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Abstract: Complex network theory involves network structure and dynamics; dynamics on networks
and interactions between networks; and dynamics developed over a network. As a typical appli-
cation of complex networks, the dynamics of disease spreading and control strategies on networks
have attracted widespread attention from researchers. We investigate the dynamics and optimal
control for an epidemic model with demographics and heterogeneous asymmetric control strategies
(immunization and quarantine) on complex networks. We derive the epidemic threshold and study
the global stability of disease-free and endemic equilibria based on different methods. The results
show that the disease-free equilibrium cannot undergo a Hopf bifurcation. We further study the
optimal control strategy for the complex system and obtain its existence and uniqueness. Numerical
simulations are conducted on scale-free networks to validate and supplement the theoretical results.
The numerical results indicate that the asymmetric control strategies regarding time and degree of
node for populations are superior to symmetric control strategies when considering control cost
and the effectiveness of controlling infectious diseases. Meanwhile, the advantages of the optimal
control strategy through comparisons with various baseline immunization and quarantine schemes
are also shown.

Keywords: complex networks; disease spreading; global stability; control strategies

MSC: 05C82

1. Introduction

The prevalence and outbreak of infectious diseases are always important issues affect-
ing the national economy and people’s livelihoods. Research on the transmission mech-
anism and dynamics of infectious diseases has attracted the attention of many scholars.
Specifically, mathematical models have been a potent tool for forecasting the trajectory of
infectious diseases and evaluating different prevention and control measures [1,2]. Through
the application of optimal control theory and qualitative assessment of mathematical mod-
els, the effective management, reduction, and potential eradication of an infectious disease
can be achieved [3–6]. Based on different mechanisms of disease transmission, Kermack
and McKendrick introduced the SIS and SIR epidemic models [7–9]. Subsequent to their
work, a variety of epidemic models have emerged to shed light on the progression of
various diseases and to offer insightful control measures.

Any research progress on epidemic transmission dynamics and control measures may
have a significant impact on the prevention and control of infectious diseases, and this topic
has attracted widespread attention in scientific research [10–12]. During the spread of infec-
tious diseases, the infected transmission mainly occurs through contact between susceptible
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and infected individuals. Therefore, quarantine, which prevents this contact, has become
a commonly employed strategy for controlling disease. In the past two decades, some
important methods [13–16] have been introduced to control outbreaks of infectious diseases
on the assumption of a uniformly mixing population, which show that the quarantine
rate might be a factor contributing to the observed sustained oscillations in some directly
transmitted viral diseases. Since Barabási and Albert [17] proposed a scale-free network
model, in which the degree distribution follows a power-law distribution, researchers
have gradually focused on the study of transmission and control strategies of infectious
diseases on complex networks and obtained a lot of useful and insightful results. The most
influential results are the SIS and SIR epidemic models established by Pastor Satoras and
Vespigani [18] through mean field theory, which indicate that the epidemic threshold of
a disease will tend to 0 when the network scale is large enough. Furthermore, there are
many results in theoretical research on disease control strategies on heterogeneous net-
works. Many researchers have introduced quarantine compartments Q into some epidemic
models (e.g., SIS model [10,19,20], SIR model [10], SIRS model [21], SEIR model [22,23],
etc.) on scale-free networks; these results all suggest that the epidemic threshold of a
disease is closely linked to the network’s structural characteristics and quarantine rate,
and the heterogeneity of networks and higher infectivity increase the risk of disease trans-
mission, while quarantine measures help to prevent infection. Therefore, constructing
a network-based transmission model can more realistically reflect the propagation laws
of infectious diseases in real contact networks and explore the coupling effects between
network structure, epidemic dynamics, and control strategies of diseases. However, those
models either ignore the demographics or assume that infectious disease control strategies
may maintain symmetry among individuals, that is, the control strategy for the nodes in
the network is uniform.

Control measures for infectious diseases may maintain symmetry in time by taking the
same measure with the same strength at different time points. This can include isolation,
social distancing, or other control measures. Such strategies can effectively reduce the scale
of infection. However, relying solely on the best uniform control measures feasible given
economic, social, or other constraints may not be sufficient to achieve the disease control
goals. An attractive alternative approach is the use of optimal control theory to employ
time-varying control within certain bounds to strike a balance between control objectives
and the associated costs. Optimal control applications in epidemic dynamics have primarily
concentrated on homogeneous contact networks [24–29]. Recently, many intriguing works
on the optimal control of epidemics on heterogeneous networks have emerged [21,30–37].
Li et al. presented a nonlinear SIQS epidemic model of networks and explored the issue
of optimal quarantine control to minimize the cost of control measures [34]. Zhang et al.
examined the optimal control of an SIQRS model that includes vaccination in a network
and studied the effects of different control strategies [36]. Yang et al. investigated the
stability and optimal control of SIS epidemic systems in directed networks [37]. However,
these contributions were restricted to an optimal control strategy for isolation and did not
compare results with other forms of heterogeneous isolation strategies.

The above works provide strong theoretical supports for the prevention of infectious
diseases through isolation measures. However, appropriate vaccination for susceptible
individuals is also crucial for preventing and controlling infection. Based on the above
considerations, we study an SIS epidemic model with heterogeneous immunization for
susceptible individuals and quarantine for infected individuals, while also considering the
demographics of individuals on heterogeneous networks. The organization of this paper
is as follows. In Section 2, we introduce an SIQS model with heterogeneous asymmetric
control strategies. Traditional infectious disease control strategies maintain the symmetry
principle that the quarantine rate of an infected node is constant across individuals. By
heterogeneous asymmetric control strategies, we mean that the quarantine and immu-
nization rates of an infected node are not constant but are related to the node degree. In
other words, the control strategy on the network is not uniform, and instead, different
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control strategies are formulated based on degree, on complex networks, and in this section,
we state our assumptions. In Section 3, we obtain the equilibria and basic reproduction
number. The main results are shown in Section 4, where the uniform persistence and global
stability of the disease-free and endemic equilibria of a system are analyzed by different
mathematical methods. The optimal time-varying quarantine control for the model is con-
sidered in Section 5. In Section 6, some numerical simulations are conducted to illustrate
and supplement the analysis results. Finally, a brief conclusion is given in Section 7.

2. Description and Formation of Epidemic Models

Guided by the symmetry of the contact mode on real contact networks when diseases
spread, we consider a population situated on an undirected complex network N. Every
node has three optional states: the susceptible state (S), quarantined state (Q), and infected
state (I) [20]. We divided the population into n groups. Let Sk(t), Ik(t), and Qk(t) denote
the densities of susceptible, infected, and quarantine nodes (individuals) with connectivity
(degree) k at time t, respectively. The mechanism of our model mainly involves three factors.
A schematic diagram is shown in Figure 1, and the meanings of the parameters are listed in
Table 1. These factors are as follows:

(1) Birth and death: Each vacant node i in the network randomly selects a neighbor. If
the neighbor is a vacant node, the state of i remains unchanged. If the neighbor is
a nonvacant node, the vacant node i will be activated to generate a new susceptible
node at the birth rate b. Each nonvacant node becomes a vacant node at a natural
death rate d per unit time. We assume that each nonvacant node has the same birth
contact ability A (where A = 1) due to physiological constraints.

(2) Immunization and quarantine (I → Q): At each time step, susceptible individuals
with degree k are immunized at the immune rate δk. The infected nodes with degree
k will be quarantined at rate βk. The quarantined individuals will recover to a
susceptible node at rate η. Nodes with the same degree have identical quarantine and
immunization strategies, while those with different degrees have different strategies.

(3) SIS epidemic framework: Infection S → I: At the initial moment, some nodes are
randomly selected as infected nodes. At each time step, the possibility that each
infected node i will connect to its neighboring nodes is φ(ki)

ki
, where φ(k) represents

the infectivity of infected nodes with degree k, and φ(k) = k [38–40], φ(k) = A [41],
φ(k) = km [42], φ(k) = akm

1+bkm [43]. If an infected node i interacts with a susceptible
node j along a connecting edge, node j has a possibility of being infected by i at a
transmission rate λij. For a node with degree k, the overall transmission rate is λ(k).

Recovery I → S: Each infected node reverts to being susceptible at recovery rate γ.

Figure 1. The block diagram of the SIQS model. Here S, I, and Q represent susceptible, infected, and
quarantined states.



Symmetry 2024, 16, 166 4 of 22

Table 1. Symbols employed in models.

Symbols Description

p(k) Proportion of nodes with degree k.
⟨k⟩ Average degree (⟨k⟩ = ∑k kp(k)).
n Maximum degree.
b Birth rate.
d Natural death rate.

Ψk(t) Fertile contact probability between a node with degree k and its neighbors.
λ(k) Transmission rate of infected nodes with degree k.

δk Vaccination rate of susceptible nodes with degree k.
βk Quarantine rate of infected nodes with degree k.
γ Recovery rate of infected nodes.
η Recovery rate of quarantined nodes.

According to the above assumptions, the model is as follows:
dSk(t)

dt =bk[1 − Nk(t)]Ψk − dSk(t)− λ(k)(1 − δk)Sk(t)Θ(t) + γIk(t) + ηQk(t),
dIk(t)

dt =λ(k)(1 − δk)Sk(t)Θ(t)− (βk + γ + d)Ik(t),
dQk(t)

dt =βk Ik(t)− (η + d)Qk(t).

(1)

with initial conditions 0 ≤ Sk(0), Ik(0), Qk(0) ≤ 1, k = 1, 2, . . ., n, where Θ(t) =

∑n
i=1 p(i|k) φ(i)

i Ii(t) stands for the probability that a link which originates from a node
with degree k points to an infected node. Ψk(t) = ∑n

i=1 p(i|k) A
i Ni(t) denotes the prob-

ability that a node of degree k has a reproductive contact with an individual neighbor.
The 1

i denotes the possibility of selecting a neighbor with degree i of an empty node to
activate it. On uncorrelated networks, the likelihood is independent of the connectedness
of the originating node of the link. Thus, we note Θ(t) = 1

⟨k⟩ ∑n
i=1 φ(i)p(i)Ii(t), Ψk(t) =

1
⟨k⟩ ∑n

i=1 p(i)Ni(t). The average density of susceptible, infected, and quarantined nodes is
S(t) = ∑n

k=1 Sk(t)p(k), I(t) = ∑n
k=1 Ik(t)p(k), and Q(t) = ∑n

k=1 Qk(t)p(k).
Let Nk(t) denote the density of individuals of degree k at time t, and Nk = Sk + Ik +Qk.

We develop the equation for Nk(t) as

dNk(t)
dt

= b(1 − Nk)Ψk(t)− dNk(t). (2)

According to Ref. [44], we obtain limt→∞ Nk(t) = 0 when b ≤ d, and no other
dynamic patterns are present; when b > d, limt→+∞ Nk(t) = Nk(t)∗, where N∗

k = bkΨ∗
d+bkΨ∗ ,

Ψ∗ = 1
⟨k⟩ ∑n

i=1
ip(i)bΨ∗

d+biΨ∗ .
Given that the original system and the limiting system exhibit identical long-term dynamic

characteristics, in order to better analyze the stability of the model, we consider the limit system of
(1) under the condition of b > d and N∗

k = Sk(t) + Ik(t) + Qk(t) based on the analysis of Nk(t).
The corresponding limiting systems of model (1) are formulated as follows:

dSk(t)
dt = bk[1 − N∗

k ]Ψ
∗ − dSk(t)− λ(k)(1 − δk)Sk(t)Θ(t) + γIk(t) + ηQk(t),

dIk(t)
dt = λ(k)(1 − δk)Sk(t)Θ(t)− (βk + γ + d)Ik(t),

dQk(t)
dt = βk Ik(t)− (η + d)Qk(t).

(3)

with initial conditions 0 ≤ Sk(0), Ik(0), Qk(0) ≤ N∗
k < 1, k = 1, 2, . . . , n.

The following proposition shows that the state space of the solutions of system (3) is
positively invariant.

Proposition 1. If (Sk(t), Ik(t), Qk(t))k is a solution to system (3) that meets the initial conditions,
then 0 ≤ Sk(t) + Ik(t) + Qk(t) ≤ N∗

k < 1, and k ∈ Nn for any t ≥ 0, i.e., Γ is positively
invariant.
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Proof. ∀ x0 ∈ Γ. Thus, ∀ t > 0, and so we have Nk0 ≥ 0 , Ψ(0) ≥ 0.

dΨ(t)
dt

= (b − d)Ψ(t)− bΨ(t)
⟨k⟩ ∑

i
ip(i)Ni(t).

We find that Ψ(t) = Ψ(0)eb−d− b
⟨k⟩ Σi ip(i)Ni(t) ≥ 0. By Nk(t) = Sk(t) + Ik(t) + Qk(t)

and Equation (2), the evolution of Nk(t) is derived by the following equation:

dNk(t)
dt

= bk[1 − Nk(t)]Ψ − dNk(t) ≥ −[bkΨ + d]Nk(t).

We have Nk(t) ≥ Nk(0)e−(bkΨ+d)t ≥ 0. Then, from system (2), we also acquire

d(1 − Nk(t))
dt

= −(bkΨ + d)[1 − Nk(t)] + d.

Obviously, Nk(t) < 1, and 0 ≤ Sk(t) + Ik(t) + Qk(t) = Nk(t) < 1.
Then, we verify Ik ≥ 0 for any k = 1, 2, . . . , n. If not, because Ik(0) ≥ 0, there exists a

j ∈ {1, 2, . . . , n} and t0 ≥ 0, satisfying

t0 = inf{t|Ij(t) = 0,
dIj(t)

dt
< 0}.

It is evident that Ij(t0) = 0, I′j(t0) < 0 for any t ∈ [0, t0], Ij(t) ≥ 0; therefore, we have

dIj(t0)

dt
= λ(j)(1 − δj)Sj(t0)Θ(t0)− (β j + γ + d)Ij(t0) = λ(j)(1 − δj)Sj(t0)Θ(t0) < 0.

Because Θ(t0) =
1
⟨k⟩ ∑n

i=1 φ(i)p(i)Ii(t0) ≥ 0, we obtain Sj(t0) < 0. On the other hand,
for any t ∈ [0, t0], Qj(0) ≥ 0, we attain

dQj(t)
dt

= β j Ij(t)− (η + d)Qj(t) ≥ −(η + d)Qj(t).

That is to say, Qj(t) ≥ Qj(0)e−(η+d)t ≥ 0. When t ∈ [0, t0],

dSj(t)
dt

= bj[1 − Nj(t)]Ψj − dSj(t)− λ(j)(1 − δj)Sj(t)Θ(t) + γIj(t) + ηQj(t)

≥ −dSj(t)− λ(j)(1 − δj)Sj(t)Θ(t).

Then, we acquire Sj(t0) ≥ Sj(0)e
−
∫ t0

0 d+λj(1−δj)Θ(t)dτ ≥ 0. It is contradictory; hence,
Ik(t) ≥ 0, for any k and t ≥ 0. We also can obtain Sk(t), Qk(t) ≥ 0, and Sk(t), Ik(t),
Qk(t) < 1. That completes the proof.

3. Equilibria and Basic Reproduction Number

In this section, the basic reproduction number R0 is determined, which is the average
number of new infections generated by a single newly infected individual throughout the
entire infection period [19]. Considering the equivalent system,{

dIk(t)
dt = λ(k)(1 − δk)(N∗

k − Ik(t)− Qk(t))Θ(t)− (βk + γ + d)Ik(t),
dQk(t)

dt = βk Ik(t)− (η + d)Qk(t).
(4)

Let X denote the space of functions and x = (I1(t), Q1(t), . . . , In(t), Qn(t)) ∈ X denote
the state space for system (4).

Γ = {x ∈ X : 0 ≤ Ik(t), Qk(t) < 1, k = 1, 2, . . . , n}. (5)
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Proposition 1 can show that Γ is positively invariant for system (4). All viable steady
states of system (4) satisfy the following equation:{

λ(k)(1 − δk)(Nk(t)− Ik(t)− Qk(t))Θ(t)− (βk + γ + d)Ik(t) = 0,
βk Ik(t)− (η + d)Qk(t) = 0.

(6)

In particular, there exists a disease-free equilibrium of (4) E0 = (0, 0, . . . , 0)), and the
positive equilibrium E∗ = (I∗k , Q∗

k )k, where E∗ satisfies

Q∗
k =

βk
η

I∗k , Θ∗ =
1
k

n

∑
i=1

φ(i)p(i)I∗i , I∗k =
λ(k)(1 − δk)N∗

k Θ∗

λ(k)(1 − δk)(1 +
βk
η )Θ∗ + βk + γ + d

.

The basic reproduction number R0 can be determined according to the following
theorem:

Theorem 1. Define the basic reproduction number

R0 =
1
⟨k⟩

n

∑
i=1

φ(i)p(i)λ(i)(1 − δi)N∗
i

βi + γ + d
.

There always exists a disease-free equilibrium E0. If and only if R0 > 1, the system (4) has
unique positive equilibrium point E∗, which satisfies

Q∗
k =

βk
η

I∗k , Θ∗ =
1
⟨k⟩

n

∑
i=1

φ(i)p(i)I∗i , I∗k =
λ(k)(1 − δk)N∗

k Θ∗

λ(k)(1 − δk)(1 +
βk
η )Θ∗ + βk + γ + d

. (7)

Proof. Equation (6) implies that

Ik =
λ(k)(1 − δk)NkΘ

λ(k)(1 − δk)(1 +
βk
η )Θ + βk + γ + d

, (8)

Substituting (8) into Θ, we obtain

Θ =
1
⟨k⟩

n

∑
i=1

φ(i)p(i)λ(i)(1 − δi)NiΘ

λ(i)(1 − δi)(1 +
βi
η )Θ + βi + γ + d

≜ Θ f (Θ), (9)

where

f (Θ) =
1
⟨k⟩

n

∑
i=1

φ(i)p(i)λ(i)(1 − δi)Ni

λ(i)(1 − δi)(1 +
βi
η )Θ + βi + γ + d

. (10)

Because f ′(Θ) < 0 and lim
Θ→+∞

f (Θ) = 0, it is clear that Equation (9) has a positive

solution if and only if f (0) = 1
⟨k⟩ ∑n

i=1
φ(i)p(i)λ(i)(1−δi)Ni

βi+γ+d > 1. That is to say, when R0 > 1,
Equation (6) has a unique positive solution Θ∗, namely, a unique positive equilibrium point
E∗ of system (4) exists as described by Equation (7) if and only if R0 > 1. The proof is
completed.

Remark 1. Without losing generality, we know that there always exists constant βmin, βmax, δmin,
δmax, Nmin ∈ (0, 1) that satisfy

βmin ≤ βk ≤ βmax, δmin ≤ δk ≤ δmax, Nmin ≤ N∗
k < 1. Then, let φ(k) = k, λ(k) = λk,

we can obtain R0 ≥ λ ⟨k2⟩
⟨k⟩

(1−δmax)Nmin
βmax+γ+d . Based on [18], we can find when the network size is large

enough and the second-order moment of degree ⟨k2⟩ → ∞; then, R0 can always be guaranteed to
be greater than 1 and the disease will persist. Therefore, the topology of the network, such as the
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average degree ⟨k⟩ and the second moment of degree ⟨k2⟩, has an important impact on the epidemic
threshold of infectious diseases.

4. Stability Analysis for SIQS Model
4.1. Stability Analysis of Disease-Free Equilibrium

Firstly, it is proved that the disease-free equilibrium (DFE) E0 is locally asymptotically
stable by the same method used in [45] by the following theorem.

Theorem 2. If R0 < 1, then the DFE of system (4) is locally asymptotically stable and unstable if R0 > 1.

Proof. The Jacobian matrix of system (4) at E0 is

A =

(
A11 A12
A21 A22

)
,

where A12 is the zero matrix of order n, A21 = βkEn, A22 = −(η + d)En, En is the identity
matrix, and

A11 =


ξ1 φ1 p1 − (γ + β1) ξ1 φ2 p2 . . . ξ1 φn pn

ξ2 φ1 p1 ξ2 φ2 p2 − (γ + β2) . . . ξ2 φn pn
...

... . . .
...

ξn φ1 p1 ξn φ2 p2 . . . ξn φn pn − (γ + βn)

,

where ξi =
λ(i)(1−δi)N∗

i
⟨k⟩ , φi pi = φ(i)p(i). Let y = {y1, y2, . . . , yn, yn+1, . . . , y2n} ∈ Γ.

Subsequently, the system (4) can be reformulated in a vector format as

dy
dt

= Ay + N(y). (11)

Let N(y) represent a column vector and N(y) ≤ 0,

N(y) = −



λ(1)(1 − δ1)(I1 + Q1)Θ
λ(2)(1 − δ2)(I2 + Q2)Θ

...
λ(n)(1 − δn)(In + Qn)Θ

0
0
...
0


.

The eigenvalues of matrix A are determined by |ρEn − A11||ρEn − A22| = 0. It is ob-
vious that the characteristic equation has n multiple roots −(η + d) from |ρEn − A22| = 0.
Other eigenvalues of matrix A are determined by |ρEn − A11| = 0. Through some elemen-
tary transformations, |ρEn − A11| = 0 can be changed to∣∣∣∣∣∣∣∣∣∣

ρ − ξ1 φ1 p1 + (β1 + γ + d) −ξ1 φ2 p2 . . . −ξ1 φn pn
ξ1
ξ2
(ρ + β1 + γ + d) ρ + (β2 + γ + d) . . . 0

...
... . . .

...
ξ1
ξn
(ρ + β1 + γ + d) 0 . . . ρ + (βn + γ + d)

∣∣∣∣∣∣∣∣∣∣
= 0.
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Case 1 If ρ ̸= −(βi + γ + d), then we obtain

(ρ + β1 + γ + d)

[
1 − 1

⟨k⟩
n

∑
i=1

λ(i)(1 − δi)N∗
i φ(i)p(i)

ρ + βi + γ + d

]
= 0. (12)

Note that G(ρ) = 1
⟨k⟩ ∑n

i=1
λ(i)(1−δi)N∗

i φ(i)p(i)
ρ+βi+γ+d . Obviously, the solutions of Equation (12)

are determined by G(ρ) = 1. Since G′(ρ) < 0, G(0) = R0 , lim
ρ→+∞

G(ρ) = 0,

limρ→−(βi+γ+d) G(ρ) = ∞; hence, when R0 < 1, the solutions of equation G(ρ) = 1
are negative. Therefore, Equation (12) only has negative solutions.

Case 2 If ∏n
i=2(ρ + βi + γ + d) = 0, since the sum of all eigenvalues is equal to the

trace of the matrix, when R0 < 1, ρ1 = ξ1 φ(i)p(i) − (β1 + γ + d) < 0, and
ρi = −(βi + γ + d) < 0, i = 2, . . . , n.

Furthermore, because N(y) ≤ 0, we have dy
dt ≤ Ay. Since all the eigenvalues of matrix

A are negative, the equilibrium point E0 of system (4) is locally asymptotically stable when
R0 < 1.

Then, we get the global asymptotic stability of E0.

Theorem 3. When R0 < 1, the disease-free equilibrium E0 of system (4) is global asymptotic
stability.

Proof. From system (3), we obtain

dΘ(t)
dt

=
1
⟨k⟩

n

∑
k=1

φ(k)p(k)λ(k)(1 − δk)(N∗
k − Ik(t)− Qk(t))Θ(t)− (βk + γ + d)Θ(t)

≤ 1
⟨k⟩

n

∑
k=1

φ(k)p(k)λ(k)(1 − δk)N∗
k Θ(t)− (βk + γ + d)Θ(t)

= (βk + γ + d)

(
1
⟨k⟩

n

∑
k=1

φ(k)p(k)λ(k)(1 − δk)N∗
k

βk + γ + d
− 1

)
Θ(t)

= (βk + γ + d)(R0 − 1)Θ(t).

From Proposition 1, we obtain Θ(t) ≤ Θ(0)e(βk+γ+d)(R0−1)t, while Θ(t) ≥ 0. There-
fore, if R0 < 1, we can acquire lim

t→+∞
Θ(t) = 0, and lim

t→+∞
Ik(t) = 0. From the second

equation of system (4), we obtain lim
t→+∞

Qk(t) = 0. This demonstrates that E0 of system (4)

is globally stable when R0 < 1. The proof is finished.

4.2. Global Stability of Endemic Equilibrium

In this section, we seek to study the conditions for the uniform persistence of disease,
which is important in proving the global stability of endemic equilibrium E∗. We obtain the
uniform persistence based on Theorem 4.2 of Ref. [46]. The result of uniform persistence is
shown in the following Lemma.

Lemma 1. When R0 > 1, the system (4) is permanent, i.e., there exists ε > 0, such that

lim
t→+∞

inf{Ik(t), Qk(t)}n
k=1 ≥ ε,

where (Ik(t), Qk(t)) is any solution of system (4) satisfying (5).

Proof. Based on Theorem 4.2 of [46], we need to verify that all hypotheses for system (4)
are satisfied. By setting C = Γ, Condition (1) is fulfilled. Condition (2) is evidently met.
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For Condition (3), notice that AT
11 is irreducible and aij ≥ 0 whenever i ̸= j; hence, there

exists a positive eigenvector h̃ = (h1, h2, ..., hn) of AT
11, and its corresponding eigenvalue

is s(A11)(s(A) = Reiλi) when R0 > 1, s(A11) > 0. Let hn+1 = hn+2 = . . . = h2n = 0; then,
we note h = (h1, h2, . . . , h2n), and it satisfies ATh = λh. Let r = min1≤i≤n(hi); for any

y ∈ Γ, one has h · y ≥ r
n
∑

i=1
yi ≥ r

√
n
∑

i=1
y2

i . Thus, Condition (3) is verified. Since every part

of N(y) is negative and h ≥ 0, Condition (4) is satisfied. To confirm Condition (5), we set
G = {y ∈ Γ|h · N(y) = 0}. If y ∈ G, then

n

∑
i=1

hi(yi + yn+i)λ(i)(1 − δi)Θ = 0.

Given that every term in the above sum is non-negative, one has yi = 0 for all i = 1, 2, . . . n.
Therefore, the only invariant set corresponding to (11) that is contained within G is y = 0.
Condition (5) is satisfied. All conditions are satisfied, and the proof of uniform persistence is
completed.

From Lemma 1, it is clear that if R0 > 1, the infection will always exist. The following
theorem shows the global stability of endemic equilibrium.

Theorem 4. Suppose that (Ik(t), Qk(t)) is a solution of system (4), satisfying the initial condition.
If R0 > 1, then lim

t→+∞
Ik(t) = I∗k , lim

t→+∞
Qk(t) = Q∗

k , that is to say, the endemic equilibrium E∗ is

globally attractive.

Proof. Firstly, from Lemma 1 and for any k ∈ {1, 2, . . . , n}, we find that there exists
0 < ε ≪ 1, such that, for t that is sufficiently large, Ik ≥ ε and Qk ≥ ε are satisfied. Hence,
when t > 0, we obtain ε⟨φ(k)⟩

⟨k⟩ ≤ Θ(t) ≤ ⟨φ(k)⟩
⟨k⟩ . Then, from system (4), we obtain

dIk(t)
dt

≤ λ(k)
⟨φ(k)⟩
⟨k⟩ (1 − δk)(N∗

k − Ik(t))− (βk + γ + d)Ik(t), t > 0.

For any given constant 0 < ε1 < min{ε,
λ(k)(1−δk)

⟨φ(k)⟩
⟨k⟩ (1−N∗

k )+βk+γ+d

λ(k)(1−δk)
⟨φ(k)⟩
⟨k⟩ +βk+γ+d

}, there exists a

t1 > 0, when t > t1, such that

Ik(t) ≤ A1
k =

λ(k)(1 − δk)
⟨φ(k)⟩
⟨k⟩ N∗

k

λ(k)(1 − δk)
⟨φ(k)⟩
⟨k⟩ + βk + γ + d

+ ε1, t > t1.

Then, from the second equation of system (4), we have

dQk(t)
dt

= βk(N∗
k − Sk(t)−Qk(t))− (η + d)Qk(t) ≤ βk(N∗

k −Qk(t))− (η + d)Qk(t), t > 0.

Hence, for any given constant 0 < ε2 < min{ 1
2 , ε1, η+d+βk−βk N∗

k
η+βk

}, there exists a t2 > t1,
such that

Qk(t) ≤ B1
k =

βk N∗
k

η + d + βk
, t > t2.

On the other hand, from the first equation of system (4), it can be inferred that

dIk(t)
dt

≥ λ(k)
ε⟨φ(k)⟩
⟨k⟩ (1 − δk)(N∗

k − Ik(t)− B1
k)− (βk + γ + d)Ik(t).
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Hence, for any given constant 0 < ε3 < min{ 1
3 , ε2,

λ(k)(1−δk)
ε⟨φ(k)⟩
⟨k⟩ (N∗

k −B1
k )

λ(k)(1−δk)
ε⟨φ(k)⟩
⟨k⟩ +βk+γ+d

}, there

exists a t3 > t2, such that,

Ik(t) ≥ a1
k =

λ(k)(1 − δk)
ε⟨φ(k)⟩
⟨k⟩ (N∗

k − B1
k)

λ(k)(1 − δk)
ε⟨φ(k)⟩
⟨k⟩ + βk + γ + d

− ε3, t > t3.

Next, following from the second equation of system (4), we also obtain

dQk(t)
dt

= βk Ik(t)− (η + d)Qk(t) ≥ βka1
k − (η + d)Qk(t).

Similarly, for any given constant 0 < ε4 < min{ 1
4 , ε3, βka1

k
η+d }, there exists a t4 > t3, such

that

Qk(t) ≥ b1
k =

βka1
k

η + d
− ε4, t > t4.

Since εi is a small constant, it follows that

0 < a1
k ≤ Ik(t) ≤ A1

k < 1, 0 < b1
k ≤ Qk(t) ≤ B1

k < 1, t > t4.

and we also obtain 0 < 1
⟨k⟩ ∑n

i=1 φ(i)p(i)a1
i ≤ Θ(t) ≤ 1

⟨k⟩ ∑n
i=1 φ(i)p(i)A1

i < ⟨φ(k)⟩
⟨k⟩ , t > t4.

Again, by system (4), one has

dIk(t)
dt

≤ λ(k)(1 − δk)(N∗
k − Ik(t)− b1

k)
1
⟨k⟩

n

∑
i=1

φ(i)p(i)A1
i − (βk + γ + d)Ik(t), t > t4.

Hence, 0 < ε5 < min{ 1
5 , ε4,

(1−N∗
k +b1

k )λ(k)(1−δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)A1
i +βk+γ+d

λ(k)(1−δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)A1
i +βk+γ+d

}, there exists a

t5 > t4, such that,

Ik(t) ≤ A2
k =

(N∗
k − b1

k)λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)A1
i

λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)A1
i + βk + γ + d

+ ε5, t > t5.

Thus,

dQk(t)
dt

= βk Ik(t)− (η + d)Qk(t) ≤ βk A2
k − (η + d)Qk(t), t > t5

and for any given constant 0 < ε6 < min{ 1
6 , ε5, η+d−βk A2

k
η+d }, there exists a t6 > t5, such that,

Qk(t) ≤ B1
k = min{B1

k ,
βk A2

k
η + d

+ ε6}, t > t6.

Consequently, one obtains that

dIk(t)
dt

≥ λ(k)(1 − δk)(N∗
k − Ik(t)− B2

k)
1
⟨k⟩

n

∑
i=1

φ(i)p(i)a1
i − (βk + γ + d)Ik(t), t > t6.

Hence, for any given constant 0 < ε7 < min{ 1
7 , ε6,

(N∗
k −B2

k )λ(k)(1−δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)a1
i

λ(k)(1−δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)a1
i +βk+γ+d

},

there exists a t7 > t6, such that

Ik(t) ≥ a2
k =

(N∗
k − B2

k)λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)a1
i

λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)a1
i + βk + γ + d

− ε7, t > t7.
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Again, one has

dQk(t)
dt

= βk Ik(t)− (η + d)Qk(t) ≥ βka2
k − (η + d)Qk(t), t > t7.

For any given constant 0 < ε8 < min{ 1
8 , ε7, βka2

k
η+d }, there exists a t8 > t7, such that

Qk(t) ≥ b2
k = max{b1

k ,
βka2

k
η + d

− ε8}, t > t8.

It is clear that

0 < a1
k < a2

k ≤ Ik(t) ≤ A2
k < A1

k < 1, 0 < b1
k < b2

k ≤ Qk(t) ≤ B2
k < B1

k < 1, t > t8.

Similarly, the calculation’s step m can be executed, resulting in four sequences. {Am
k },

{Bm
k }, {am

k }, {bm
k } are obtained as follows:

Ik(t) ≤ Am
k =

(N∗
k − bm−1

k )λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)Am−1
i

λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)Am−1
i + (βk + γ + d)

+ ε4m−3, t > t4m−3,

Qk(t) ≤ Bm
k = min{Bm−1

k ,
βk Am

i
η + d

+ ε4m−2}, t > t4m−2,

Ik(t) ≥ am
k =

(N∗
k − Bm

k )λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)am−1
i

λ(k)(1 − δk)
1
⟨k⟩ ∑n

i=1 φ(i)p(i)am−1
i + (βk + γ + d)

− ε4m−1, t > t4m−1,

Qk(t) ≥ bm
k = max{bm−1

k ,
βkam

k
η + d

− ε4m}, t > t4m.

It is clear that

0 < am
k ≤ Ik(t) ≤ Am

k < 1, 0 < bm
k ≤ Qk(t) ≤ Bm

k < 1, t > t4m. (13)

We find that {am
k }, {bm

k } are monotone increasing sequences and {Am
k }, {Bm

k } are
strictly monotone decreasing sequences. It is clear that

Bm
k =

βk Am
k

η + d
+ ε4m−2, bm

k =
βkam

k
η + d

− ε4m. (14)

Since all are bounded monotonic sequences, the sequential limits exist. Let

lim
t→+∞

A(m)
k (t) = Ak, lim

t→+∞
B(m)

k (t) = Bk, lim
t→+∞

a(m)
k (t) = ak, lim

t→+∞
b(m)

k (t) = bk. (15)

Since {εm} satisfies that 0 < εm < 1
m , one has εm → 0 as m → ∞. Therefore, from (14),

as m → ∞, we obtain

Ak =
(N∗

k − bk)λ(k)(1 − δk)A
λ(k)(1 − δk)A + (βk + γ + d)

, Bk =
βk Ak
η + d

,

ak =
(N∗

k − Bk)λ(k)(1 − δk)a
λ(k)(1 − δk)a + (βk + γ + d)

, bk =
βkak
η + d

.
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where A = 1
⟨k⟩ ∑n

i=1 φ(i)p(i)Ai, a = 1
⟨k⟩ ∑n

i=1 φ(i)p(i)ai. Then, we obtain

Ak =
N∗

k ςk A(η + d)[aςk(η + d − βk) + (η + d)(βk + γ + d)]
Hk

,

ak =
N∗

k ςka(η + d)[Aςk(η + d − βk) + (η + d)(βk + γ + d)]
Hk

.
(16)

where ςk = λ(k)(1− δk), Hk = (η + d)2(ςk A+(βk +γ+ d))(ςka+(βk +γ+ d))− ς2
kβ2

k Aa.
For any k, if η + d = βk, it is clear that A = a. If η + d ̸= βk, substituting (16) into A,
we obtain

A =
1
⟨k⟩

n

∑
i=1

φ(i)p(i)
N∗

i ςi A(η + d)[aςi(η + d − βi) + (η + d)(βi + γ + d)]
Hi

,

a =
1
⟨k⟩

n

∑
i=1

φ(i)p(i)
N∗

i ςia(η + d)[Aςi(η + d − βi) + (η + d)(βi + γ + d)]
Hi

.
(17)

We obtain 1
⟨k⟩ ∑n

i=1 φ(i)p(i) ςi N∗
i

Hi

[
(η + d)2(βi + γ + d)(A − a)

]
= 0. Therefore, A = a.

Above all, A = a is equivalent to Ai = ai for any i = 1, 2, . . . , n. Then, from (13) and (14), it
follows that

I∗k = lim
t→+∞

Ik(t) = Ak = ak =
(N∗

k − bk)λ(k)(1 − δk)Θ∗

λ(k)(1 − δk)Θ∗ + (βk + γ + d)
,

Q∗
k = lim

t→+∞
Qk(t) = Bk = bk =

βk I∗k
η + d

.

which is consistent with Theorem 2. This completes the proof.

5. The Optimal Control for the SIQS Model

In this section, we study the optimal control for system (1). To meet the control
objective and minimize control expenses at the same time, a viable approach to targeting
epidemic outbreaks is by implementing time-varying control using optimal control theory
for various infectious diseases, for example, the results in Culshaw et al. [47], Chen et al. [48],
and Abboubakar et al. [49]. The aim of this section is to identify the optimal quarantine
measures for controlling the transmission of diseases.

First, we introduce a time-varying control rate uk(t) representing the percentage of
infected individuals with degree k being quarantined. Hence, system (3) can be written as

dSk(t)
dt = bk[1 − N∗

k ]Ψ
∗ − dSk(t)− λ(k)(1 − δk)Sk(t)Θ(t) + γIk(t) + ηQk(t),

dIk(t)
dt = λ(k)(1 − δk)Sk(t)Θ(t)− (uk(t) + γ + d)Ik(t),

dQk(t)
dt = uk(t)Ik(t)− (η + d)Qk(t).

(18)

We note the quarantine functions u(t) = (u1(t), u2(t), ...un(t)) are bounded, Lebesgue
integrable functions. Since our aim is both to reduce the scale of infection and to control its
strength, we consider the following objective functional J(uk) associated with the model
in the control set Ω = {(u1(t), u2(t), ...un(t)) | 0 ≤ ui ≤ 0.9}. Bk denotes a positive weight
parameter. The objective (cost) functional is given by

J(uk) =
∫ T

0

n

∑
k=1

[Ik(t) +
1
2

Bku2
k(t)]dt. (19)
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The Lagrange function for optimal control problems (18) and (19) is defined as

L =
n

∑
i=1

[Ii +
Bi
2

u2
i (t)].

In order to solve the optimal control problem, the existence of an optimal control must
be assured. We applied Corollary 4.1 in Ref. [50] to prove the existence of the solution,
which is shown in the proof of Theorem 5.

Theorem 5. For the objective functional J(uk) associated with model (18) defined in Ω, there exists
an optimal quarantine strategy µ∗ = (µ1, . . . , µn), minimizing J(u).

Proof. (i) Clearly, for any 0 ≤ t ≤ T, the Ω is a nonempty set of Lebesgue integrable
functions. (ii) It is obvious that the solutions are bounded, ensuring the boundedness and
convexity of the admissible control set. (iii) Model (18) can be written as

dΦ(t)
dt

= F(t, Φ, uk(t)) (20)

where F(t, Φ, uk) = (F1, F2, . . . , Fn) is the right side of system (18), and Φ = (Φ1, Φ2, . . . , Φn)T,
Φk = (Sk(t), Ik(t), Qk(t))T. It follows that

|F(t, Φ1, uk(t))− F(t, Φ2, uk(t))| ≤ ∑
i
|Fi(t, Φ1, ui(t))− Fi(t, Φ2, ui(t))|.

For any k ∈ Nn, since |Θ1(t) − Θ2(t)| = 1
⟨k⟩ ∑n

i=1 φ(i)p(i)|Ii1(t) − Ii2(t)| and the
boundedness of the solution, there exists a constant M1 such that |Θ1(t) − Θ2(t)| ≤
M1|Ik1(t)− Ik2(t)|. Then, there exists a positive constant M to guarantee the inequality
|Fk(Φ1)− Fk(Φ2)| ≤ M|Φk1 − Φk2| is satisfied. (iv) Letting 0 < ξ < 1 and mk(t), vk(t) ∈ Ω,
we obtain L(t, Φ, (1− ξ)m(t)+ ξv(t))− (1− ξ)L(t, Φ, m(t))− ξL(t, Φ, v(t)) = ∑n

i=1
Bi
2 ξ(ξ −

1)(vi − mi)
2 < 0. (v) There exist c1 > 0, ρ > 1, c2 > 0 such that L(t, Φ, uk(t)) =

∑n
i=1[Ii +

Bi
2 u2

i (t)] ≥ ∑n
i=1

Bi
2 u2

i (t) ≥
Bmin

2 ∑n
i=1 u2

i (t) ≥ C1|u|2 − C2.
By utilizing the results of Ref. [50], we find that there exists an optimal control

µ∗ = (µ1, · · · , µn), minimizing J(µ). The proof is completed.

The solution to the optimal control problem is determined through Pontryagin’s
minimum principle [50]. We note the Hamiltonian H as

H =
n

∑
k=1

[Ik(t) +
1
2

Bku2
k(t)]dt +

3

∑
i=1

n

∑
k=1

ωkiFki(t, Φ, uk(t)). (21)

If (Φ∗, u∗k) is an optimal solution of the optimal control problem, then there exists a non-
trivial vector function ωk = (ωk1, ωk2, ωk3), k = 1, 2, . . . , n, satisfying the following equalities:

dΦ(t)
dt =

∂H(t,Φ∗(t),u∗
k ,ω(t))

∂ω ,
∂H(t,Φ∗(t),u∗

k ,ω(t))
∂uk(t)

= 0,
dω(t)

dt = − ∂H(t,Φ∗(t),u∗
k ,ω(t))

∂Φ .

(22)

It follows from the derivation above that
ω∗ = 0, ∂H

∂uk(t)
< 0,

0 < ω∗ < 0.9, ∂H
∂uk(t)

= 0,

ω∗ = 0.9, ∂H
∂uk(t)

> 0.
(23)
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Now the necessary conditions are implemented on the Hamiltonian H in (21) and we
obtain the following results.

Theorem 6. For a given optimal control solution µ(t) and the corresponding system solution
S∗

k (t), Q∗
k (t), I∗k (t), there is an adjacency function ωk1(t), ωk2(t), ωk3(t) that satisfies the following

conditions: 

dωk1(t)
dt

= λ(k)(1 − δk)Θ
∗(t)[ωk1(t)− ωk2(t)] + dωk1(t)− 1,

dωk2(t)
dt

=
λ(k)(1 − δk)S∗

k (t)φ(k)p(k)
⟨k⟩ (ωk1(t)− ωk2(t))− γωk1(t)

+ (uk + γ + d)ωk2(t)− ukωk3(t)− 1,

dωk3(t)
dt

= −ηωk1(t) + (η + d)ωk3(t).

(24)

with conditions ωk1(T) = ωk2(T) = ωk3(T) = 0. Furthermore, the optimal control u∗
k =(u∗

1, u∗
2, ..., u∗

n)
is given by

u∗
k =min{max[0,

I∗k (t)(ωk2 − ωk3)

Bk
], 0.9} (25)

Proof. We apply the necessary conditions in the Pontryagin maximum principle with Hamilto-
nian function (21) to derive the adjoint variables determined by the following equations.

dωk1(t)
dt

= λ(k)(1 − δk)Θ
∗(t)[ωk1(t)− ωk2(t)] + dωk1(t)− 1,

dωk2(t)
dt

=
λ(k)(1 − δk)S∗

k (t)φ(k)p(k)
⟨k⟩ (ωk1(t)− ωk2(t))− γωk1(t)

+(uk + γ + d)ωk2(t)− ukωk3(t)− 1,
dωk3(t)

dt
= −ηωk1(t) + (η + d)ωk3(t).

By the optimal conditions, we have

∂H
∂uk(t)

= Bku∗
k − ωk2 I∗k + ωk3 I∗k = 0.

It follows that µ∗
k =

(ωk2−ωk3)I∗k
Bk

. Using the property of the control space, we obtain
ω∗ = 0, (ωk2−ωk3)I∗k

Bk
< 0,

0 < ω∗ < 0.9, (ωk2−ωk3)I∗k
Bk

= 0,

ω∗ = 0.9, (ωk2−ωk3)I∗k
Bk

> 0.

Then, we have the optimal control u∗
k in compact notation,

u∗
k = min{max[0,

(ωk2 − ωk3)I∗k
Bk

], 0.9}

That completes the proof.

6. Simulations

In this section, we conduct some numerical simulations to validate and supplement
our theoretical results and to study the impact of the parameters on the dynamics of
disease in order to find better control strategies. We first verify and supplement the
stability results of system (1) by applying the Ode45 function in Matlab to numerically
solve differential equations. It is based on the Runge Kutta method, which can efficiently
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solve ordinary differential equations and rigid differential equations. Next, we depict
the numerical results of the optimal control problem by a combination of forward and
backward difference approximation in Matlab to solve the optimal control problem. The
numerical simulations include three parts. The first part is to verify the main theoretical
results (Theorems 1–4) including the epidemic threshold and global stability, shown in
Figures 2 and 3. In the second part, we provide discussion and simulations to show the
effectiveness of different immunity and quarantine strategies with degree, as shown in
Figures 4 and 5. The numerical simulation in the third part demonstrates the effectiveness
of the optimal control method that was proven in Section 5, as shown in Figures 6 and 7.
We construct a BA (Barabási–Albert) scale-free network [17], which satisfies a power-law degree
distribution p(k) ∼ Ck−3. The network size N is set as 1000, n = kmax = 80. This network evolved
from the initial network with a size of m0 = 3, and during each time step, a new node with m = 3
edges was added to the network. We note that λ(k) = λk.

(I) Firstly, we perform some simulations in Figure 2 to verify the important results of
global stability of equilibria. We denote

φ(k) =
{

k, k ≤ 30;
30, k > 30.

Figure 2a shows the relationship between I(t) and infectious rate λ on several different
networks. Based on the basic reproduction number R0, we find that the epidemic threshold

of the disease is λc = ⟨k⟩ \ ∑n
i=1

φ(i)p(i)iN∗
i (1−δi)

βi+γ+d , where b = 0.2, d = 0.16, βk = 0.17, η = 0.3,
δk = 0.2, γ = 0.36. One can see that the epidemic threshold is consistent with our theoretical
results. Figure 2b and Table 2 verify the results of Theorems 3 and 4, i.e., if R0 < 1, the
disease-free equilibrium is globally stable, and if R0 > 1, then the endemic equilibrium
persists and is globally stable, where b = 0.2; d = 0.1; βk = 0.2; η = 0.3; δk = 0.2; λ = 0.01,
0.038, 0.055, 0.21, 0.28, 0.35; and γ = 0.36, 0.36, 0.36, 0.18, 0.18, 0.18. Figure 2b shows that
the disease-free equilibrium cannot undergo a Hopf bifurcation.
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Figure 2. (a) The I(t) with respect to λ and the structure of a network with different parameters m and m0.
λc denotes the theoretical epidemic threshold. Other parameter settings are as follows: b = 0.2, d = 0.16,
βk = 0.17, η = 0.3, δk = 0.2, γ = 0.36. (b) The average infected density I(t) under different parameters:
λ = 0.01, 0.038, 0.055, 0.21, 0.28, 0.3; γ = 0.36, 0.36, 0.36, 0.18, 0.18, 0.18; b = 0.2; d = 0.1; βk = 0.2; η = 0.3;
and δk = 0.2, which correspond to R0 = 0.1734, 0.6590, 0.9538 < 1; R0 = 5.3671, 7.1561, 8.9451 > 1.

Table 2. Final infection scale I(t) under different R0 in Figure 2b.

Basic reproduction number R0 0.1734 0.6590 0.9538 5.3671 7.1561 8.9451

Final infection scale I(t) 0 0 0 0.0449 0.0597 0.0724
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Figure 3a shows a bifurcation diagram of model system (3). It clearly appears that model
system (3) exhibits a forward bifurcation, that is, the disease-free equilibrium DFE is stable
if R0 ≤ 1, while if R0 > 1, the disease-free equilibrium DFE is unstable, and there exists a
unique endemic equilibrium EE which is stable. This result is consistent with the result shown
in Figure 2b.

We conduct a parameter sensitivity analysis on the basic reproduction number R0,
where

R0 =
1
⟨k⟩

n

∑
k=1

φ(k)p(k)λ(k)(1 − δk)N∗
k

βk + γ + d
.

Then, let λ(i) = λi, we can obtain

∂R0

∂γ
= − 1

⟨k⟩
n

∑
i=1

φ(i)p(i)λ(i)(1 − δi)N∗
i

(βi + γ + d)2 ,
∂R0

∂λ
=

1
⟨k⟩

n

∑
i=1

φ(i)p(i) ∗ i(1 − δi)N∗
i

βi + γ + d
.

∂R0

∂βi
= − 1

⟨k⟩
n

∑
i=1

φ(i)p(i)λ(i)(1 − δi)N∗
i

(βi + γ + d)2 ,
∂R0

∂δi
= − 1

⟨k⟩
n

∑
i=1

φ(i)p(i)λ(i)N∗
i

βi + γ + d
, i = 1, 2, . . . , n.

This indicates that the basic reproduction number R0 increases with the decreases in
quarantine rate βk, immunization rate δk, and recovery rate γ, and R0 increases with the
increase in infection rate λ.

Without losing generality, let βk ≜ β, δk ≜ δ. We depict the relationship between the
R0 and parameters in Figure 3b–d, which are consistent with the analysis results. Figure 3b
shows that R0 is positively correlated with the birth rate b and negatively correlated with
the death rate d.
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 I
(t

)

DFE Stable

EE Stable

DFE Unstable

(a) (b)

(c) (d)

Figure 3. (a) Bifurcation diagram of model system (1). EE is the endemic equilibrium E∗, DFE is the disease-free
equilibrium E0: b = 0.12, d = 0.06, γ = 0.28, η = 0.3, βk = 0.6, δk = 0.2. (b–d) The combined influence of
parameters on R0. (b) The relationship between R0 and b, d: λ = 0.15, γ = 0.36, η = 0.3, βk = 0.2, δk = 0.2. (c) The
relationship between R0 and β, δ: b = 0.12, d = 0.06, λ = 0.15, γ = 0.3, η = 0.3. (d) The relationship between R0

and λ,γ: b = 0.12, d = 0.06, η = 0.3, βk = 0.75, δk = 0.8.
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(II) Secondly, we depict the effectiveness of the immune and quarantining control
strategies in Figures 4 and 5. In this part, we also discuss the SIQS model (1) on the
network with various immunization (proportional immunization strategy δ̃, target immu-
nization strategy δt

k, acquaintance immunization strategy δac
k ) schemes based on [51] and

define quarantine schemes of infected individuals (proportional quarantine strategy βk,
target quarantine strategy βt

k, acquaintance quarantining strategy βac
k ) according to various

immunization schemes. Then, we define the heterogeneous quarantine rate βk as follows:
Proportional quarantine strategy: Denote the average quarantine rate of proportional

quarantine β̃, 0 < β̃ < 1. In randomly selecting one infected node for isolation, we find the
quarantine rate is independent of the degree of the node, which is also a situation discussed in
many papers.

Target quarantine strategy: We can devise a quarantine strategy for the infected nodes
according to the definition of immunization [51]. Introduce an upper threshold κ, such
that all infected nodes with connectivity k > κ are priority quarantined, i.e., we define the
quarantine rate βt

k by

βt
k =


1, k > κ;
c, k = κ;
0, k < κ.

where 0 < c ≤ 1, and ∑k βt
k p(k) = β̃t

k, where β̃t
k is the average quarantine rate of target

quarantine.
Acquaintance quarantining strategy: Select a random portion p from the N nodes.

The likelihood of quarantining an infected node with degree k is given by kp(k)
N⟨k⟩ ; therefore,

βac
k = pkp(k)/⟨k⟩. We note that ˜βac

k denotes the average quarantine rate of acquaintance
quarantine, where ˜βac

k = ∑k βac
k p(k).

Figure 4a shows the I(t) under different quarantining control strategies; the target
quarantine strategy is the most effective in controlling disease. Figure 4b compares the
effectiveness of different quarantine strategies. From Figure 4a,b and Table 3, we find
that the target quarantine strategy has better effectiveness than others. Figure 4c shows
the effectiveness of different immunity strategies; it shows that all three immunization
schemes are effective compared to the case without any immunization, and the targeted
immunization scheme is more efficient than the proportional scheme discussed.

Table 3. Final infection scale and λc under different control strategies in Figure 4a,b.

Quarantining Control Strategies Final Infection Scale I(t) Epidemic Threshold λc

No quarantine 0.0713 0.0468

Acquaintance quarantine 0.0568 0.0724

Proportional quarantine 0.0424 0.0798

Target quarantine 0.0182 0.1483

Figure 5a depicts the average infectious density with respect to quarantine rate under
different immunity strategies. It also shows that the target strategy is better than the
proportional and acquaintance strategies. We further show the average infectious density
with respect to infected rate for the target and acquaintance immunization schemes and
quarantine strategies in Figure 5b. We find that the targeted immunity and the target
quarantine strategy have better effectiveness than others.
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Figure 4. (a) I(t) under different quarantining control strategies: no quarantine (cyan line), ac-
quaintance quarantine (magenta line), proportional quarantine (blue line), target quarantine (green
line): b = 0.2, d = 0.08, η = 0.3, λ = 0.28, δk = 0.2, γ = 0.18, c = 0.8, κ = 15, p = 0.386,
βk = ˜βac

k = β̃t
k = β̃ = 0.0499. (b) The epidemic threshold λc under different quarantine control

strategies: no quarantine (green line), target quarantine (magenta line), acquaintance quarantine (blue
line), proportional quarantine (red line): b = 0.2, d = 0.18, δk = 0.2, γ = 0.5, η = 0.35, c = 0.8, κ = 10,
p = 0.8946, βk = ˜βac

k = β̃t
k = β̃ = 0.1150. (c) The epidemic threshold λc under different immunization

strategies: no immunity (blue line), target immunity (green line), proportional immunity (cyan line),
acquaintance immunity (red line): b = 0.2, d = 0.18, γ = 0.5, η = 0.35, βk = 0.21, c = 1, κ = 7,
p = 0.9836, δk = ˜δac

k = δ̃t
k = δ̃ = 0.218.
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Figure 5. The effectiveness of combination immunization and quarantine control strategies: b = 0.2,
d = 0.18, c = 1, κ = 7, p = 0.9836, δk = ˜δac

k = δ̃t
k = δ̃ = 0.218. (a) Different immunization strategies

with respect to quarantine rate: λ = 0.2, γ = 0.38, η = 0.3; acquaintance immunization (magenta
line), proportional immunization (blue line), target immunization (cyan line). (b) Comparison
of different combination control strategies: γ = 0.5, η = 0.35, c = 0.8, κ = 10, p = 0.8946,

˜βac
k ( ˜δac

k ) = β̃t
k(δ̃

t
k) = β̃(δ̃) = 0.1150; target immunization and target quarantine (red line); target

immunization and acquaintance quarantine (magenta line); acquaintance immunization and target
quarantine (cyan line); acquaintance immunization and acquaintance quarantine (blue line).
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Figure 6. (a) The average density I(t) under different control strategies. The lines with different colors
correspond to different optimal control strategies: uk(t) = optimal control (purple line); uk(t) = 0.9
(cyan line); uk(t) = 0 (green line). Other parameter settings are as follows: b = 0.09, d = 0.012,
λ = 0.3, γ = 0.01, η = 0.03, δk = 0.1. (b) Comparison of optimal control and combined heteroge-
neous control strategies, without control (green line); acquaintance immunization and acquaintance
quarantine (blue line); acquaintance immunization and proportional quarantine (magenta line);
acquaintance immunization and target quarantine (cyan line); optimal control (purple line): b = 0.09,
d = 0.012, λ = 0.3, γ = 0.01, δ = 0.218, c = 1, κ = 7, p = 0.9836, βk = ˜βac

k = β̃t
k = β̃ = 0.218.
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Figure 7. (a) I(t) under optimal control with varying weights. Low costs: Bk = 0.01 (red line);
moderate costs: Bk = 1 (blue line); high costs: Bk = 100 (cyan line). Other parameters are fixed as
b = 0.09, d = 0.012, λ = 0.3, γ = 0.008, η = 0.03, δk = 0.1. (b) The quarantine rates uk(t) for any
degree. Other parameters are fixed as b = 0.09, d = 0.02, λ = 0.3, γ = 0.01, η = 0.03, δk = 0.1.

(III) Thirdly, we analyze and illustrate the optimal control and various quarantine
schemes by numerical simulations, as shown in Figures 6 and 7. In Figure 6, we depict
I(t) under different control strategies. In order to provide a clearer representation of
the findings in Figure 6a, we additionally compute the objective function J(µ) values for
diverse control approaches, as shown in Table 4. In the absence of any control strategy
(i.e., uk = 0), the infection ultimately breaks out and reaches a stable level of infection. We
also set a fixed control strategy compared with the optimal control strategy, finding that
if we want to obtain better results than the optimal control strategy, it will usually lead
to a significant increase in control costs (i.e., umax

k = 0.9). In Figure 6b, we compare, the
effects of optimal control, without control, and acquaintance immunity, combining these
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with multiple quarantine strategies for infectious disease control. Compared with other
strategies, the optimal control strategy has the best control effect.

Table 4. The values of J(µ) under different control strategies.

Optimal Control Max Control No Control

J ≈ 1.7817 × 103 J ≈ 6.5164 × 104 J ≈ 5.1127 × 103

Figure 7a illustrates the I(t) under optimal control under three cases: low cost at
Bk = 0.01, moderate cost at Bk = 1, and high cost at Bk = 100. Even under high costs, as
seen in the third scenario, the scale of infection can be notably curtailed through optimal
control. Figure 7b displays the fluctuation of µk across varying degrees under optimal
regulation. It is evident that µk tends to escalate as the degree rises. It indicates a higher
level of infection, resulting in a higher value of µk.

7. Conclusions

We proposed an SIQS epidemic model with heterogeneous immune and quarantine mea-
sures on heterogeneous networks. We performed a detailed mathematical analysis of our system,
which showed that the basic reproduction number R0 is collectively determined by the infection
rate and the effectiveness of disease control measures. Specifically, when R0 < 1, the disease-free
equilibrium E0 exhibits global asymptotic stability. When R0 > 1, the endemic equilibrium E∗

demonstrates both local and global asymptotic stability. At the same time, we conducted an
in-depth theoretical examination of system (1) to tackle the optimal quarantine control issue,
confirming the presence of optimal solutions. We hope this result can provide some ideas for
solving the optimal solution of asymmetric quarantine strategies on heterogeneous networks.
We defined different forms of quarantine measures, which are asymmetric quarantine strategies
related in degree, and numerically simulated the effectiveness of a combination of different
quarantine strategies and immune schemes in controlling diseases. Our findings indicate that
the implementation of any control strategy can have a favorable impact on the magnitude of an
epidemic outbreak, with the optimal control being particularly effective. Among them, the effect
of a target quarantine scheme can be comparable to the effect of optimal control. However, target
isolation requires knowing the degree of all nodes in the network, which has a significant cost
and workload. Therefore, in order to achieve the control goal and reduce the control cost at the
same time, the optimal control strategy considering the asymmetry of control measures related in
degree and time is shown to be superior to the symmetric control strategies.

A variety of control strategies, such as quarantine and immune schemes, can be
employed for the effective management, mitigation, and potential eradication of infectious
diseases. This paper can contribute to an understanding of the dynamics of infectious
disease with control measures. However, our paper is not based on a specific infectious
disease, so there are still certain limitations in providing a specific basis for public health
prevention measures. Studying the control measures for a specific disease based on disease
data will be meaningful work.
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