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Abstract: A vertex degree based topological index called the Sombor index was recently defined in
2021 by Gutman and has been very popular amongst chemists and mathematicians. We determine
the amount of change of the Sombor index when some elements are removed from a graph. This is
done for several graph elements, including a vertex, an edge, a cut vertex, a pendant edge, a pendant
path, and a bridge in a simple graph. Also, pendant and non-pendant cases are studied. Using the
obtained formulae successively, one can find the Sombor index of a large graph by means of the
Sombor indices of smaller graphs that are just graphs obtained after removal of some vertices or
edges. Sometimes, using iteration, one can manage to obtain a property of a really large graph in
terms of the same property of many other subgraphs. Here, the calculations are made for a pendant
and non-pendant vertex, a pendant and non-pendant edge, a pendant path, a bridge, a bridge path
from a simple graph, and, finally, for a loop and a multiple edge from a non-simple graph. Using
these results, the Sombor index of cyclic graphs and tadpole graphs are obtained. Finally, some
Nordhaus–Gaddum type results are obtained for the Sombor index.
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1. Introduction

Let G = (V, E) be a graph without loops or multiple edges having the vertex and edge
sets as V(G) = {v1, v2, · · · , vn} and E(G) = {vivj : vi, vj ∈ V(G)}, respectively. We call
|V(G)| = n and |E(G)| = m to be the order and the size of G. Sometimes, we use G(n, m) in
place of G to emphasize the order and size of G. If vi and vj are two end vertices of an edge
e of G, this is denoted by e = vivj. Then, the vertices vi and vj are adjacent, and e is said to
be incident with these vertices. Incidency and adjacency are frequently used in spectral
graph theory. The degree of v ∈ V(G) is denoted by dG(v) or, briefly, dv. The smallest and
largest degrees of all vertices will be denoted by δ and ∆, respectively. The neighbourhood
of a vertex is defined as NG(u) = {v ∈ V(G) : v and u are adjacent in G}. Neighbourhood
degree sum of a vertex u is defined as δG(u) = ∑

v∈NG(u)
dG(v). Let δG(v) be the sum of all

vertex degrees in the neighbourhood of v.
Graph theory is becoming increasingly popular due to its possible applications in

chemistry, pharmacology, physics, neuroscience, network science, and many other areas.
Each day, new areas are added to the list. This popularity is due to the fact that a molecule
or a social science application can be modeled by a graph. For molecules, one can obtain
such a graph by replacing each atom by a vertex and adding an edge between two atoms if
there is a chemical bond between those atoms. Graphs obtained in such a way are called
chemical (molecular) graphs. Once modeled, we can study this graph by mathematical
methods using the existing combinatorial, number theoretical, topological, linear algebraic,
etc., methods. At the end of such mathematical calculations, we obtain a number that is
characteristic of the graph under consideration. Such numbers are actually invariants and
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they remain the same under isomorphism. The main step is to establish some exact result,
an upper or lower bound, or at least some regression between the obtained mathematical
number and the same physico-chemical property of the molecule. This step brings together
chemistry and mathematics. The oldest known example is the Wiener index, introduced
in 1947 by chemist Harold Wiener to determine the boiling points of some alkane iso-
mers. Today, there are more than 3000 such mathematical formulae to study properties of
molecules. Mathematicians call them graph theoretical indices or topological graph indices,
and chemists call them molecular descriptors. Today, a serious part of research related to
graph theory is published on such descriptors and indices.

2. Materials and Methods

The Sombor index was recently defined in [1] by Gutman as

SO(G) = ∑
e=uv∈E(G)

√
du2 + dv2.

Gutman studied some mathematical and chemical properties of this index in [2,3].
In parallel with these studies, many other researchers also considered various mathematical
properties of the Sombor index. In [4], extremal values of the Sombor index were obtained
for molecular trees. In [5], the block Sombor index of graphs and their matrix represen-
tations were studied. In [6], some mathematical properties of the Sombor index were
obtained. In [7], Sombor indices were computed for several networks. In [8], some extremal
values were obtained mathematically. In [9], the Sombor index was calculated for c-cyclic
graphs. In [10], the mean value of the Sombor index was studied using elementary number
theoretical results. In [11], the integer values of the Sombor index were studied by means
of extensive use of Pythagorean triples. In [12], some more mathematical properties of the
Sombor index were studied. In [13], a spectral study of the Sombor index was done; this
new index is related to the graph energy. In [14], Sombor indices of some graph products of
some algebraic graphs were considered. Chemical applications of the Sombor index were
also considered by some authors. In [15], the Sombor index was calculated for polymers.
In [16], Sombor indices of the line graphs of some silicates were studied. In [17], some
molecular properties of the Sombor index were obtained. In [18], this index was calculated
for some nanotubes. In [19], random hexagonal chains, phenylene chains, and Sombor
indices of some chemical graphs were studied. In [20], Sombor indices of chemical graphs
were calculated, and their applications to the boiling points of benzenoid hydrocarbons
were studied in [21]. Also in [22], the Sombor index was used to predict physicochemical
properties of butane derivatives. After defining the Sombor index, its modified version was
put forward in [23] and studied in [24–27].

For an r-regular graph G, the Sombor index is equal to SO(G) =
√

2mr. Also, as the sum of
the degrees of vertices is twice the number of edges, we can restate this as SO(G) = 2

√
2m2/n.

In this paper, we use the ingenious methods that are used in mathematics to calculate
large mathematical objects by means of smaller objects that are easier to calculate. These
methods are vertex and edge removal. Here, we shall determine how much gthe Sombor
index changes when an edge or a vertex is deleted.

3. Results
3.1. Effect of Vertex Removal on the Sombor Index

We now determine how much SO(G) changes when a vertex is deleted from G. Ac-
cording to the enumarations we do with different graphs, there are two different cases
where the vertex to be deleted is pendant or not. We shall see those two cases seper-
ately below.
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Theorem 1. Let v ∈ V(G) be a vertex of degree dv > 1. Then

SO(G)− SO(G − v) = ∑
vw∈E(G)
w∈NG(v)

√
dv2 + dw2 + ∑

uw∈E(G)
u∈NG(v)
d(w,v)=2

[√
du2 + dw2 −

√
(du − 1)2 + dw2

]

+ ∑
uw∈E(G)

u,w∈NG(v)

[√
du2 + dw2 −

√
(du − 1)2 + (dw − 1)2

]
.

Proof. From the definition of the Sombor index, we can partition the edges of G into four
families: (i) uw ∈ E(G) such that v ̸= u, w /∈ NG(v), (ii) uw ∈ E(G) such that u ∈ NG(v),
d(w, v) = 2, (iii) uw ∈ E(G) so that u, w ∈ NG(v), and (iv) vw ∈ E(G) such that w ∈ NG(v).
By means of this edge partition, we can alternatively rephrase SO(G) as

SO(G) = ∑
uw∈E(G)

v ̸=u,w/∈NG(v)

√
du2 + dw2 + ∑

uw∈E(G)
u∈NG(v)
d(w,v)=2

√
du2 + dw2

+ ∑
uw∈E(G)

u,w∈NG(v)

√
du2 + dw2 + ∑

vw∈E(G)
w∈NG(v)

√
dv2 + dw2.

If we remove a non-pendant vertex v from the graph G, then the edge partition of
G − v would be (i) uw ∈ E(G) such that v ̸= u, w /∈ NG(v), (ii) uw ∈ E(G) such that
u ∈ NG(v), d(w, v) = 2, and (iii) uw ∈ E(G) such that u, w ∈ NG(v). That is, only the edges
of type (iv) will disappear. Hence, the Sombor index of the remaining graph G − v is

SO(G − v) = ∑
uw∈E(G)

v ̸=u,w/∈NG(v)

√
du2 + dw2 + ∑

uw∈E(G)
u∈NG(v)
d(w,v)=2

√
(du − 1)2 + dw2

+ ∑
uw∈E(G)

u,w∈NG(v)

√
(du − 1)2 + (dw − 1)2.

The desired result follows.

Using this theorem, we can directly deduce an upper bound for the change in the
Sombor index when a non-pendant vertex is deleted from a graph:

Corollary 1. Let v ∈ V(G) be of degree dv > 1. Let δG(v) be as above. Let A =
√

2δ2 − 2δ + 1.
If there are t pairs of vertices in the neighbourhood of v forming an edge of G, then

SO(G)− SO(G − v) ≤ (dv + 2t − δG(v))A +
√

2[t(1 − δ − ∆) + δG(v)∆]. (1)

Proof. From Theorem 1

SO(G)− SO(G − v) ≤ ∑
vw∈E(G)
w∈NG(v)

√
2∆ + ∑

uw∈E(G)
u∈NG(v)
d(w,v)=2

[√
2∆ −

√
(δ − 1)2 + δ2

]

+ ∑
uw∈E(G)

u,w∈NG(v)

[√
2∆ −

√
2(δ − 1)

]
= dv

√
2∆ + (δG(v)− dv − 2t)

(√
2∆ −

√
2δ2 − 2δ + 1

)
+t

(√
2(∆ − δ + 1)

)
= dv

√
2∆ + δG(v)

√
2∆ − δG(v)

√
2δ2 − 2δ + 1 − dv

√
2∆

+dv
√

2δ2 − 2δ + 1 − 2
√

2t∆ + 2t
√

2δ2 − 2δ + 1 + t
√

2∆
−tδ

√
2 + t

√
2.
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Since A =
√

2δ2 − 2δ + 1, we have

SO(G)− SO(G − v) ≤ A(dv + 2t − δG(v)) +
√

2(t(1 − δ − ∆) + δG(v)∆).

Corollary 2. Let G be a tree and let v ∈ V(G) be of degree dv > 1. Let δG(v) be as above. If there
are t pairs of vertices in the neighbourhood of v forming an edge of G, then

SO(G)− SO(G − v) ≤ dv + 2t − δG(v) +
√

2∆(δG(v)− t).

The proof depends on the fact that in a tree, δ = 1 and, hence, A = 1. Note that
Corollary 2 is also valid when the graph has at least one pendant vertex but is not a tree.

Now, we give results for deleting a pendant vertex from a graph:

Theorem 2. If v ∈ V(G) is a pendant vertex, then

SO(G)− SO(G − v) =
√

1 + dw2 + ∑
uw∈E(G)
u∈NG(v)
d(w,v)=2

[√
du2 + dw2 −

√
(du − 1)2 + dw2

]
.

That is, the formula in Theorem 1 simplifies.

Corollary 3. If v ∈ V(G) is a pendant vertex and u is its support vertex, then

SO(G)− SO(G − v) ≤
√

2∆du − (du − 1)A

where A is given in Corollary 1.

Proof. Using Theorem 2 and the formula A =
√

2δ2 − 2δ + 1, we have

SO(G)− SO(G − v) =
√

1 + dw2 + ∑
uw∈E(G)
u∈NG(v)
d(w,v)=2

[√
du2 + dw2 −

√
(du − 1)2 + dw2

]

≤ ∑
uw∈E(G)
w∈NG(v)

√
2∆ + ∑

uw∈E(G)
u∈NG(v)
d(w,v)=2

[√
2∆ −

√
(δ − 1)2 + δ2

]

≤
√

2∆dv + (du − 1)
[√

2∆ − A
]
.

Hence, the result follows.

3.2. Effect of Edge Removal on the Sombor Index

In this section, we will determine the change in the Sombor index when we remove an
edge from graph G. First, we check the effect of deleting a pendant edge.

Theorem 3. If e = uv ∈ E(G) is a pendant edge with pendant vertex v, then

SO(G)− SO(G − e) =
√

du2 + 1 − ∑
uw∈E(G)

v ̸=w∈NG(u)

[√
(du − 1)2 + dw2 −

√
du2 + dw2

]
.
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Proof. Using the definition of SO(G), we reorganize it as

SO(G) = ∑
rs∈E(G)

u ̸=r,s/∈NG(u)

√
dr2 + ds2 + ∑

uw∈E(G)
w∈NG(u)

√
du2 + dw2

= ∑
rs∈E(G)

u ̸=r,s/∈NG(u)

√
dr2 + ds2 + ∑

uw∈E(G)
v ̸=w∈NG(u)

√
du2 + dw2 +

√
du2 + 1.

If we remove a pendant edge e = uv with pendant vertex v, then we get

SO(G − e) = ∑
rs∈E(G)

u ̸=r,s/∈NG(u)

√
dr2 + ds2 + ∑

uw∈E(G)
v ̸=w∈NG(u)

√
(du − 1)2 + dw2.

Hence, the result follows.

Theorem 3 implies that it is possible to obtain the maximum value of the decrease in
the Sombor index when a pendant edge is deleted from the graph:

Corollary 4. For a graph G and a pendant edge e = uv with pendant vertex v, we have

SO(G)− SO(G − e) ≤ (du − 1)(
√

2∆ − A) +
√

∆2 + 1.

Proof. By Theorem 3, we have

SO(G)− SO(G − e) = ∑
uw∈E(G)

v ̸=w∈NG(u)

[√
du2 + dw2 −

√
(du − 1)2 + dw2

]
+

√
du2 + 1

≤ ∑
uw∈E(G)

v ̸=w∈NG(u)

(
√

2∆ − A) +
√

∆2 + 1.

Since there are du − 1 edges in the neighbourhood of the vertex u, the result follows.

The next result gives a similar formula for the amount of change in the Sombor index
of a graph when a non-pendant edge is deleted:

Theorem 4. Let e = uv ∈ E(G) be a non-pendant edge. Then

SO(G)− SO(G − e) =
√

du2 + dv2 − ∑
uw∈E(G)

v ̸=w∈NG(u)

[√
(du − 1)2 + dw2 −

√
du2 + dw2

]

− ∑
vw∈E(G)

u ̸=w∈NG(v)

[√
(dv − 1)2 + dw2 −

√
dv2 + dw2

]
.

Proof. By the definition of the Sombor index, we can group the edges in G as follows:

SO(G) = ∑
rs∈E(G)

u ̸=r/∈NG(u)
v ̸=s/∈NG(v)

√
dr2 + ds2 + ∑

uw∈E(G)
v ̸=w∈NG(u)

√
du2 + dw2

+ ∑
vw∈E(G)

u ̸=w∈NG(v)

√
dv2 + dw2 +

√
du2 + dv2.
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If we remove a non-pendant edge e from the graph G, the Sombor index of graph
G − e becomes

SO(G − e) = ∑
rs∈E(G)

u ̸=r/∈NG(u)
v ̸=s/∈NG(v)

√
dr2 + ds2 + ∑

uw∈E(G)
v ̸=w∈NG(u)

√
(du − 1)2 + dw2

+ ∑
vw∈E(G)

u ̸=w∈NG(v)

√
(dv − 1)2 + dw2.

Hence, the result is obtained.

The following result giving the maximum amount of change in the Sombor index of a
graph in terms of the size of the graph when a non-pendant edge is deleted from the graph
can be deduced from the above results:

Corollary 5. Let e be a non-pendant edge in G. Then

SO(G)− SO(G − e) ≤
√

2m∆ − (m − 1)A.

Proof. We have

SO(G)− SO(G − e) = ∑
uw∈E(G)

v ̸=w∈NG(u)

[√
du2 + dw2 −

√
(du − 1)2 + dw2

]

+ ∑
vw∈E(G)

u ̸=w∈NG(v)

[√
dv2 + dw2 −

√
(dv − 1)2 + dw2

]
+

√
du2 + dv2

≤ ∑
uw∈E(G)

v ̸=w∈NG(u)

(√
2∆ − A

)
+ ∑

vw∈E(G)
u ̸=w∈NG(v)

(√
2∆ − A

)
+
√

2∆

= (m − 1)
(√

2∆ − A
)
+
√

2∆

giving the required result.

3.3. Effect of Bridge Removal on the Sombor Index

In many calculations with graphs, cut vertices and bridges help us to do the calcula-
tions much more easily, as they partition the graph into blocks that are much smaller than
the given graph. In the following result, we use this method to calculate the Sombor index
of some large graphs in terms of Sombor indices of the blocks of the given graphs.

Theorem 5. Let G be a graph and let e = uv be a bridge in G. Let dGu = k+ 1 and dGv = t+ 1. Then

SO(G)− SO(G − e) =
√
(k + 1)2 + (t + 1)2 + ∑k

i=1

(√
(k + 1)2 + du2

i −
√

k2 + du2
i

)
+∑t

j=1

(√
(t + 1)2 + dv2

j −
√

t2 + dv2
j

)
.

Proof. Let the two blocks of G connected with the bridge e be G1 and G2. Let the neigh-
bours of u apart from v be u1, u2, · · · , uk, and let the neighbours of v apart from u be
v1, v2, · · · , vt. Let A = {xy| x, y ∈ V(G1), x, y ̸= u} and B = {xy| x, y ∈ V(G2), x, y ̸= v}.
We can organize SO(G) as follows:

SO(G) =
√

du2 + dv2 +
k

∑
i=1

√
du2 + du2

i +
t

∑
j=1

√
dv2 + dv2

j + ∑
xy∈A∪B

√
dx2 + dy2.
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Similarly,

SO(G − e) =
k

∑
i=1

√
(du − 1)2 + du2

i +
t

∑
j=1

√
(dv − 1)2 + dv2

j + ∑
xy∈A∪B

√
dx2 + dy2.

Hence, the required result is obtained easily after some calculations.

Theorem 5 can be generalized to some number of bridges seperating some number
of blocks.

The difference in Theorem 5 can also be stated in terms of the Sombor indices of the
two blocks G1 and G2 as follows. The proof is omitted as it is similar to the previous ones:

Corollary 6. Let G be a graph and let e = uv be a bridge in G, as in Theorem 5. Let dGu = k + 1
and dGv = t + 1. Then

SO(G)− SO(G − e) =
√
(k + 1)2 + (t + 1)2 + ∑k

i=1

√
(k + 1)2 + du2

i

+∑t
j=1

√
(t + 1)2 + dv2

j + ∑xy∈A∪B
√

dx2 + dy2 − SO(G1)− SO(G2).

3.4. Effect of Path-Bridge Removal on the Sombor Index

In the following result, we delete a path bridge between two blocks of a graph instead
of deleting a bridge:

Theorem 6. Let G be a graph and let e = uv be a path bridge of length r. That is, between u
and v, there are r vertices w1, w2, · · · , wr all having degree 2 in G. Let C = {w1, w2, · · · , wr},
dGu = k + 1, and dGv = t + 1. Then, the change in the Sombor index of G when the set C is
deleted from G is

SO(G)− SO(G − C) =
√
(k + 1)2 + 4 +

√
(t + 1)2 + 4 + 2(r − 1)

√
2

+∑k
i=1

[√
(k + 1)2 + du2

i −
√

k2 + du2
i

]
+∑t

j=1

[√
(t + 1)2 + dv2

j −
√

t2 + dv2
j

]
.

Proof. The edges in G can be partitioned as A and B as in the proof of Theorem 5:
{uw1, w1w2, w2w3, · · · , wr−1wr, wrv}, {uu1, uu2, uu3, · · · , uuk}, {vv1, vv2, vv3, · · · , vvt}.
Then, the partitioning of G − C would be A and B, {uu1, uu2, uu3, · · · , uuk}, {vv1, vv2, vv3,
· · · , vvt}. Considering the fact that the degrees of the end vertices u and v will decrease by
one in G − C, the proof follows.

Our next result is about deleting a pendant path from a graph. Let uv1v2v3 · · · vr be a
pendant path in a graph G such that du = k + 1, dv1 = dv2 = dvr−1 = dvr + 1 = 2. Let us
denote the set {v1, v2, · · · , vr−1, vr} by T. Then, we have the following result:

Theorem 7. Let G be a graph and let T = {v1, v2, · · · , vr−1, vr} be a pendant path of length r
as above. Then, the change in the Sombor index of G when the set T is deleted from G is

SO(G)− SO(G − T) = ∑k
i=1

[√
(k + 1)2 + dv2

i −
√

k2 + dv2
i

]
+

√
(k + 1)2 + 4

+2(r − 2)
√

2 +
√

5.

Proof. The edges in G can be partitioned as {uv1, v1v2, v2v3, · · · , vr−1vr}, {uu1, uu2, uu3,
· · · , uuk} and A = {xy ∈ E(G − T)| x, y ̸= u}. Similarly, the edges in G − T can be
partitioned as {uu1, uu2, uu3, · · · , uuk} and A. Considering the vertex degrees in G and
G − T, the result follows.

As an application of this result, we calculate the Sombor index of a tadpole graph:
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Example 1. Let G = Tr,s in Theorem 7. Let T be the pendant path Ps of G so that G − T = Cr.
Here k = 2. Hence, by Theorem 7, we get

SO(G) = SO(Tr,s) = SO(Cr) +
√

9 + 4 +
√

9 + 4 −
√

4 + 4 −
√

4 + 4 +
√

9 + 4
+2(s − 2)

√
2 +

√
5

= 2
√

2(r + s) + 3
√

13 +
√

5 − 8
√

2
.

3.5. Nordhaus–Gaddum Type Result for the Sombor Index

Let G be a graph and let Ḡ be its complement. For a vertex v in V(G), dGv + dḠv =
n − 1. Also, for any tree T and for a vertex v in V(T), dTv + dT̄v = m. It is an obvious fact
that if G is r-regular, then Ḡ is r′ = (n − 1 − r)-regular. Also for an r-regular graph G, we
have r = 2m/n. If the end vertices of an edge e are x and y, then this edge is said to be of
type {dx, dy}. Hence, an r-regular graph has nr/2 edges of type {r, r}. Therefore, we have
the following result:

Theorem 8. If G is an r-regular graph, then its Sombor index is

SO(G) =
nr2

√
2

2
.

Theorem 8 is enough to show the following Nordhaus–Gaddum type result on the
Sombor index:

Theorem 9. If G is an r-regular graph, then the following relation is satisfied:

SO(G) + SO(Ḡ) =
n
√

2
2

[
r2 + (n − 1 − r)2

]
.

Proof. Note that the size of the complement graph Ḡ is

m(Ḡ) = n(n−1)
2 − nr

2
= n

2 (n − 1 − r)

and, hence, we obtain the required relation using the regularity of the complement graph Ḡ:

SO(Ḡ) = n(n−1−r)
2 (n − 1 − r)

√
2

= n
√

2
2 (n − 1 − r)2.

This proves our required relation.

The following example gives a nice application of Theorem 9 to calculate the Sombor
index of the complement of a cycle graph.

Example 2. By Theorem 9, we can write

SO(Cn) + SO(C̄n) = n
√

2
2

(
n2 − 4n + 7

)
.

As Cn has n edges of type {2, 2}, SO(Cn) = 2n
√

2. Therefore, by subtracting this SO(Cn)
from Equation (2), we can deduce the Sombor index of the complement of the cycle graph. As C̄n has
n(n − 1)/2 edges of type {n − 3, n − 3}, SO(C̄n) =

(
n3 − 4n2 + 3n

)√
2/2, which gives us the

same result.

4. Non-Simple Graphs

In this paper, up to now, we have been concerned with simple graphs, which are
without loops or multiple edges. As the existence of these rather crude types of vertices
causes problems with the combinatorial calculations, most papers restrict themselves to
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simple graphs. In this section, we shall consider non-simple graphs and deal with the effect
of removing a loop or multiple edge from a non-simple graph on the Sombor index. First,
we study the effect of deleting a loop:

Theorem 10. Let G be a non-simple graph having at least one loop and let e be a loop starting and
ending at a vertex u of G. Let dGu = k. Then

SO(G)− SO(G − e) = ∑
uvi∈E(G)

[√
k2 + dGvi

2 −
√
(k − 2)2 + dGvi

2
]
+ k

√
2.

Proof. As dGu = k and the edge e contributes 2 to this degree as a loop, there are k − 2
neighbours of u in G. Let these neighbours be v1, v2, · · · , vk−2. The edge partition of
G is as follows: (i) the edges uvi ∈ E(G) joining the vertex u to its neighbours, (ii) the
edges vw ∈ E(G) such that v, w ̸= u, which has both end vertices different than u,
and (iii) e ∈ E(G). In the graph G − e, we have the following edge types: (i) The edges
uvi ∈ E(G − e), (ii) vw ∈ E(G − e) such that v, w ̸= u. Now, concerning the vertex degrees
in G and G − e, we know that dGu = k, dG−eu = k − 2, and all the remaining vertices
have the same degree in both graphs, as the removal of e does not effect their end vertices.
Therefore, we have

SO(G) = ∑
uvi∈E(G)

√
dGu2 + dGvi

2 + ∑
vw∈E(G)
v, w ̸=u

√
dGv2 + dGw2 +

√
dGu2 + dGu2

= ∑
uvi∈E(G)

√
k2 + dGvi

2 + ∑
vw∈E(G)
v, w ̸=u

√
dGv2 + dGw2 +

√
k2 + k2

= ∑
uvi∈E(G)

√
k2 + dGvi

2 + ∑
vw∈E(G)
v, w ̸=u

√
dGv2 + dGw2 + k

√
2

and

SO(G − e) = ∑
uvi∈E(G−e)

√
dG−eu2 + dG−evi

2 + ∑
vw∈E(G−e)

v, w ̸=u

√
dG−ev2 + dG−ew2

= ∑
uvi∈E(G)

√
(k − 2)2 + dGvi

2 + ∑
vw∈E(G)
v, w ̸=u

√
dGv2 + dGw2

= ∑
uvi∈E(G)

√
(k − 2)2 + dGvi

2 + ∑
vw∈E(G)
v, w ̸=u

√
dGv2 + dGw2

implying the required result.

Second, we study the effect of deleting one of the multiple edges between two vertices
of a graph.

Theorem 11. Let G be a non-simple graph having l multiple edges between two vertices u and v of
G and let these multiple edges be labeled by e1, e2, · · · , el . Let dGu = k and dGv = t.

SO(G)− SO(G − e) = l ×
√

k2 + t2 − (l − 1)×
√
(k − 1)2 + (t − 1)2

+ ∑
uui∈E(G)

[√
k2 + dGui

2 −
√
(k − 1)2 + dGui

2
]

+ ∑
vvj∈E(G)

[√
t2 + dGvj

2 −
√
(t − 1)2 + dGvj

2
]
.
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Proof. Let G be as stated. Then, there are k − l incident edges to u in addition to the l
multiple edges e′is, and there are t − l incident edges to v in addition to the l multiple edges
e′is. The edge partition of G is as follows: (i) the multiple edges ej ∈ E(G) joining the vertex
u to v for j = 1, 2, · · · , l, (ii) the edges uui ∈ E(G) for i = 1, 2, · · · , uk−l such that ui ̸= v,
which are different than the multiple edges between u and v, (iii) the edges vvj ∈ E(G) for
j = 1, 2, · · · , vt−l such that vj ̸= u, which are different than the multiple edges between u
and v, and (iv) the remaining edges rs ∈ E(G) such that r, s are adjacent to neither u nor
v. Similarly, the edge partition of G − ei is as follows: (i) the multiple edges ej ∈ E(G − ei)
joining the vertex u to v for j = 1, 2, · · · , i − 1, i + 1, · · · , l, that is, all the multiple
edges except ei, which is removed, (ii) the edges uui ∈ E(G − ei) for i = 1, 2, · · · , uk−l
such that ui ̸= v, which are different than the multiple edges between u and v, (iii) the
edges vvj ∈ E(G − ei) for j = 1, 2, · · · , vt−l such that vj ̸= u, which are different than the
multiple edges between u and v, and (iv) the remaining edges rs ∈ E(G − ei) such that r, s
are adjacent to neither u nor v.

Now, concerning the vertex degrees in G and G − ei, we know that dGu = k, dG−ei u =
k − 1, dGv = t, dG−ei v = t − 1, and all the remaining vertices have the same degree in both
graphs, as the removal of ei does not effect their end vertices. Therefore, we have

SO(G) = ∑
ej=uv∈E(G)

√
dGu2 + dGv2 + ∑

uui∈E(G)

√
dGu2 + dGui

2

+ ∑
vvj∈E(G)

√
dGv2 + dGvj

2 + ∑
rs∈E(G)

r, s/∈{u, v}

√
dGr2 + dGs2

= l ×
√

k2 + t2 + ∑
uui∈E(G)

√
k2 + dGui

2

+ ∑
vvj∈E(G)

√
t2 + dGvj

2 + ∑
rs∈E(G)

r, s/∈{u, v}

√
dGr2 + dGs2,

as the first sum in the first line has l summands, and

SO(G − ei) = ∑
ej=uv∈E(G−ei)

√
dG−ei u

2 + dG−ei v
2 + ∑

uui∈E(G−ei)

√
dG−ei u

2 + dG−ei ui
2

+ ∑
vvj∈E(G−ei)

√
dG−ei v

2 + dG−ei vj
2 + ∑

rs∈E(G−ei)
r, s/∈{u, v}

√
dG−ei r

2 + dG−ei s
2

= (l − 1)×
√
(k − 1)2 + (t − 1)2 + ∑

uui∈E(G)

√
(k − 1)2 + dGui

2

+ ∑
vvj∈E(G)

√
(t − 1)2 + dGvj

2 + ∑
rs∈E(G)

r, s/∈{u, v}

√
dGr2 + dGs2,

as the first sum in the first line has l − 1 summands, implying the required result.

5. Conclusions

The effects of vertex and edge removal from a graph are useful in calculating some
property of large graphs in terms of the same property of a smaller graph. Sometimes,
using iteration, one can manage to obtain a property of a really large graph in terms of the
same property of many other smaller graphs. Here, the calculations are made for a pendant
and non-pendant vertex, a pendant and non-pendant edge, a pendant path, a bridge, and a
bridge path in a simple graph. Using these results, Sombor indices of cyclic graphs and
tadpole graphs are obtained as an application. Finally, some Nordhaus–Gaddum type
results are given for the Sombor index.
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