination with why certain individuals form and sustain romantic
partnerships extends from personal curiosity to academic inquiry. One popular theory is
that physical resemblance, particularly in facial features, plays a pivotal role in romantic
relationships [1–5]. This belief, which has roots in various cultures, posits that similar-
looking couples are viewed as better matches. Previous research has further fueled this
notion by demonstrating higher facial resemblance among couples than non-couples, as
well as a correlation between facial similarity and marital satisfaction [6].

The mechanisms behind this observed similarity are diverse, ranging from evolution-
ary advantages such as genetic compatibility [6] to the psychological tendency toward
narcissistic mate selection [1]. Additionally, theories have been proposed to explain the
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development of similar facial features over time through long-term exposure to a partner’s
facial expressions [5]. What ties these theories together is the focus on stable, intrinsic facial
features like the shape of the eyes, nose, mouth, and chin, as opposed to more transient,
extrinsic features like hairstyle or makeup [6,7].

Deep convolutional neural networks (DCNNs), trained in facial recognition, have
achieved or surpassed the capabilities of humans [8]. These networks seem to inherently
encode various facial attributes. Studies have shown a strong resemblance between the
advanced layers of DCNNs’ object and face representations and the neural activities in the
brains of primates [9,10]. Similar parallels have been observed in human brains [11–13].
Most of these studies relied on brief displays of static images. Only a few studies used
longer clips of moving faces, finding a limited correlation between DCNNs and brain
representations [8,14]. Extended exposure to facial images and videos may engage diverse
cognitive aspects. Humans instinctively judge new faces for traits like trustworthiness or
attractiveness, which can alter how these faces are mentally represented [15,16]. Knowledge
about a person significantly affects how familiar faces are processed [17–19]. Familiarity
can skew these representations, and the resemblance of new faces to known ones can
impact perception and judgment [8]. Faces also influence where attention is directed, and
various factors like personal traits, familiarity, and memory can affect neural responses
to faces [20,21]. Further research is needed to disentangle the impact of these social and
cognitive elements on the mental representation of faces. Similarly, the integration of
dynamic and social cues (like facial expressions, eye movement, etc.) in machine vision
systems could improve their effectiveness in human–computer interactions.

Facial attractiveness, crucial for various biological advantages including mating suc-
cess [22], earning potential [23], and longevity [24], is consistently valued across different
ages and cultures [25,26]. While there is a general consensus on what makes a face attractive,
some individual and cross-cultural differences do exist. Facial attractiveness is often quanti-
fied using ideal ratios such as neoclassical canons [27,28], golden proportions [29,30], facial
thirds [31,32], and new golden ratios [33,34]. These ratios define attractiveness through the
spatial relationships of facial features. The golden ratio, an irrational value of 0.618, is often
cited in aesthetics for its harmonious proportions and is considered a universal standard
in facial attractiveness, particularly in fields like plastic surgery [30,35]. Research shows
that these ratios have a neural basis, with studies like Shen et al. (2016) demonstrating that
attractive facial proportions trigger responses in brain areas linked to rewards, such as the
orbitofrontal cortex and amygdala [36]. Computer models have also been used to assess
facial attractiveness, utilizing these ratios to generate attractiveness scores [27,37,38]. For
instance, Schmid et al. (2008) developed a model using a feature vector of 77 putative ratios,
showing a significant correlation with human attractiveness ratings [27]. Deep neural
networks (DNNs) have furthered this field by learning higher-level features from vast num-
bers of face images, leading to more accurate predictions of facial attractiveness [39–41].
Unlike traditional methods that use handcrafted features, DNNs autonomously learn from
data, as seen in Rothe et al. (2016), who used thousands of images and millions of internet
ratings to train a convolutional neural network (CNN) for this purpose [41]. Interestingly,
recent research has noted parallels between DNNs and biological vision systems in their
operational patterns [42–49]. For example, Cichy et al. (2016a) found that DNNs mirror
the stages of human visual processing in time and space, suggesting that these networks
could provide insights into biological visual perception [44]. However, most studies focus
on object recognition, with only a few, like those by McCurrie et al. (2018) and Parde
et al. (2019), exploring DNNs’ implicit feature representations in understanding high-level
perception, such as facial attractiveness [50,51].

Various brain regions work together to recognize and respond to faces, underlining
their significance in human communication and survival. Humans identify faces remark-
ably fast, taking only about 70 milliseconds post-stimulus [52]. Quick assessments of traits
like trustworthiness and aggressiveness also happen within the first 100 milliseconds [53].
Research shows that even infants exhibit a preference for faces over other stimuli from
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as young as two months [54], with a bias for faces of their own race appearing at three
months [55]. Face recognition involves analyzing both three-dimensional structures and sur-
face reflections [56], and studies support a shape-based approach to facial processing [57].
This early development and rapid judgment process highlight the role of facial recognition
in human interaction and survival, emphasizing its significance in how humans, a visually
and socially oriented species, interact with the world. People often quickly make assump-
tions about someone’s trustworthiness based on facial appearance [15,58,59], even though
these impressions may not accurately predict actual behavior [60]. The environment influ-
ences these judgments by shaping exposure to certain facial feature distributions [61,62].
However, this facial recognition expertise is less developed for computer-generated faces,
as they are less frequently encountered in everyday life [63].

Understanding what drives people to form and sustain long-term romantic relation-
ships is a complex issue with significant repercussions for individuals, families, and society
at large. Previous research has identified a wide range of similarities between romantic
partners, including physical, physiological, demographic, and psychological characteris-
tics [64–70]. Two primary sets of mechanisms have been proposed to account for this phe-
nomenon: initial selection based on similarity through mechanisms like homophily [71,72],
dating market dynamics [73], or social homogamy [70], and the development or mainte-
nance of similarity over time due to shared experiences and environments [5,74]. However,
it appears that while couples tend to be similar from the outset, they do not grow more
similar over time [75].

Prevailing studies on romantic relationships often emphasize facial symmetry as a
factor in partner selection and marital satisfaction. Given these intriguing but inconclusive
findings, our study aims to explore a hitherto underexamined facet of romantic relation-
ships: the relationship between facial dissimilarity and partnership duration. We leverage
advanced artificial intelligence methods, specifically machine learning and deep learning
techniques, on a comprehensive dataset of celebrity facial images to provide new insights
into this complex issue.

2. Materials and Methods
2.1. Data Source

The primary dataset employed in this study was the CELEB-A dataset, generously pro-
vided by the Multimedia Lab at The Chinese University of Hong Kong for non-commercial
research purposes [76]. This extensive dataset consists of 202,599 original web facial images
of celebrities, colloquially referred to as “In-The-Wild” images. The celebrities included in
the CELEB-A dataset were sourced from a diverse array of countries and regions across
the globe, ensuring a wide-ranging representation of facial attributes and partnership
dynamics. These images were further processed by aligning and cropping, thereby yielding
202,599 face images suitable for analysis. The dataset encompasses 10,177 unique identity
labels, corresponding to 10,177 distinct celebrities. In instances where multiple images
were available for a given celebrity, a single image was selected at random for analysis.
Additionally, it features meticulously annotated boundary box coordinates for key facial
features—left eye, right eye, nose, left mouth region, and right mouth region.

To enrich the dataset and make it more pertinent to the study’s objectives, a rigorous
web search was undertaken by two independent researchers to identify celebrities within
the CELEB-A dataset who were reported to be in a romantic partnership or marriage.
Search engines employed for this information retrieval included Google and DuckDuckGo.
The dataset already included unique identifiers (names) and associated image IDs for each
celebrity, aiding in accurate data retrieval and association.

Partnerships were eligible for inclusion only if reliable information could be garnered
regarding the duration of the partnership, spanning from the date of first reporting up until
May 2023. Only heterosexual couples were considered. Instances where the relationship
or marital status was confirmed but no corresponding duration data were available were
excluded from the dataset. For couples reported as married, the duration was calculated
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from the initial reporting of the partnership, even if the duration of the actual marriage
may have been the same length or shorter in comparison.

A structured dataset was then compiled, incorporating several variables:

1. Name: Identifier for each celebrity.
2. image_id_1 and image_id_2: The image IDs corresponding to the two partners.
3. Duration_of_Partnership_in_months_until_2023: The calculated duration of each

partnership.
4. Married/Partnership: A binary indicator representing whether the partnership was a

marriage (coded as 1) or a non-marital partnership (coded as 0).

Subsequent to the data extraction and augmentation processes, the Married/Partnership
column was mapped to a numerical format to facilitate computational analysis. This
curated dataset served as the foundation for all subsequent analyses.

2.2. Deep Learning-Based Analysis of Dissimilarity

The analytical pipeline began with meticulous data preprocessing. Our data source
was the above-mentioned Excel file that contained the paths and IDs of the facial images.
Subsequently, a list of image pairs of partners, along with their corresponding IDs, was
generated for further processing.

To prepare the images for the deep learning model, multiple preprocessing steps were
executed. Initially, images were read from their file paths, decoded, and resized to uniform
dimensions (e.g., 218 × 178 pixels). Pixel values were then normalized to a range of [−1, 1]
to facilitate the computational efficiency of the neural network. To augment the dataset
and introduce robustness to the model, we applied a series of random transformations
including contrast adjustment, brightness variation, and rotation. We also implemented
a denormalization function to revert pixel values back to the original range [0, 255] for
potential visualization.

Our study employed the DenseNet architecture to assess image dissimilarity. The
architecture initiates with a convolutional layer equipped with 2k filters and a 7 × 7 kernel
size, optionally succeeded by max pooling. Subsequent layers are organized into dense
blocks, each featuring multiple dense units comprised of batch normalization, convolu-
tional layers, and the concatenation of feature maps. To bridge these dense blocks, transition
layers consisting of batch normalization, convolution, and average pooling are utilized.
The network concludes with a global average pooling layer to minimize the spatial dimen-
sions, followed by a logits layer, which is a fully connected layer that outputs the final
classification scores.

Training the DenseNet model involved the use of a contrastive loss function designed
to quantify dissimilarity between paired images. We calculated the Euclidean distance
between the high-dimensional embeddings of each image pair. This dissimilarity was then
employed to compute the contrastive loss, incorporating a margin to distinctly separate
dissimilar pairs.

The training regimen utilized a cyclical learning rate, dynamically adjusting the
learning rate and momentum across training cycles for optimized performance. At the
onset, the DenseNet architecture was initialized. Following this, the test dataset was
prepared in a manner consistent with the training data preprocessing steps. The model
was then employed for inference on this test dataset. During this phase, contrastive loss
and mean dissimilarity values were computed for the pairs. Lastly, both images and their
dissimilarity scores were merged with the initial dataset for further statistical analysis.

2.3. Machine and Deep Learning-Based Prediction of Relationship Duration

To predict the duration of relationships, a comprehensive dataset, including dissimilar-
ity values, was imported into a DataFrame using the pandas library in Python. The categorical
variable ‘Married/Partnership’ was encoded into numerical format (‘Married’: 1, ‘Partner’: 0).
We transformed the target variable, ‘Duration_of_Partnership_in_months_until_2023’, using
a logarithmic transformation to improve model fit. The feature matrix, X, was constructed
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from the ‘Married/Partnership’ and dissimilarity value columns. Polynomial features were
generated to explore nonlinear relationships.

A 5-Fold Cross-Validation scheme was utilized for model assessment. This involved
dividing the dataset into five equal parts, using each part in turn for testing while training
on the remainder. We evaluated four models: Linear Regression, Ridge Regression (with
alpha values of 0.1, 1.0, and 10.0), Support Vector Regressor (SVM) with a linear kernel, and
a Random Forest Regressor. The Random Forest model underwent hyperparameter tuning
using GridSearchCV, optimizing parameters such as the number of trees, tree depth, and
minimum samples for splits and leaf nodes (Table 1). A manual grid search was applied
to the other models. Additionally, a simple deep-learning model was developed using
TensorFlow’s Keras API. This model consisted of an input layer, one hidden layer with
64 neurons, a second hidden layer with 32 neurons, and an output layer. The Rectified
Linear Unit (ReLU) activation function was applied, and the model was compiled using the
Adam optimizer and mean squared error (MSE) as the loss function. The neural network
was trained for 10 epochs for each fold in the cross-validation.

Table 1. Models and Hyperparameters.

Model Hyperparameter Values Considered

Random Forest Number of Trees [50, 100, 400, 700]
Maximum Tree Depth [None, 10, 20, 40, 60]
Min Samples for Split [2, 5, 10, 20, 30]
Min Samples for Leaf [1, 2, 4, 7, 9]

Support Vector Regularization Strength (C) [0.1, 1, 10]
Machine (SVM) Kernel Type [‘linear’, ‘rbf’, ‘poly’]

Kernel Coefficient (Gamma) [‘scale’, ‘auto’, 0.1, 1]
Linear Regression - -
Ridge Regression Regularization Strength (Alpha) [0.1, 1, 10]

Deep Learning Number of Epochs [10, 20, 30]
Batch Size [32, 64, 128]

Number of Hidden Units [32, 64, 128]
Learning Rate [0.001, 0.01, 0.1]

For each fold and each model, evaluation metrics including Mean Squared Error (MSE)
and R-squared (R2) score were computed. These metrics were averaged over all folds to
provide an overall measure of model performance. R2 quantifies the proportion of variance
in the partnership duration that is accounted for by our predictive models. To provide
a meaningful context for the R2 values reported, we calculated a baseline R2 score by
predicting the mean partnership duration. The baseline model uses this constant mean
value as its prediction for all instances in the test data, regardless of the input features.
The baseline R2 score was calculated over the same test data used for the more complex
models. This baseline model represents a simplistic approach that does not consider any
facial features but instead predicts the average partnership duration for all couples. We
then compared the R2 values obtained by our machine learning models to this baseline
R2 value. A model with an R2 value close to or lower than the baseline suggests that it
provides predictions similar to those of a model predicting the mean partnership duration,
indicating limited explanatory power. Conversely, if the model’s R2 value significantly
surpasses the baseline R2, it implies that the model contributes substantially to explaining
the variation in partnership duration beyond what a simple average prediction can achieve.

2.4. Landmark-Based Subanalyses

In addition to the aforementioned primary analyses, we conducted landmark-based
subanalyses to further scrutinize the impact of facial features on relationship duration and
similarity metrics. These subanalyses leveraged the boundary box coordinates provided in
the CELEB A dataset to focus on key facial landmarks—specifically, the left eye, right eye,
nose, left mouth region, and right mouth region. The boundary boxes corresponding to each
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of these landmarks were used to crop the original facial images, isolating each facial feature
for separate analysis. This step aimed to investigate whether certain facial landmarks might
carry a disproportionate influence on the perceived similarity and, potentially, the duration
of relationships.

2.5. Statistical Analysis

All aforementioned analyses were performed using Python for computational tasks.
The finalized dataset, which incorporated both whole-face and landmark-specific dissimi-
larity values, was subsequently imported into SPSS version 27.0 (IBM Corp., Armonk, NY,
USA) for in-depth statistical evaluation. For continuous variables, mean values and 95%
confidence intervals (95% CI) were computed. For categorical variables, frequency counts
and corresponding percentages were tabulated. To assess the distributional properties of
the data, the Shapiro–Wilk test was employed to test for normality. For examining associa-
tions between variables, Spearman’s rank-order correlation was utilized. Between-group
comparisons involving continuous variables—specifically, duration of partnership and
dissimilarity values—were conducted using the Mann–Whitney U test. A significance level
of p < 0.05 was considered statistically significant for all statistical tests.

3. Results
3.1. Comparative Analyses

A total of 1822 celebrity couples were included in the analyses. The overall mean
duration of partnership for the entire cohort was 108.75 months (95% CI: 103.75–113.74).
The median was 84 months. The mean duration of partnership for the partnership group
was 83.27 (95% CI: 76.66–89.88). The median was 48 months. The mean duration of
partnership for the married group was 133.51 (95% CI: 126.38–140.65). The median was 108
months (p < 0.001) (Figure 1).
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Figure 1. Comparative analysis of partnership duration (in months) among unmarried and married 
couples (p < 0.001). Values that are more than 1.5 × interquartile range (IQR) below Q1 or above Q3 
are represented by circles and values that are more than 3.0 × IQR below Q1 or above Q3 are repre-
sented by asterisks. 

 
Figure 1. Comparative analysis of partnership duration (in months) among unmarried and married
couples (p < 0.001). Values that are more than 1.5 × interquartile range (IQR) below Q1 or above
Q3 are represented by circles and values that are more than 3.0 × IQR below Q1 or above Q3 are
represented by asterisks.
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The analysis revealed varying degrees of dissimilarity across different facial regions,
both for partners in partnerships and married couples. Overall, the highest mean dissimilar-
ity value was observed for the whole face (mean = 1.88, 95% CI: 1.85–1.91), followed by the
left eye, right eye, nose, right mouth region, and left mouth region (Table 2 and Figure 2).
Within partnerships, the highest dissimilarity was noted for the whole face (mean = 1.90,
95% CI: 1.86–1.94). Conversely, married couples exhibited slightly lower mean dissimilarity
values for the whole face (mean = 1.86, 95% CI: 1.82–1.90). The differences in dissimilarity
values between partnerships and married couples were not statistically significant for any
facial region (p > 0.05 for all). Specifically, the p-values ranged from 0.071 for the right
mouth region to 0.848 for the left mouth region, indicating no significant divergence in
facial features between the two groups across the regions examined. This lack of statistical
significance casts doubt on the capacity of these facial regions to predict the duration
or type of partnership. Therefore, while the data offer a comprehensive overview of fa-
cial dissimilarity across different relationship statuses, they do not support a predictive
relationship between facial dissimilarity and partnership duration.

Table 2. Mean dissimilarity values and medians for various facial regions. p-values represent
statistical comparison between unmarried and married couples.

Facial Region Overall Mean
(95% CI)

Overall
Median

Partnership
Mean (95% CI)

Partnership
Median

Married Mean
(95% CI)

Married
Median p-Value

Whole Face 1.88 (1.85–1.91) 1.97 1.90 (1.86–1.94) 1.99 1.86 (1.82–1.90) 1.95 0.319

Left Eye 0.93 (0.91–0.95) 0.86 0.91 (0.88–0.94) 0.84 0.94 (0.91–0.98) 0.89 0.194

Right Eye 0.90 (0.88–0.92) 0.85 0.91 (0.88–0.94) 0.86 0.89 (0.86–0.92) 0.82 0.449

Nose 0.86 (0.84–0.88) 0.80 0.87 (0.84–0.90) 0.82 0.85 (0.82–0.88) 0.78 0.374

Right Mouth Region 0.74 (0.72–0.76) 0.68 0.72 (0.70–0.75) 0.66 0.75 (0.73–0.78) 0.70 0.071
Left Mouth Region 0.66 (0.65–0.68) 0.61 0.66 (0.64–0.68) 0.61 0.67 (0.65–0.69) 0.62 0.848

The Spearman’s rho correlation coefficients indicate weak and statistically non-significant
associations between the duration of partnership and dissimilarity values across various
facial regions (Table 3 and Figure 3). Specifically, for the whole face images, the correlation
coefficient was −0.045 with a p-value of 0.055, suggesting a lack of significant correlation.
Notably, none of the facial regions demonstrated a significant correlation with the duration
of the partnership. The correlation coefficients ranged from −0.045 for the whole face to
−0.010 for the right mouth region, all of which are statistically non-significant (p > 0.05).

Intriguingly, some facial regions exhibited weak but statistically significant correlations
with each other. For instance, dissimilarity values for the left eye and the whole face had
a correlation coefficient of 0.129 (p < 0.001), and the nose and right eye regions showed
a correlation coefficient of 0.179 (p < 0.001). These suggest some level of correlation
among facial features but do not point to a meaningful relationship with the duration of
the partnership.

Additionally, when the data were segmented into married couples and those in a
partnership, no significant correlations were observed for either group. For married
couples, Spearman’s rho was −0.055 (p = 0.094), and for those in partnerships, Spearman’s
rho was −0.021 (p = 0.520). Overall, these findings suggest that facial dissimilarity, whether
evaluated for the whole face or for individual landmark regions, does not serve as a robust
predictor for the duration of partnerships.
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Table 3. Spearman’s rho correlation coefficients and p-values for the relationship between duration of
partnership and facial dissimilarity values in different facial regions.

Duration of
Partnership

Dissimilarity
Value

Whole Face

Dissimilarity
Value

Left Eye

Dissimilarity
Value

Right Eye

Dissimilarity
Value
Nose

Dissimilarity
Value

Left Mouth

Dissimilarity
Value

Right Mouth

Duration of
partnership

Correlation
Coefficient 1.000 −0.045 0.020 0.006 −0.026 −0.007 −0.010

p-value - 0.055 0.392 0.797 0.262 0.780 0.657

Dissimilarity
value whole

face

Correlation
Coefficient −0.045 1.000 0.129 ** 0.048 * 0.049 * −0.001 −0.027

p-value 0.055 - 0.000 0.042 0.036 0.963 0.255

Dissimilarity
value left eye

Correlation
Coefficient 0.020 0.129 ** 1.000 0.037 0.010 0.055 * 0.040

p-value 0.392 0.000 - 0.115 0.666 0.019 0.092

Dissimilarity
value right

eye

Correlation
Coefficient 0.006 0.048 * 0.037 1.000 0.179 ** −0.005 0.011

p-value 0.797 0.042 0.115 - 0.000 0.846 0.625

Dissimilarity
value nose

Correlation
Coefficient −0.026 0.049 * 0.010 0.179 ** 1.000 −0.004 0.019

p-value 0.262 0.036 0.666 0.000 - 0.868 0.427

Dissimilarity
value left

mouth

Correlation
Coefficient −0.007 −0.001 0.055 * −0.005 −0.004 1.000 0.244 **

p-value 0.780 0.963 0.019 0.846 0.868 - 0.000

Dissimilarity
value right

mouth

Correlation
Coefficient −0.010 −0.027 0.040 0.011 0.019 0.244 ** 1.000

Sig. (2-tailed) 0.657 0.255 0.092 0.625 0.427 0.000 -

Note: Bold numbers indicate statistical significance. ** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
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3.2. Prediction Modelling

In our comprehensive approach to predicting the duration of partnerships, we em-
ployed a diverse set of machine learning and deep learning models including Linear
Regression, Ridge Regression, Random Forest, Support Vector Machine (SVM), and a
Neural Network. These models were evaluated based on their performance in terms of
Mean Squared Error (MSE) and R-squared (R2) values, calculated through a 5-Fold Cross-
Validation process. For the whole face analysis, Linear Regression emerged as the most
effective model with a mean MSE of 1.128 and a mean R2 of 0.0587, closely followed by
Ridge Regression, which showed a mean MSE of 1.124 and a mean R2 of 0.0623. The
Neural Network achieved a mean MSE of 1.172 and a mean R2 of 0.0227, demonstrating
competitive predictive capabilities. The Random Forest model, after extensive hyperparam-
eter tuning, yielded a mean MSE of 1.198 and a mean R2 of 0.0011. SVM also performed
consistently, recording a mean MSE of 1.162 and a mean R2 of 0.0296. In the left eye region,
the models displayed similar performance patterns. The Neural Network reported a mean
MSE of 1.115 and a mean R2 of 0.0684, while the Linear Regression and Ridge Regression
models showed closely matched results, with mean MSEs of 1.126 and 1.122 and mean R2

values of 0.0599 and 0.0631, respectively. Random Forest and SVM exhibited mean MSEs of
1.179 and 1.172 and mean R2 values of 0.0164 and 0.0215, respectively. Analyses of the left
mouth, nose, right eye, and right mouth regions exhibited a similar trend. In these facial
regions, Linear Regression and Ridge Regression consistently presented the lowest MSE
and highest R2 values, underlining their robustness across different facial areas. The Neural
Network, while showing variability in performance, maintained a competitive stance in
terms of MSE and R2 values. Random Forest, particularly after hyperparameter optimiza-
tion, showed considerable improvement, indicating its potential as a reliable predictive
model. The results from our analysis demonstrate a notable variance in the effectiveness
of the models across different facial regions. This suggests that the relationship between
facial features and the duration of partnerships might be complex, with each region con-
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tributing differently to the predictive models. Table 4 presents a detailed summary of
the results, including the Mean Squared Error and Mean R2 values for each model across
all the facial regions under study. These findings shed light on the predictive power of
facial features regarding partnership duration. While the R2 values across various models
generally exceed the baseline model’s R2 of 0.0025, they remain modest. This indicates
that our models, including Linear Regression, Ridge Regression, and Neural Network,
are indeed capturing more variance in the partnership duration than a simple average
prediction. However, the overall low R2 values suggest that the relationship between facial
features and partnership duration is complex and not easily modeled. Linear Regression
and Ridge Regression consistently outperformed other models, hinting at their suitability
for this type of data. However, the modest R2 values, even for these better-performing
models, imply that while facial features do provide some predictive power, they might not
fully explain the variations in partnership duration. The relatively higher performance of
these models compared to the baseline underscores their ability to leverage facial feature
data, albeit within the constraints of the data’s inherent complexity. Random Forest and
Neural Network models, while surpassing the baseline, showed limited predictive power.
This might reflect the challenges in modeling the nuanced relationships in the data or
could indicate that the current feature set and model architectures are not fully capturing
the underlying patterns. The variations in R2 values across different facial regions also
highlight the diverse contributions of these regions to predicting partnership duration.
In summary, the results demonstrate a nuanced relationship between facial features and
partnership duration. The exceedance of the baseline R2 by most models validates the
relevance of facial features in predicting partnership duration, yet the overall low R2 values
across models suggest a complex interplay that is not entirely captured by the current
modeling approach.

Table 4. Results of prediction modeling utilizing Random Forest, Linear Regression, Ridge Regression,
Support Vector Machine (SVM), and a Deep learning algorithm. MSE: Mean squared error over all
folds. R2: Mean R2 over all folds.

Feature Algorithm Mean MSE Mean R2

Whole Face Neural Network 1.172 0.0227

Linear Regression 1.128 0.0587

Ridge Regression 1.124 0.0623

Random Forest 1.198 0.0011

SVM 1.162 0.0296

Left Eye Neural Network 1.115 0.0684

Linear Regression 1.126 0.0599

Ridge Regression 1.122 0.0631

Random Forest 1.179 0.0164

SVM 1.172 0.0215

Left Mouth Neural Network 1.149 0.0410

Linear Regression 1.127 0.0599

Ridge Regression 1.124 0.0617

Random Forest 1.168 0.0254

SVM 1.168 0.0247
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Table 4. Cont.

Feature Algorithm Mean MSE Mean R2

Nose Neural Network 1.156 0.0358

Linear Regression 1.127 0.0595

Ridge Regression 1.124 0.0619

Random Forest 1.166 0.0255

SVM 1.169 0.0231

Right Eye Neural Network 1.150 0.0388

Linear Regression 1.138 0.0505

Ridge Regression 1.132 0.0549

Random Forest 1.173 0.0218

SVM 1.176 0.0184

Right Mouth Neural Network 1.165 0.0307

Linear Regression 1.128 0.0592

Ridge Regression 1.125 0.0614

Random Forest 1.169 0.0262

SVM 1.169 0.0235

4. Discussion

The present study is the first to harness the potential of artificial intelligence-based
imaging analysis to explore facial dissimilarities in the context of romantic relationships.
Utilizing a comprehensive dataset that incorporated images from 1822 celebrity couples,
we sought to investigate the correlation between facial dissimilarity and the duration of
romantic partnerships. Our analyses did not reveal significant associations between these
variables. Interestingly, our analysis found also no statistically significant difference in
facial dissimilarity between married and non-married couples, indicating that facial charac-
teristics might have limited predictive utility in distinguishing these types of partnerships.
While the analyses, employing a range of machine learning and deep learning models,
indicated varying degrees of predictive effectiveness, they notably revealed that certain
models, particularly Linear Regression and Ridge Regression, exhibited a reasonable level
of predictive ability. This suggests a nuanced relationship between facial features, partner-
ship status, and relationship duration, although the overall predictability remains moderate.
These findings were consistently observed across different facial regions, indicating that
while facial dissimilarity metrics offer some predictive insights, their capacity to definitively
determine relationship duration is limited.

The study stands out for its innovative application of artificial intelligence in analyzing
romantic relationships. Employing AI-based imaging analysis, particularly leveraging the
DenseNet architecture, allows for a level of precision and scale that is novel in the field of
relationship studies. The methodology might serve as a foundation for future endeavors
aiming to merge computational science and relationship psychology. However, the initial
results suggest that while the technology can analyze facial features with high accuracy, the
theoretical underpinnings linking facial dissimilarity to relationship duration may need to
be reconsidered.

The roots of the phenomenon of assortative mating are still unclear. Some explana-
tions encompass the idea of selecting mates with similar genetic makeup for evolutionary
advantages (like enhanced fitness and communication) [7], the possibility of seeking part-
ners who resemble oneself due to narcissistic tendencies [1], and even the notion that
over time, individuals may develop similar facial features through prolonged exposure
to their spouse’s facial expressions [5]. In contrast to the present results, previous studies
have demonstrated that couples tend to have more facial similarities than people who
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are not in a romantic relationship. Additionally, it has been suggested that the degree of
facial similarity between partners can be used to predict how satisfied they are in their
marriage [1–4,7,74]. The findings of previous studies are based on the analysis of a small
number of photographs or pictures and subjective ratings of similarity. The present study
stands out as it utilized a large amount of data and objective artificial intelligence-based
analysis of similarities.

The majority of earlier studies on facial similarity collected ratings from independent
participant judges, where, for example, the participants were asked to rate the given
face in comparison to target faces using a 4-point scale [77]. In a study conducted by
Milord [78], participants rated pairs of faces on a 7-point scale to assess their similarity
or difference. Harmon [79] created an early computer-based face recognition system by
relying on ratings of face descriptors. Typically, these ratings of similarity were obtained
globally: the participants were instructed to rate faces on a single scale, ranging from “not
at all similar” to “very similar”. Researchers have not investigated whether the terms
“highly similar” and “easily mistakable” are synonymous or correlated, nor have they
systematically examined the underlying dimensions that influence judgments of similarity.
The psychometric properties of these similarity ratings are also infrequently reported,
despite indications that this is a significant omission. For instance, Lindsay [80] noted that
facial similarity judgments exhibit considerable interparticipant variability.

In other studies on assortative mating in humans, the primary focus was on identifying
correlations between various anthropometric traits in couples. For instance, Spuhler’s [81]
research involved taking 43 physical measurements from 205 married couples. Notably,
the authors observed substantial positive correlations in 29 of these measurements, which
included 7 out of 15 facial or cranial measurements. Griffiths and Kunz [2] conducted
a study in which they captured photographs of married couples. They then instructed
participants to correctly pair these photos with their actual partners from a limited selection
of faces. Interestingly, participants were able to match couples who had been married for
less than 10 years and those married for over 20 years at levels exceeding random chance.
However, when it came to couples married for a duration between ten and twenty years,
the participants could not successfully make the connections.

In another investigation by Hinsz [3], the focus was on examining facial resemblance
in genuine couples. This study involved photographs of engaged couples and couples
who had been married for at least 25 years. Participants were presented with pairs of
opposite-sex photos and asked to assess the similarity between the two faces. Half of these
pairs were actual couples, while the other half consisted of randomly generated couples.
The findings revealed that real couples were consistently rated as significantly more alike
in appearance compared to randomly generated couples. It is worth noting that unlike
the study conducted by Zajonc et al. [74], the duration of the couples’ relationships did
not lead to differences in how similar they were perceived to be. Consequently, studies
on facial similarity suggest that couples are generally seen as more facially similar to each
other than would be expected by chance, although the connection between the length of a
partnership and facial similarity has not been investigated until now.

A study by Anthony C. Little [4] did not reveal that individuals in longer marriages
exhibit greater physical resemblance in terms of height, weight, perceived attractiveness,
masculinity, or distinctiveness. Nevertheless, a significant trend emerged indicating that
partners appeared more alike in terms of personality traits the longer they had been married.
Authors suppose the increase in partnership similarity over time is because the individuals
grow more alike in perceived personality as their time together lengthens, as suggested
by Zajonc et al. [5]. This may occur because shared expressions and experiences become
visible in their facial features. Alternatively, individuals who already exhibit similarity in
personality traits may have a propensity to sustain longer marriages. Selecting a partner
who is similar to oneself may enhance marital stability, as exemplified by Hill’s [82] discov-
ery that couples who shared various physical and psychological traits were more likely to
stay together compared to dissimilar partners.
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There are some limitations associated with the present study. The dataset employed
consisted of celebrity couples, which may limit the generalizability of the results to broader
populations. The CELEB-A dataset offers a unique combination of diversity and scale.
It encompasses a wide range of individuals, from less-known to well-known celebrities,
providing a broad spectrum of facial features for analysis. The size of this dataset allows
for robust statistical analysis, which is a significant advantage in exploring our research
question. One of the critical aspects of our study is the availability of detailed personal
information, such as marital/relationship status, partner information, and relationship
duration. Such data are readily accessible and verifiable for celebrities through in-depth
web searches, which is often not the case with the general population. Utilizing the CELEB-
A dataset represents the most feasible and practical first step in examining our research
question. The alternative approach, involving the collection and analysis of similar data
from the general population (“ordinary people”, “non-celebrities”) presents significant
logistical and ethical challenges. Defining what constitutes “ordinary” is also subjective
and can introduce additional biases. This study represents a novel application of the
CELEB-A dataset in exploring the relationship between facial features and partnership
dynamics. By using a dataset not previously applied in this manner, we are breaking
new ground in this area of research. Our findings, indicating no association within the
dataset used, provide valuable insights that can guide future resource allocation in research.
This initial exploration sets the stage for subsequent studies, which may include more
diverse and representative samples, to further investigate the research question. While the
generalizability of findings from a celebrity sample to the general population is a valid
concern, our primary objective was to explore whether there is an observable association
in this particular dataset. The findings from this study can inform and refine future
research that includes more representative samples. Additionally, our analysis focused
on dissimilarity metrics alone; other variables such as personality traits, shared interests,
or social factors were not considered. These could be incorporated into future multi-
modal analyses to create a more comprehensive model of relationship duration. Given
the nascent stage of AI application in this domain, there is ample room for further fine-
tuning and adaptation of the methods used. Another limitation is the cross-sectional nature
of the dataset, which does not capture the temporal dynamics of relationships. Future
studies could aim for a longitudinal approach, tracking couples over time to gather more
nuanced data.

The present study contributed to the scientific field in multiple ways. Our study
leverages advanced artificial intelligence techniques, specifically deep learning and ma-
chine learning, to analyze a substantial dataset of celebrity facial images. This approach
marks a significant methodological advancement, moving beyond subjective assessments
traditionally used in facial resemblance studies. We would like to draw your attention to
the fact that this is the first study that applied AI-based techniques to examine the study
question. Although there are studies that apply AI techniques to investigate social behavior
none have utilized these techniques to explore the relationship between facial features and
aspects of relationships. We believe this represents a valid scientific inquiry, particularly
considering that previous studies have only examined this topic using subjective rating
methods, without objectively analyzing facial features. The use of the CELEB-A dataset,
known for its size and diversity, lays a solid foundation for our analysis. This enables
us to derive more generalizable insights than would be possible with smaller, less varied
samples that are obtained in usual settings. This study used the most extensive dataset to
examine the research question. Our research challenges the conventional wisdom of facial
resemblance among partners, providing a fresh viewpoint on partner selection criteria.
The exploration of facial dissimilarity’s correlation with relationship duration adds a new
dimension to the understanding of relationship dynamics. The findings could significantly
contribute to sociological and psychological discourses, particularly in theories related
to mate selection and relationship psychology. Such insights can influence the broader
understanding of interpersonal relationships. We employed a range of robust analytical
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techniques, including various predictive models and statistical tests, ensuring the reliability
of our findings. The comprehensive examination of facial features, covering different facial
regions, adds depth and granularity to our analysis. There was no subjective rating of
facial features which could bias the examination. This is a significant advancement in
this field. While our study focuses on a specific dataset, it is intended as a stepping stone
for future research in this area. We believe our work opens the door to a more extensive
exploration of physical attributes in relationship dynamics. The interdisciplinary nature
of our study, straddling artificial intelligence, psychology, and sociology, underscores its
potential to inspire further research across these fields. It is imperative to highlight the
innovative application of our methods in the context of this research. While individual
models such as deep learning and machine learning algorithms are well-established in
various fields, their application in studying the correlation between facial features and
relationship dynamics is novel. This study not only integrates a diverse set of sophisticated
techniques, ranging from neural networks to machine learning algorithms like Linear Re-
gression, Ridge Regression, Random Forest, and SVM, but also adapts and fine-tunes them
to analyze a unique aspect of human relationships. The use of deep learning for nuanced
facial feature analysis in relation to relationship dynamics is particularly groundbreaking,
demonstrating the potential of these techniques in uncovering new insights in social science
research. This interdisciplinary approach, blending advanced computational methods with
relationship science, marks a significant step forward in exploring uncharted territories of
human interactions. While it is acknowledged that the research question may be perceived
as aligning with ‘popular science’ due to its focus on a subject matter often associated with
emotional interpretations, we assert that investigating the potential associations between
facial features, dissimilarity, and partnership dynamics through objective measurements
constitutes a legitimate scientific inquiry. The potential for a topic to be interpreted within
the realm of popular science does not diminish its validity nor the necessity of exploring it
through rigorous, objective methodologies.

5. Conclusions

Our pioneering approach establishes an initial framework for harnessing artificial
intelligence-based imaging analysis in exploring romantic relationships. While the predic-
tive utility of facial dissimilarity in determining relationship duration was not conclusively
supported, our study paves the way for future research and methodological innovations at
the nexus of AI, facial recognition technology, and relationship studies. This multidisci-
plinary endeavor, despite its preliminary limitations, unveils promising opportunities for a
more comprehensive and nuanced understanding of the dynamics within relationships.
In conclusion, our study highlights the intricacies involved in predicting relationship out-
comes solely based on facial attributes, as the results do not provide substantial evidence
to support a direct correlation between facial dissimilarity and partnership duration. This
underscores the intricate nature of partnership dynamics, suggesting that other nuanced
factors may play a more crucial role in determining the course of relationships.

Author Contributions: Conceptualization, V.S.; Data curation, V.S. and B.S.; Formal analysis, V.S.,
A.V., C.S., M.V., G.M.L. and B.S.; Investigation, A.V. and M.V.; Methodology, V.S. and B.S.; Project
administration, C.S. and G.M.L.; Resources, C.S.; Supervision, C.S. and G.M.L.; Validation, A.V., M.V.
and G.M.L.; Writing—original draft, V.S. and B.S.; Writing—review and editing, A.V., C.S., M.V. and
G.M.L. All authors have read and agreed to the published version of the manuscript.

Funding: The article processing charge was funded by the Baden-Wuerttemberg Ministry of Science,
Research and Art, and the University of Freiburg in the funding program Open Access Publishing.



Symmetry 2024, 16, 176 15 of 17

Data Availability Statement: We used an online dataset (the Celeb-A) dataset which is available
for non-commercial research purposes from the Multimedia Laboratory of the Chinese University
of Hong Kong, China. These imaging data and landmark boundary information are available
from https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed on 26 December 2023). The
Python code and algorithm structures are available from: https://github.com/Freiburg-AI-Research
(accessed on 26 December 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Alvarez, L.; Jaffe, K. Narcissism Guides Mate Selection: Humans Mate Assortatively, as Revealed by Facial Resemblance,

Following an Algorithm of “self Seeking Like”. Evol. Psychol. 2004, 2, 177–194. [CrossRef]
2. Griffiths, R.W.; Kunz, P.R. Assortative Mating: A Study of Physiognomic Homogamy. Soc. Biol. 1973, 20, 448–453. [CrossRef]

[PubMed]
3. Hinsz, V.B. Facial Resemblance in Engaged and Married Couples. J. Soc. Pers. Relat. 1989, 6, 223–229. [CrossRef]
4. Little, A.C.; Burt, D.M.; Perrett, D.I. Assortative Mating for Perceived Facial Personality Traits. Pers. Individ. Dif. 2006, 40, 973–984.

[CrossRef]
5. Zajonc, R.B.; Adelmann, P.K.; Murphy, S.T.; Niedenthal, P.M. Convergence in the Physical Appearance of Spouses. Motiv. Emot.

1987, 11, 335–346. [CrossRef]
6. Wong, Y.K.; Wong, W.W.; Lui, K.F.H.; Wong, A.C.-N. Revisiting Facial Resemblance in Couples. PLoS ONE 2018, 13, e0191456.

[CrossRef]
7. Thiessen, D.; Gregg, B. Human Assortative Mating and Genetic Equilibrium: An Evolutionary Perspective. Ethol. Sociobiol. 1980,

1, 111–140. [CrossRef]
8. Jiahui, G.; Feilong, M.; Visconti Di Oleggio Castello, M.; Nastase, S.A.; Haxby, J.V.; Gobbini, M.I. Modeling Naturalistic Face

Processing in Humans with Deep Convolutional Neural Networks. Proc. Natl. Acad. Sci. USA 2023, 120, e2304085120. [CrossRef]
9. Schrimpf, M.; Kubilius, J.; Hong, H.; Majaj, N.J.; Rajalingham, R.; Issa, E.B.; Kar, K.; Bashivan, P.; Prescott-Roy, J.; Geiger, F.

Brain-Score: Which Artificial Neural Network for Object Recognition Is Most Brain-Like? BioRxiv 2018, 407007. [CrossRef]
10. Yamins, D.L.K.; Hong, H.; Cadieu, C.F.; Solomon, E.A.; Seibert, D.; DiCarlo, J.J. Performance-Optimized Hierarchical Models

Predict Neural Responses in Higher Visual Cortex. Proc. Natl. Acad. Sci. USA 2014, 111, 8619–8624. [CrossRef]
11. Dobs, K.; Martinez, J.; Kell, A.J.; Kanwisher, N. Brain-like Functional Specialization Emerges Spontaneously in Deep Neural

Networks. Sci. Adv. 2022, 8, eabl8913. [CrossRef]
12. Grossman, S.; Gaziv, G.; Yeagle, E.M.; Harel, M.; Mégevand, P.; Groppe, D.M.; Khuvis, S.; Herrero, J.L.; Irani, M.; Mehta, A.D.;

et al. Convergent Evolution of Face Spaces across Human Face-Selective Neuronal Groups and Deep Convolutional Networks.
Nat. Commun. 2019, 10, 4934. [CrossRef]

13. Ratan Murty, N.A.; Bashivan, P.; Abate, A.; DiCarlo, J.J.; Kanwisher, N. Computational Models of Category-Selective Brain
Regions Enable High-Throughput Tests of Selectivity. Nat. Commun. 2021, 12, 5540. [CrossRef]

14. Park, S.H.; Russ, B.E.; McMahon, D.B.T.; Koyano, K.W.; Berman, R.A.; Leopold, D.A. Functional Subpopulations of Neurons in a
Macaque Face Patch Revealed by Single-Unit fMRI Mapping. Neuron 2017, 95, 971–981.e5. [CrossRef]

15. Oosterhof, N.N.; Todorov, A. The Functional Basis of Face Evaluation. Proc. Natl. Acad. Sci. USA 2008, 105, 11087–11092.
[CrossRef]

16. Todorov, A.; Said, C.P.; Engell, A.D.; Oosterhof, N.N. Understanding Evaluation of Faces on Social Dimensions. Trends Cogn. Sci.
2008, 12, 455–460. [CrossRef]

17. Visconti di Oleggio Castello, M.; Halchenko, Y.O.; Guntupalli, J.S.; Gors, J.D.; Gobbini, M.I. The Neural Representation of
Personally Familiar and Unfamiliar Faces in the Distributed System for Face Perception. Sci. Rep. 2017, 7, 12237. [CrossRef]

18. Visconti di Oleggio Castello, M.; Haxby, J.V.; Gobbini, M.I. Shared Neural Codes for Visual and Semantic Information about
Familiar Faces in a Common Representational Space. Proc. Natl. Acad. Sci. USA 2021, 118, e2110474118. [CrossRef] [PubMed]

19. Ramon, M.; Gobbini, M.I. Familiarity Matters: A Review on Prioritized Processing of Personally Familiar Faces. Vis. Cogn. 2018,
26, 179–195. [CrossRef]

20. Carlin, J.D.; Calder, A.J.; Kriegeskorte, N.; Nili, H.; Rowe, J.B. A Head View-Invariant Representation of Gaze Direction in
Anterior Superior Temporal Sulcus. Curr. Biol. 2011, 21, 1817–1821. [CrossRef]

21. Hoffman, E.A.; Haxby, J.V. Distinct Representations of Eye Gaze and Identity in the Distributed Human Neural System for Face
Perception. Nat. Neurosci. 2000, 3, 80–84. [CrossRef] [PubMed]

22. Pashos, A.; Niemitz, C. Results of an Explorative Empirical Study on Human Mating in Germany: Handsome Men, Not
High-Status Men, Succeed in Courtship. Anthropol. Anz. 2003, 61, 331–341. [CrossRef] [PubMed]

23. Frieze, I.H.; Olson, J.E.; Russell, J. Attractiveness and Income for 680 Men and Women in Management 1. J. Appl. Soc. Psychol.
1991, 21, 1039–1057. [CrossRef]

24. Henderson, J.J.; Anglin, J.M. Facial Attractiveness Predicts Longevity. Evol. Hum. Behav. 2003, 24, 351–356. [CrossRef]
25. Perrett, D.I.; May, K.A.; Yoshikawa, S. Facial Shape and Judgements of Female Attractiveness. Nature 1994, 368, 239. [CrossRef]

[PubMed]

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/Freiburg-AI-Research
https://doi.org/10.1177/147470490400200123
https://doi.org/10.1080/19485565.1973.9988075
https://www.ncbi.nlm.nih.gov/pubmed/4789399
https://doi.org/10.1177/026540758900600205
https://doi.org/10.1016/j.paid.2005.09.016
https://doi.org/10.1007/BF00992848
https://doi.org/10.1371/journal.pone.0191456
https://doi.org/10.1016/0162-3095(80)90003-5
https://doi.org/10.1073/pnas.2304085120
https://doi.org/10.1101/407007
https://doi.org/10.1073/pnas.1403112111
https://doi.org/10.1126/sciadv.abl8913
https://doi.org/10.1038/s41467-019-12623-6
https://doi.org/10.1038/s41467-021-25409-6
https://doi.org/10.1016/j.neuron.2017.07.014
https://doi.org/10.1073/pnas.0805664105
https://doi.org/10.1016/j.tics.2008.10.001
https://doi.org/10.1038/s41598-017-12559-1
https://doi.org/10.1073/pnas.2110474118
https://www.ncbi.nlm.nih.gov/pubmed/34732577
https://doi.org/10.1080/13506285.2017.1405134
https://doi.org/10.1016/j.cub.2011.09.025
https://doi.org/10.1038/71152
https://www.ncbi.nlm.nih.gov/pubmed/10607399
https://doi.org/10.1127/anthranz/61/2003/331
https://www.ncbi.nlm.nih.gov/pubmed/14524006
https://doi.org/10.1111/j.1559-1816.1991.tb00458.x
https://doi.org/10.1016/S1090-5138(03)00036-9
https://doi.org/10.1038/368239a0
https://www.ncbi.nlm.nih.gov/pubmed/8145822


Symmetry 2024, 16, 176 16 of 17

26. Rubenstein, A.J.; Langlois, J.H.; Roggman, L.A. What Makes a Face Attractive and Why: The Role of Averageness in Defining Facial
Beauty; Rhodes, G., Zebrowitz, L.A., Eds.; Ablex Publishing: Westport, CT, USA, 2002.

27. Schmid, K.; Marx, D.; Samal, A. Computation of a Face Attractiveness 800 Index Based on Neoclassical Canons, Symmetry, and
Golden Ratios. Pattern Recognit. 2008, 41, 2710–2717. [CrossRef]

28. Jayaratne, Y.S.; Deutsch, C.K.; McGrath, C.P.; Zwahlen, R.A. Are Neoclassical Canons Valid for Southern Chinese Faces? PLoS
ONE 2012, 7, 52593. [CrossRef]

29. Borissavlievitch, M.; Hautecœr, L. The Golden Number and the Scientific Aesthetics of Architecture; Alec Tiranti Ltd.: London,
UK, 1958.

30. Jefferson, Y. Facial Beauty-Establishing a Universal Standard. Int. J. Orthod. 2004, 15, 9–26.
31. Farkas, L.G.; Schendel, S.A. Anthropometry of the Head and Face. Plast. Reconstr. Surg. 1995, 96, 480.
32. Farkas, L.G.; Kolar, J.C. Anthropometrics and Art in the Aesthetics of Women’s Faces. Clin. Plast. Surg. 1987, 14, 599–616.

[CrossRef] [PubMed]
33. Pallett, P.M.; Link, S.; Lee, K. New “Golden” Ratios for Facial Beauty. Vis. Res. 2010, 50, 149–154. [PubMed]
34. Bóo, F.L.; Rossi, M.A.; Urzúa, S.S. The Labor Market Return to an Attractive Face: Evidence from a Field Experiment. Econ. Lett.

2013, 118, 170–172.
35. Holland, E. Marquardt’s Phi Mask: Pitfalls of Relying on Fashion Models and the Golden Ratio to Describe a Beautiful Face.

Aesthetic Plast. Surg. 2008, 32, 200–208. [CrossRef]
36. Shen, H.; Chau, D.K.; Su, J.; Zeng, L.-L.; Jiang, W.; He, J.; Fan, J.; Hu, D. Brain Responses to Facial Attractiveness Induced by

Facial Proportions: Evidence from an Fmri Study. Sci. Rep. 2016, 6, 35905. [CrossRef]
37. Gunes, H.; Piccardi, M. Assessing Facial Beauty through Proportion Analysis by Image Processing and Supervised Learning. Int.

J. 2006, 64, 1184–1199. [CrossRef]
38. Chen, F.; Zhang, D. Evaluation of the Putative Ratio Rules for Facial Beauty Indexing; IEEE: Piscataway, NJ, USA, 2014.
39. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
40. Wang, S.; Shao, M.; Fu, Y. Attractive or Not?: Beauty Prediction with Attractiveness-Aware Encoders and Robust Late Fusion. In

Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA, 3–7 November 2014.
41. Rothe, R.; Timofte, R.; Gool, L. Some like It Hot-Visual Guidance for Preference Prediction. In Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5553–5561.
42. Cadieu, C.F.; Hong, H.; Yamins, D.L.; Pinto, N.; Ardila, D.; Solomon, E.A.; Majaj, N.J.; DiCarlo, J.J. Deep Neural Networks Rival

the Representation of Primate It Cortex for Core Visual Object Recognition. PLoS Comput. Biol. 2014, 10, e1003963. [CrossRef]
43. Yamins, D.L.; DiCarlo, J.J. Using Goal-Driven Deep Learning Models 845 to Understand Sensory Cortex. Nat. Neurosci. 2016,

19, 356. [CrossRef]
44. Cichy, R.M.; Pantazis, D.; Oliva, A. Similarity-Based Fusion of Meg and Fmri Reveals Spatio-Temporal Dynamics in Human

Cortex during Visual Object Recognition. Cereb. Cortex 2016, 26, 3563–3579. [CrossRef] [PubMed]
45. Cichy, R.M.; Khosla, A.; Pantazis, D.; Torralba, A.; Oliva, A. Comparison of Deep Neural Networks to Spatio-Temporal Cortical

Dynamics of Human Visual Object Recognition Reveals Hierarchical Correspondence. Sci. Rep. 2016, 6, 27755. [CrossRef]
46. Wang, P.; Cottrell, G.W. Central and Peripheral Vision for Scene Recognition: A Neurocomputational Modeling Exploration. J.

Vis. 2017, 17, 9. [CrossRef]
47. Seeliger, K.; Fritsche, M.; Güçlü, U.; Schoenmakers, S.; Schoffelen, J.-M.; Bosch, S.; Gerven, M. Convolutional Neural Network-

Based Encoding and Decoding of Visual Object Recognition in Space and Time. NeuroImage 2018, 180, 253–266. [CrossRef]
[PubMed]

48. OToole, A.J.; Castillo, C.D.; Parde, C.J.; Hill, M.Q.; Chellappa, R. Face Space Representations in Deep Convolutional Neural
Networks. Trends Cogn. Sci. 2018, 22, 794–809. [CrossRef]

49. Kietzmann, T.C.; Spoerer, C.J.; Sörensen, L.K.; Cichy, R.M.; Hauk, O.; Kriegeskorte, N. Recurrence Is Required to Capture the
Representational Dynamics of the Human Visual System. Proc. Natl. Acad. Sci. USA 2019, 116, 21854–21863. [CrossRef] [PubMed]

50. McCurrie, M.; Beletti, F.; Parzianello, L.; Westendorp, A.; Anthony, S.; Scheirer, W.J. Convolutional Neural Networks for Subjective
Face Attributes. Image Vis. Comput. 2018, 78, 14–25. [CrossRef]

51. Parde, C.J.; Hu, Y.; Castillo, C.; Sankaranarayanan, S.; OToole, A.J. Social Trait Information in Deep Convolutional Neural
Networks Trained for Face Identification. Cogn. Sci. 2019, 43, 12729. [CrossRef]

52. Nemrodov, D.; Niemeier, M.; Mok, J.N.Y.; Nestor, A. The Time Course of Individual Face Recognition: A Pattern Analysis of ERP
Signals. NeuroImage 2016, 132, 469–476. [CrossRef]

53. Willis, J.; Todorov, A. First Impressions: Making Up Your Mind After a 100-Ms Exposure to a Face. Psychol. Sci. 2006, 17, 592–598.
[CrossRef] [PubMed]

54. Collins, J.A.; Olson, I.R. Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing. Neuropsychologia
2014, 61, 65–79. [CrossRef]

55. Liu, S.; Quinn, P.C.; Wheeler, A.; Xiao, N.; Ge, L.; Lee, K. Similarity and Difference in the Processing of Same- and Other-Race
Faces as Revealed by Eye Tracking in 4- to 9-Month-Olds. J. Exp. Child Psychol. 2011, 108, 180–189. [CrossRef]

56. Jiang, F.; Blanz, V.; Rossion, B. Holistic Processing of Shape Cues in Face Identification: Evidence from Face Inversion, Composite
Faces, and Acquired Prosopagnosia. Vis. Cogn. 2011, 19, 1003–1034. [CrossRef]

https://doi.org/10.1016/j.patcog.2007.11.022
https://doi.org/10.1371/journal.pone.0052593
https://doi.org/10.1016/S0094-1298(20)31488-7
https://www.ncbi.nlm.nih.gov/pubmed/3652607
https://www.ncbi.nlm.nih.gov/pubmed/19896961
https://doi.org/10.1007/s00266-007-9080-z
https://doi.org/10.1038/srep35905
https://doi.org/10.1016/j.ijhcs.2006.07.004
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1371/journal.pcbi.1003963
https://doi.org/10.1038/nn.4244
https://doi.org/10.1093/cercor/bhw135
https://www.ncbi.nlm.nih.gov/pubmed/27235099
https://doi.org/10.1038/srep27755
https://doi.org/10.1167/17.4.9
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://www.ncbi.nlm.nih.gov/pubmed/28723578
https://doi.org/10.1016/j.tics.2018.06.006
https://doi.org/10.1073/pnas.1905544116
https://www.ncbi.nlm.nih.gov/pubmed/31591217
https://doi.org/10.1016/j.imavis.2018.06.010
https://doi.org/10.1111/cogs.12729
https://doi.org/10.1016/j.neuroimage.2016.03.006
https://doi.org/10.1111/j.1467-9280.2006.01750.x
https://www.ncbi.nlm.nih.gov/pubmed/16866745
https://doi.org/10.1016/j.neuropsychologia.2014.06.005
https://doi.org/10.1016/j.jecp.2010.06.008
https://doi.org/10.1080/13506285.2011.604360


Symmetry 2024, 16, 176 17 of 17

57. Riesenhuber, M.; Jarudi, I.; Gilad, S.; Sinha, P. Face Processing in Humans Is Compatible with a Simple Shape–Based Model of
Vision. Proc. R. Soc. Lond. B 2004, 271 (Suppl. S6), S448–S450. [CrossRef]

58. Jones, B.C.; DeBruine, L.M.; Flake, J.K.; Liuzza, M.T.; Antfolk, J.; Arinze, N.C.; Ndukaihe, I.L.G.; Bloxsom, N.G.; Lewis, S.C.;
Foroni, F.; et al. To Which World Regions Does the Valence-Dominance Model of Social Perception Apply? Nat. Hum. Behav. 2021,
5, 159–169. [CrossRef]

59. Todorov, A.; Pakrashi, M.; Oosterhof, N.N. Evaluating Faces on Trustworthiness After Minimal Time Exposure. Soc. Cogn. 2009,
27, 813–833. [CrossRef]

60. Todorov, A.; Olivola, C.Y.; Dotsch, R.; Mende-Siedlecki, P. Social Attributions from Faces: Determinants, Consequences, Accuracy,
and Functional Significance. Annu. Rev. Psychol. 2015, 66, 519–545. [CrossRef] [PubMed]

61. Dotsch, R.; Hassin, R.R.; Todorov, A. Statistical Learning Shapes Face Evaluation. Nat. Hum. Behav. 2016, 1, 0001. [CrossRef]
62. Ng, W.-J.; Lindsay, R.C.L. Cross-Race Facial Recognition: Failure of the Contact Hypothesis. J. Cross-Cult. Psychol. 1994, 25,

217–232. [CrossRef]
63. Crookes, K.; Ewing, L.; Gildenhuys, J.; Kloth, N.; Hayward, W.G.; Oxner, M.; Pond, S.; Rhodes, G. How Well Do Computer-

Generated Faces Tap Face Expertise? PLoS ONE 2015, 10, e0141353. [CrossRef]
64. Luo, S. Assortative Mating and Couple Similarity: Patterns, Mechanisms, and Consequences. Soc. Pers. Psychol. Compass 2017,

11, e12337. [CrossRef]
65. Watson, D.; Klohnen, E.C.; Casillas, A.; Nus Simms, E.; Haig, J.; Berry, D.S. Match Makers and Deal Breakers: Analyses of

Assortative Mating in Newlywed Couples. J. Personal. 2004, 72, 1029–1068. [CrossRef]
66. Buss, D.M. Marital Assortment for Personality Dispositions: Assessment with Three Different Data Sources. Behav. Genet. 1984,

14, 111–123. [CrossRef]
67. Schwartz, C.R.; Graf, N.L. Assortative Matching among Same-Sex and Different-Sex Couples in the United States, 1990–2000.

Demogr. Res. 2009, 21, 843. [CrossRef] [PubMed]
68. Robinson, M.R.; Kleinman, A.; Graff, M.; Vinkhuyzen, A.A.; Couper, D.; Miller, M.B.; Peyrot, W.J.; Abdellaoui, A.; Zietsch, B.P.;

Nolte, I.M. Genetic Evidence of Assortative Mating in Humans. Nat. Hum. Behav. 2017, 1, 0016. [CrossRef]
69. Vandenberg, S.G. Assortative Mating, or Who Marries Whom? Behav. Genet. 1972, 2, 127–157. [CrossRef]
70. Epstein, E.; Guttman, R. Mate Selection in Man: Evidence, Theory, and Outcome. Soc. Biol. 1984, 31, 243–278. [CrossRef]
71. Hitsch, G.J.; Hortaçsu, A.; Ariely, D. What Makes You Click?—Mate Preferences in Online Dating. Quant. Mark. Econ. 2010, 8,

393–427. [CrossRef]
72. Watson, D.; Beer, A.; McDade-Montez, E. The Role of Active Assortment in Spousal Similarity. J. Pers. 2014, 82, 116–129. [CrossRef]
73. Xie, Y.; Cheng, S.; Zhou, X. Assortative Mating without Assortative Preference. Proc. Natl. Acad. Sci. USA 2015, 112, 5974–5978.

[CrossRef]
74. Zajonc, R.B. Emotion and Facial Efference: A Theory Reclaimed. Science 1985, 228, 15–21. [CrossRef] [PubMed]
75. Tea-makorn, P.P.; Kosinski, M. Spouses’ Faces Are Similar but Do Not Become More Similar with Time. Sci. Rep. 2020, 10, 17001.

[CrossRef]
76. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. arXiv 2014, arXiv:1411.7766. [CrossRef]
77. Bruce, V. Stability from Variation: The Case of Face Recognition. The M.D. Vernon Memorial Lecture. Q. J. Exp. Psychol. A 1994,

47, 5–28. [CrossRef] [PubMed]
78. Milord, J.T. Aesthetic Aspects of Faces: A (Somewhat) Phenomenological Analysis Using Multidimensional Scaling Methods. J.

Pers. Soc. Psychol. 1978, 36, 205–216. [CrossRef]
79. Harmon, L.D. The Recognition of Faces. Sci. Am. 1973, 229, 71–82. [CrossRef]
80. Lindsay, R.C.L. Biased Lineups: Where Do They Come From? In Adult Eyewitness Testimony; Ross, D.F., Read, J.D., Toglia, M.P.,

Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 182–200, ISBN 978-0-521-43255-9.
81. Spuhler, J.N. Assortative Mating with Respect to Physical Characteristics. Eugen. Q. 1968, 15, 128–140. [CrossRef]
82. Hill, C.T.; Rubin, Z.; Peplau, L.A. Breakups Before Marriage: The End of 103 Affairs. J. Soc. Issues 1976, 32, 147–168. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1098/rsbl.2004.0216
https://doi.org/10.1038/s41562-020-01007-2
https://doi.org/10.1521/soco.2009.27.6.813
https://doi.org/10.1146/annurev-psych-113011-143831
https://www.ncbi.nlm.nih.gov/pubmed/25196277
https://doi.org/10.1038/s41562-016-0001
https://doi.org/10.1177/0022022194252004
https://doi.org/10.1371/journal.pone.0141353
https://doi.org/10.1111/spc3.12337
https://doi.org/10.1111/j.0022-3506.2004.00289.x
https://doi.org/10.1007/BF01076408
https://doi.org/10.4054/DemRes.2009.21.28
https://www.ncbi.nlm.nih.gov/pubmed/20333322
https://doi.org/10.1038/s41562-016-0016
https://doi.org/10.1007/BF01065686
https://doi.org/10.1080/19485565.1984.9988579
https://doi.org/10.1007/s11129-010-9088-6
https://doi.org/10.1111/jopy.12039
https://doi.org/10.1073/pnas.1504811112
https://doi.org/10.1126/science.3883492
https://www.ncbi.nlm.nih.gov/pubmed/3883492
https://doi.org/10.1038/s41598-020-73971-8
https://doi.org/10.48550/ARXIV.1411.7766
https://doi.org/10.1080/14640749408401141
https://www.ncbi.nlm.nih.gov/pubmed/8177963
https://doi.org/10.1037/0022-3514.36.2.205
https://doi.org/10.1038/scientificamerican1173-70
https://doi.org/10.1080/19485565.1968.9987763
https://doi.org/10.1111/j.1540-4560.1976.tb02485.x

	Introduction 
	Materials and Methods 
	Data Source 
	Deep Learning-Based Analysis of Dissimilarity 
	Machine and Deep Learning-Based Prediction of Relationship Duration 
	Landmark-Based Subanalyses 
	Statistical Analysis 

	Results 
	Comparative Analyses 
	Prediction Modelling 

	Discussion 
	Conclusions 
	References

