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Abstract: The precision and predictive power of perturbative QCD (pQCD) prediction depends on
both a precise, convergent, fixed-order series and a reliable way of estimating the contributions of
unknown higher-order (UHO) terms. It has been shown that by applying the principle of maximum
conformality (PMC), which applies the renormalization group equation recursively to set the effective
magnitude of αs of the process, the remaining conformal coefficients will be well matched with
the corresponding αs at each order, leading to a scheme-and-scale invariant and more convergent
perturbative series. The PMC series, being satisfied with the standard renormalization group invari-
ance, has a rigorous foundation. Thus it not only can be widely applied to virtually all high-energy
hadronic processes, but also can be a reliable platform for estimating UHO contributions. In this
paper, by using the total decay width Γ(H → γγ) which has been calculated up to N4LO QCD
corrections, we first derive its PMC series by using the PMC single-scale setting approach and
then estimate its unknown N5LO contributions by using a Bayesian analysis. The newly suggested
Bayesian-based approach estimates the magnitude of the UHO contributions based on an optimized
analysis of the probability density distribution, and the predicted UHO contribution becomes more
accurate when more loop terms have been known to tame the probability density function. Using
the top-quark pole mass Mt = 172.69 GeV and the Higgs mass MH = 125.25 GeV as inputs, we ob-
tain Γ(H → γγ) = 9.56504 keV, and the estimated N5LO contribution to the total decay width is
∆ΓH = ±1.65 × 10−4 keV for the smallest credible interval of 95.5% degree of belief.

Keywords: perturbative quantum chromodynamics; principle of maximum conformality; bayes analysis

1. Introduction

The ATLAS and CMS collaborations have discovered the Higgs boson in 2012 [1,2],
consistent with the elementary particle suggested by the Standard Model (SM). The Higgs
boson answers some of the most profound questions in physics, such as where the masses
of the elementary particles and the W±/Z0 gauge bosons come from, how the electroweak
phase transition governs the evolution of the early universe, etc. It is then crucial to verify
and study the Higgs properties, either experimentally or theoretically.

Precise measurements of the Higgs boson production and decay channels provide
critical tests of the SM and are vital in the exploration of new physics beyond the SM.
Over the past decade, many new measurements on the Higgs boson properties have
been performed by the collaborations at the LHC. Some new Higgs factories such as the
International Linear Collider (ILC) [3], the Circular Electron Positron Collider (CEPC) [4]
and the Future Circular Collider [5] have been designed to further improve the experimental
precision on the Higgs properties. Thus, the Higgs boson is being moved from the object of
a search to an exploration tool. Till now, almost all of the related measurements have been
in agreement with the SM predictions within errors. As one of the most important decay
channels of the Higgs boson, it has been shown that the process H → γγ has an observable
fraction (2.50 ± 0.20)× 10−3 [6], which plays an important role in Higgs phenomenology.

Because the photon is massless, the process H → γγ is a loop-induced process even at
the leading-order level, whose amplitude can be decomposed into a bosonic contribution,
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stemming from the W boson, and the fermionic contributions, respectively. More explicitly,
its decay width can be written as

Γ(H → γγ) =
M3

H
64π

∣∣∣∣∣AW + ∑
f

A f

∣∣∣∣∣
2

, (1)

where MH is the Higgs mass, AW is the contribution from the purely bosonic diagrams,
and A f is the contribution from the amplitudes with f = (t, b, c, τ), which corresponds
to the top quark, the bottom quark, the charm quark, and the τ lepton, accordingly. The
above equation can be further rewritten as [7]

Γ(H → γγ) =
M3

H
64π

(
A2

LO + AEW
α

π

)
+ Rn, (2)

where α is the fine-structure constant, AEW is the electroweak (EW) correction [8,9], ALO
is the leading-order (LO) contribution, and Rn represents the QCD corrections, in which
n represents the QCD correction calculated up to the nth-loop level. At present, the LO,
the next-to-leading order (NLO), the N2LO, the N3LO, and the N4LO perturbative QCD
(pQCD) corrections for Γ(H → γγ) have been calculated in Refs. [8–24] under various
approaches. In particular, the fermionic contribution which forms a gauge-invariant subset
has been calculated up to the N4LO level in the large top-quark limit with MH << 2mt [21].
Those improvements give us a good basis for achieving a precise pQCD prediction on
Γ(H → γγ). On the other hand, future precise measurements on the Higgs boson decay
may determine the branching fraction of its decay into two photons up to a high precision
of one percent [25]. Thus, to fully exploit future precise measurements, it is important to
achieve a high-precision theoretical prediction as much as possible, as is the purpose of the
present paper.

2. The N4LO-Level Prediction R4 under the PMC and the Higher-Order Contribution
Using a Bayesian Analysis

A valid prediction for a physical observable from quantum field theory should be
independent of the choice of renormalization scheme and scale—this is the primary re-
quirement of renormalization group invariance (RGI). Satisfying the RGI is a challenging
problem for pQCD, since a truncated perturbation series does not automatically satisfy the
requirements of the renormalization group. In the following we will take the higher-order
QCD corrections to the process H → γγ as an explicit example.

The perturbative series of the QCD correction R4 up to the O(α5
s ) level can be read

from Refs. [20,21], which is given in n f series with n f being the active number of quark
flavors. For the later convenience of applying the renormalization group equation (RGE)
to set the effective magnitude of αs, we express it as a {βi} series by using the general
degeneracy relations of the QCD theory among different orders , e.g.,

R4 =
4

∑
i=1

ri(µ
2
r /Q2)ai(µr) (3)

=r1,0a(µr) + [r2,0 + β0r2,1]a2(µr)

+ [r3,0 + β1r2,1 + 2β0r3,1 + β2
0r3,2]a3(µr)

+ [r4,0 + β2r2,1 + 2β1r3,1 +
5
2

β1β0r3,2 + 3β0r4,1

+ 3β2
0r4,2 + β3

0r4,3]a4(µr) +O(a5), (4)

where a = αs/π and Q = Mt (Mt being the top-quark pole mass), which represents the
typical momentum flow of the process. The {βi}-functions have been calculated up to the
five-loop level in the MS scheme [26–37]. The expansion coefficients ri,j in Equation (3) can
be derived from the ones of Refs. [20,21] via proper transformations. In Refs. [20,21], the
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perturbative expressions are given in the form of the MS-scheme top-quark running mass
(mt). Following the arguments of Ref. [38], we transform it into the perturbative series
over the top-quark pole mass (Mt) with the help of the O(α5

s )-level relation between mt and
Mt [22] in order to avoid the confusion of applying the PMC-scale-setting procedures, e.g.,
only the RGE-involved βi terms remain and are adopted for fixing the correct magnitude
of the strong coupling and its argument, e.g., the PMC scale Q∗. The coefficients ri,0 are
conformal ones which are free of the renormalization scale µr, and the nonconformal
coefficients ri,j( ̸=0) are functions of µr which can be expressed as

ri,j =
j

∑
k=0

Ck
j r̂i−k,j−k lnk(µ2

r /Q2), (5)

where r̂i,j = ri,j|µr=Q. The RGE determines the running behavior of αs and is scheme-
dependent. By applying the principle of maximum conformality (PMC) [39–43], which
applies the RGE recursively to set the effective magnitude of αs of the process, the remaining
conformal coefficients are well matched with the corresponding αs at each order, leading to
a scheme-and-scale invariant and convergent perturbative series free of divergent renormal-
ization terms, cf. the reviews [44–46]. These reviews show that the PMC predictions respect
all features of the renormalization group, and its prediction satisfies all the requirements of
RGI; The commensurate scale relations, which relate physical observables to each other,
ensure that PMC predictions are independent of the choice of renormalization scheme for
any observable; And the transitivity and symmetry properties of the commensurate scales
are the scale transformations of the renormalization “group”. Moreover, the PMC reduces
in the Abelian limit to the Gell–Mann–Low method [47], and it provides a solid way to
extend the well-known Brodsky–Lepage–Mackenzie (BLM) method [48] to all orders.

The PMC single-scale approach (PMCs) [49] determines an overall effective αs (its argu-
ment is called the PMC scale) for the fixed-order predictions, and the resultant perturbative
series provide a good basis for demonstrating that the PMC series is free of renormalization
scale-and-scheme ambiguities up to any fixed order, being consistent with the fundamental
renormalization group approaches [50,51]. It is noted that the single-scale approaches
suggested in Ref. [49] are different from each other, but it has been demonstrated that the
resultant pQCD series for both approaches are exactly the same. This equivalence indicates
that by using the RGE to fix the value of the effective coupling is equivalent to requiring
each loop’s terms to be scale-invariant simultaneously. Following the PMCs procedures [49],
all the RGE-involved nonconformal terms of the above conventional series (4) of R4(µr)
should be removed from the series and adopted for fixing the correct magnitude of αs of the
process; one then obtains a scale-invariant conformal series. Up to the N4LO level, we have

R4|PMCs =
4

∑
i=1

r̂i,0ai(Q∗) +O(a5), (6)

where Q∗ is the PMC scale, which can be determined by the following equation

ln
Q2

∗,NlLL

Q2 = −
∑l+2

k=1 ∑l−k+2
i=1

[
(−1)i∆(i−1)

n,k r̂k+i,i(n + k − 1)ak(Q∗,NlLL)
]

∑l+1
η=1 ∑l+2

k=1 ∑l−k+2
i=η

[
(−1)i(n + k − 1)Cη

i ∆(i−1)
n,k r̂k+i−η,i−η Lη−1

Q∗,Nl−1LL
ak(Q∗,NlLL)

] (7)

=
2

∑
i=0

Siai(Q∗,NlLL), (8)

where LQ∗,Nl−1LL
= ln Q2

∗,Nl−1LL/Q2. In the second line, e.g., Equation (8), we have expanded
the series in the nominator and denominator as power series over a = αs/π, and their
precision depend on how many loop terms for the pQCD approximation Rn are known.
That is, by using R2, R3, and R4 accordingly, the PMC scale can be fixed at the LL accuracy,
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NLL accuracy, and N2LL accuracy, respectively. A similar PMC analysis on the N2LO level
R2 was conducted in Ref. [52], in which the LL-accuracy PMC scale was given. Up to the
N4LO level, we need to know the first three functions ∆(0,1,2)

n,k , which are

∆(0)
n,k = 1,

∆(1)
n,k = −1

2

+∞

∑
i=0

(n + k + i)βiai+1,

∆(2)
n,k =

1
3!

+∞

∑
i=0

+∞

∑
j=0

(n + k + i)(n + i + j + k + 1)

× βiβ jai+j+2. (9)

And the functions Si with i = (0, 1, 2) are

S0 = − r̂2,1

r̂1,0
(10)

S1 =
2(r̂2,0r̂2,1 − r̂1,0r̂3,1)

r̂2
1,0

+
(r̂2

2,1 − r̂1,0r̂3,2)

r̂2
1,0

β0 (11)

S2 =
4(r̂1,0r̂2,0r̂3,1 − r̂2

2,0r̂2,1) + 3(r̂1,0r̂2,1r̂3,0 − r̂2
1,0r̂4,1)

r̂3
1,0

+
3(r̂2

2,1 − r̂1,0r̂3,2)

2r̂2
1,0

β1 −
[2r̂2

2,0r̂2,1 − r̂1,0r̂2,0(6r̂3,1 + 2r̂3,2)

r̂3
1,0

−
3(r̂2,0r̂2

2,1 + r̂2
1,0r̂4,2)

r̂3
1,0

]
β0 +

[
(r̂1,0r̂2,0r̂3,2 − r̂2

1,0r̂4,3)

r̂3
1,0

+
2(r̂1,0r̂2,0r̂3,2 − r̂3

2,1)

r̂3
1,0

]
β2

0 (12)

The predictive power of pQCD prediction also depends on a reliable way of estimating
the contributions of unknown higher-order (UHO) terms. A Bayesian-based approach
provides such a way of estimating the UHO contribution, which predicts the magnitude
of the UHO terms based on an optimized analysis of the probability density distribution.
The Bayesian analysis constructs probability distributions in which Bayes’ theorem is used
to iteratively update the probability as new information becomes available [53–57]. The
interested reader may turn to Ref. [57] to learn the recent progresses on Bayesian analysis.
We put the key formulas in the following for self-consistency.

If the perturbative approximation starts at the initial order O(αl
s) and stops at the

kth order O(αk
s), the corresponding perturbatively calculable physical observable can be

schematically represented as

ρk =
k

∑
i=l

ciα
i
s, (13)

where the ci’s are expansion coefficients. Replacing ρk → Rn, l → 1, and ci → ri (r̂i,0) in the
following formulas, we obtain the required formulas for the conventional (PMC) series
of Rn. By taking three reasonable hypotheses, we obtain the probability density function
(p.d.f) for the unknown higher-order coefficient cn,

fc(cn|cl , . . ., ck) =


nc

2(nc+1)c̄(k)
, |cn| ≤ c̄(k)

nc c̄nc
(k)

2(nc+1)|cn |nc+1 , |cn| > c̄(k)
. (14)
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where c̄(k) = Max{|cl |, . . ., |ck|}, and nc = k − l + 1, which represents the number of known
perturbative coefficients, cl , . . ., ck. Using Equation (14), one then derives the conditional
p.d.f. for the uncalculated higher-order term δn = cnαn

s , (n > k). Especially for the one-
order higher UHO-term with n = k + 1, the conditional p.d.f. of δk+1 and ρk+1 with given
coefficients cl , . . ., ck, denoted by fδ(δk+1|cl , . . .ck) and fρ(ρk+1|cl , . . .ck), respectively, read

fδ(δk+1|cl , . . . , ck) =

(
nc

nc + 1

)
1

2αk+1
s c̄(k)


1, |δk+1| ≤ αk+1

s c̄(k)(
αk+1

s c̄(k)
|δk+1|

)nc+1
, |δk+1| > αk+1

s c̄(k)
, (15)

fρ(ρk+1|cl , · · · , ck) =

(
nc

nc + 1

)
1

2αk+1
s c̄(k)


1, |ρk+1 − ρk| ≤ αk+1

s c̄(k)(
αk+1

s c̄(k)
|ρk+1−ρk |

)nc+1
, |ρk+1 − ρk| > αk+1

s c̄(k)
. (16)

One usually estimates the central value of ρk+1 to be its expectation value E(ρk+1) and
takes its uncertainty as its standard deviation, σk+1. The expectation value E(ρk+1) can be
related to the expectation value of δk+1, i.e., E(ρk+1) = E(δk+1) + ρk. For the present prior
distribution, E(δk+1) = 0, due to the fact that the symmetric probability distribution (15)
is centered at zero. To predict the magnitude of δk+1 consistently, it is useful to define a
critical degree of belief (DoB), pc%, which equals the least value of p% that satisfies the
following equations:

ρi−1 + c(p)
i αi

s ≥ ρi + c(p)
i+1αi+1

s , (i = l + 1, · · · , k), (17)

ρi−1 − c(p)
i αi

s ≤ ρi − c(p)
i+1αi+1

s , (i = l + 1, · · · , k). (18)

Thus, for any p% ≥ pc%, the error bars determined by the p%-credible intervals (CIs)
provide consistent estimates for the magnitude of δk+1. The value of pc% is nondecreasing
when k increases. Practically, we adopt the smallest ps%-CI so as to obtain a consistent and
high DoB estimation, i.e.,

[E(ρk+1)− c(ps)
k+1αk+1

s , E(ρk+1) + c(ps)
k+1αk+1

s ], (19)

as a final estimate for ρk+1, where ps% = Max{pc%, pσ%}. Here, pσ% represents the DoB
for the 1σ interval, and ρk+1 ∈ [E(ρk+1)− σk+1, E(ρk+1) + σk+1].

2.1. Basic Numerical Results and Discussions

To perform the numerical calculation, we took the values of the input parameters
from the Particle Data Group [6], e.g., the W-boson mass MW = 80.377 GeV, the τ-lepton
mass Mτ = 1.7769 GeV, the b-quark pole mass Mb = 4.78 GeV, the c-quark pole mass
Mc = 1.67 GeV, the t-quark pole mass Mt = 172.69 GeV, and the Higgs mass MH = 125.25 GeV.
The Fermi constant was GF = 1.1664 × 10−5 GeV−2 and the fine-structure constant was
α = 1/137.036. We assumed the running of αs was at the four-loop level; the QCD asymptotic

scale ΛQCD was determined by using αs(MZ) = 0.1179, which gave Λ
n f =5
QCD = 0.2072 GeV.

For the process H → γγ, its QCD correction Rn under the MS-scheme was calculated
up to the N4LO level. The initial fixed-order pQCD series was scheme-and-scale-dependent.
(A way of achieving a scheme-and-scale-invariant prediction directly from the initial series,
which is called the principle of minimum sensitivity (PMS), has been suggested in the
literature. It assumes that all uncalculated higher-order terms give zero contribution and
determines the optimal scheme and scale by requiring the slope of the pQCD series over the
scheme-and-scale choices vanish. Since the PMS breaks the standard renormalization group
invariance [45], it cannot be treated as a strict solution of conventional scheme-and-scale
ambiguities, which, however, could be treated as an effective treatment.) As has been
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discussed above, after applying the PMC, the resultant conformal series becomes scheme-
and-scale-invariant. We present the scale-invariant conformal coefficients r̂i,0(i = 1, · · · , 4)
in Table 1, where the scale-dependent coefficients ri at µr = MH/2, MH and 2MH are also
presented for comparison.

Table 1. The MS coefficients r̂i,0 and ri for R4. The coefficients ri are also scale-dependent, and their
values under three typical scale choices, e.g., µr = MH/2, MH , and 2MH , are given for comparison.

i = 1 i = 2 i = 3 i = 4

ri(µr = MH/2) 1.4070 −0.9874 −0.4084 3.3437

ri(µr = MH) 1.4070 0.2024 −1.6545 −0.3693

ri(µr = 2MH) 1.4070 1.5282 −0.3456 −2.4065

r̂i,0 1.4070 1.3387 −3.6304 4.5695

Using the expansion coefficients of the QCD corrections R2, R3, and R4, the PMC
scale can be fixed at the LL accuracy, NLL accuracy and N2LL accuracy, respectively, and
we obtain

Q∗,LL = 242.791 GeV, (20)

Q∗,NLL = 193.457 GeV, (21)

Q∗,N2LL = 213.603 GeV. (22)

|Q∗,N2LL − Q∗,NLL| < |Q∗,NLL − Q∗,LL| indicates that the expansion series of ln Q2
∗/Q2

has a perturbative nature. Together with the fact that its higher-order terms will suffer from
both αs-power suppression and exponential suppression, the residual scale dependence of
Q∗ due to even higher-order terms of Rn will be highly suppressed, whose effects on the
magnitude of αs is negligible. The PMC predictions of R2, R3, and R4 are

R2|PMC = 0.159493 keV, (23)

R3|PMC = 0.159969 keV, (24)

R4|PMC = 0.158517 keV. (25)

Table 2 shows the N4LO QCD corrections R4 = ∑4
i=1 ∆i under conventional and PMC

scale settings, where ∆i represents the individual decay width at the NLO, the N2LO, the
N3LO or the N4LO level, respectively. Three typical scales µr = MH/2, MH , and 2MH were
adopted to show the conventional renormalization scale uncertainty. Table 2 shows that
under conventional scale setting, the separate decay widths ∆i are highly scale-dependent,
and due to the large cancellation among different orders, the net scale dependence of the
N4LO prediction R4 becomes small ∼ 1.28% for µr ∈ [MH/2, 2MH ]. After applying the
PMC, both ∆i and R4 are scale-independent. This confirms the observation that if the
correct magnitude of αs of a pQCD series has been determined by using the RG-involved
{βi}-terms, indicating a good match of αs with its expansion coefficients, one will achieve
a precise scale-independent pQCD prediction. Such scale-independent nature of the pQCD
approximation can be treated as its intrinsic perturbative property. Due to the good
perturbative nature of the PMC series of Rn, the difference between the magnitudes of Rn
and Rn−1 becomes smaller with the increment of the given loop numbers.

Under the Bayesian approach, we predicted the magnitude of the unknown coefficient
ci+1 from the known ones {c1, · · · , ci} with ci → ri (r̂i,0) for conventional (PMC) series,
respectively. Our results are listed in Table 3. From Tables 1 and 3, we can see that the exact
values of ri,0(i = 2, 3, 4, ) and ri(i = 2, 3, 4) lay within the predicted 95.5% CIs. Moreover,
we obtained the smallest 95.5% credible intervals (CIs) for the perturbative coefficients
r5(µr = MH) and r5,0, which were r5 ∈ [−2.4023, 2.4023] and r5,0 ∈ [−6.6348, 6.6348],
respectively. The values from given series (“ECs”) are presented for comparison.
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Table 2. The N4LO QCD corrections R4 = ∑4
i=1 ∆i of Γ(H → γγ) under conventional (Conv.) and

PMC scale settings, respectively. ∆i represents the individual decay width at the NLO, N2LO, N3LO
or N4LO level, respectively. Three typical values µr = MH/2, MH , and 2MH are adopted to show
the renormalization scale uncertainty.

i = 1 i = 2 i = 3 i = 4 R4(µr)

µr = MH/2 0.17589 −0.01543 −0.00080 0.00082 0.16048
∆i(KeV)|Conv. µr = MH 0.15830 0.00256 −0.00236 −0.00006 0.15845

µr = 2MH 0.14467 0.01616 −0.00038 −0.00027 0.16018

∆i(KeV)|PMC µr ∈ [Q/2, 2Q] 0.14744 0.01470 −0.00418 0.00055 0.15852

Table 3. The predicted smallest 95.5% CIs for the scale-dependent conventional coefficients ri(µr)

at the scale µr = MH and the scale-invariant coefficients r̂i,0(i = 3, 4, 5) of Rn(µr = MH) via the
Bayesian approach, where MH = 125.25 GeV. The values from given series (“ECs”) are presented
for comparison.

r2(MH) r3(MH) r4(MH) r5(MH)

CI [−15.6334, 15.6334] [−3.8294, 3.8294] [−2.9303, 2.9303] [−2.4023, 2.4023]
EC 0.2024 −1.6545 −0.3693 −

r̂2,0 r̂3,0 r̂4,0 r̂5,0

CI [−15.6334, 15.6334] [−3.8294, 3.8294] [−6.4298, 6.4298] [−6.6348, 6.6348]
EC 1.3387 −3.6304 4.5695 −

Using the estimated r5(MH) and r̂5,0, the error of ΓH caused by the UHO-terms for
conventional series and PMC series under the Bayesian approach (B.A.) were

∆ΓH |UHO
Conv. = ±8.523 × 10−5 keV, (26)

∆ΓH |UHO
PMC = ±1.65 × 10−4 keV. (27)

By further taking µr ∈ [MH/2, 2MH ], the conventional series also had the following
scale uncertainty

∆ΓH |
µr
Conv. = (+2.03×10−3

−1.02×10−5) keV. (28)

Then, as a combination, the net errors caused by the N5LO UHO terms in conventional
and PMC series were

∆ΓH |Conv. = (+2.03×10−3

−8.58×10−5) keV (29)

∆ΓH |PMC = ±1.65 × 10−4 keV (30)

where µr ∈ [MH/2, 2MH ].
In addition, for the more precise PMC series, we also adopted another usual way of

estimating UHO contributions, e.g., the Padé approximation approach (PAA) [58–60] to
estimate the UHO terms of Rn. The PAA works when we know enough higher orders,
e.g., n ≥ 2 for the present case. The PAA has an intrinsic error due to the existence of
different types of generating functions [61], and we took the result of the [0/n − 1] type
as its central value and the results of other types were treated as its uncertainty. More
explicitly, to estimate the N3LO magnitude from the given N2LO series, we used the [0/1]-
type generating function; to estimate the N4LO magnitude from the given N3LO series, we
used the [0/2]-type and [1/1]-type generating functions; to estimate the N5LO magnitude
from the given N4LO series, we used the [0/3]-type, [1/2]-type, and [2/1]-type generating
functions, etc. We put the results in Figure 1, where the “Exact Values” together with the
Bayesian approach (B.A.) and Padé approximation approach (PAA) ones are presented.
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Figure 1 shows that for the B.A. approach, the “exact” value are always within the predicted
error band, the predicted one-order-higher UHO error band is always within the predicted
one-order-lower UHO error band, and the predicted UHO values become more accurate
when more loop terms are known. Thus, if one has enough higher-order information to
tame the probability density function, one may determine the precise contribution of the
UHO terms. For the PAA, the “exact” N4LO value is outside of the predicted error bar, and
the predicted N5LO error bar becomes better and is consistent with the B.A. one. In this
sense, at least for the present case, the B.A. approach is more effective than the PAA.

▼

▼

▼ ▮▮

▮▮

▮▮

▮▮ ✶✶

✶✶

✶✶

▼

▮

✶

2 3 4 5
0.157

0.158

0.159

0.160

0.161

0.162

Figure 1. The predicted values for the pQCD correction Rn|PMC under the Padé approximation
approach (PAA) and Bayesian approach (B.A.) at different orders, respectively. The blue rectangles
together with the error bars are for B.A., the green error bars are brought by different types of PAAs,
and the exact values of the Rn(MH)|PMC at different orders, respectively.

>From Equation (2), there are other error sources such as ∆MH , ∆mt and ∆αs(MZ)
for the total decay width Γ(H → γγ). For this purpose, we took ∆MH = ±0.17 GeV,
∆mt = ±0.30 GeV, and ∆αs(Mz) = ±0.0009 GeV [6] to show their effects. When discussing
the error caused by one parameter, the other parameters were fixed as their center values.
Thus, we had

∆ΓH |∆MH
Conv. = (+5.455×10−2

−5.423×10−2) keV, (31)

∆ΓH |∆MH
PMC = (+5.453×10−2

−5.421×10−2) keV, (32)

∆ΓH |∆mt
Conv. = (+6.999×10−4

−7.040×10−4) keV, (33)

∆ΓH |∆mt
PMC = (+7.004×10−4

−7.045×10−4) keV, (34)

∆ΓH |
∆αs(MZ)
Conv. = (+1.071×10−3

−1.072×10−3) keV, (35)

∆ΓH |
∆αs(MZ)
PMC = (+1.061×10−3

−1.062×10−3) keV. (36)

By adding all the mentioned errors in quadrature, our final results for the total decay
ΓH of H → γγ using the B.A. approach were

ΓH |B.A.
Conv. = 9.56497+0.05461

−0.05424 keV, (37)

ΓH |B.A.
PMC = 9.56504+0.05455

−0.05422 keV (38)

whose net errors were 1.138% and 1.137%. This shows that since the QCD correction was
calculated up to the N4LO level, the main errors were dominated by ∆MH . (As a rough



Symmetry 2024, 16, 173 9 of 12

estimation, by setting all input parameters to be their central values, the magnitudes of the
EW or the QCD-EW mixing correction are ∼ O(−2.1× 10−1keV) or ∼ O(+1.6 × 10−1keV),
and then the errors caused by one-order-higher EW or QCD-EW corrections should be
∼ O(−1.5 × 10−3keV) or ∼ O(+1.2 × 10−3keV) because of the α suppression. Further-
more, due to different sign of the EW and QCD-EW mixing corrections, their net error
becomes ∼ O(3.0 × 10−4keV). Those magnitudes are also smaller than the dominant error
caused by ∆MH .)

2.2. The Fiducial Cross Section of σfid(pp → H → γγ)

As an application of the H → γγ decay width, we estimated the “fiducial cross section”
of the process pp → H → γγ. The fiducial cross section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγ A (39)

where A is the acceptance factor, whose value for different collision energies can be found
in Ref. [62]. BH→γγ represents the branching ratio of H → γγ. By using Γ(H → γγ) with a
conventional-scale-setting approach, the LHC-XS group gave BH→γγ = 0.00227+0.00206

−0.00208 [63].
The inclusive cross section σIncl predicted by the LHC-XS group is given in Ref. [64]. The
results are σfid(pp → H → γγ)|LHC−XS = 24.63+2.55

−2.50 fb, 30.93+3.44
−3.33 fb, and 65.86+6.58

−6.33 fb
for the proton–proton center-of-mass collision energy

√
S = 7, 8, and 13 TeV, respectively,

which has been measured by the ATLAS and CMS collaborations with increasing inte-
grated luminosities [62,65–70]. Taking the same inputs as those of Refs. [63,64,71], e.g.,
MH = 125 GeV and Mt = 173.3 GeV, and using the QCD corrections up to the N4LO level,
we obtained σfid(pp → H → γγ)|PMC = 30.1+2.3

−2.2 fb, 38.3+2.9
−2.8 fb, and 85.5+5.7

−5.3 fb for the
proton–proton center-of-mass collision energy

√
S = 7, 8, and 13 TeV, respectively. As

an intuitive comparison of the experimental data and theoretical results, we present the
results in Figure 2 (Due to the resummation of the given {βi}-type terms, which determine
the precise magnitudes of αs at different proton–proton center-of-mass collision energies,
the PMC predictions are always larger than the LHC-XS predictions using conventional
series.). It shows that when

√
S = 7 or 8 TeV, the theoretical results are consistent with the

experimental measurements, and when
√

S = 13 TeV, the measured values of ATLAS and
CMS differ significantly, and the theoretical results are closer to the data of CMS.

10
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Figure 2. The fiducial cross section σfid(pp → H → γγ) using Γ(H → γγ) up to the N4LO level. The
LHC−XS prediction, the ATLAS measurements [62,65–67], and the CMS measurement [68–70] are
presented as a comparison.
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3. Summary

By using the PMC-scale-setting approaches, all nonconformal terms were adopted to
set the correct magnitude of αs with the help of the RGE, and the resultant pQCD series be-
came more precise without the conventional scheme-and-scale independence. In this paper,
we calculated the decay width Γ(H → γγ) up to the N4LO QCD corrections. A Bayesian
approach was applied to estimate the uncalculated N5LO contribution, which was only
about ±1.65 × 10−4 keV for the case of the smallest 95.5% credible interval. After taking all
the mentioned errors into consideration, we predicted ΓH |B.A.

PMC = 9.56504+0.05455
−0.05422 keV. Thus,

by using the Bayesian approach, one can consistently obtain high-reliability estimations
of UHO contributions by using convergent and scale-independent PMC series, greatly
improving the prediction ability of pQCD.
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