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Abstract: The dynamical systems of trigonometric functions are explored, with a focus on s(z) = sin(z)
and the fractal image created by iterating the Newton map, Fs(z), of s(z). The basins of attraction
created from iterating Fs(z) are analyzed, and some bounds are determined for the primary basins of
attraction. We further prove x and y-axis symmetry of the Newton map as well as some interesting
results on periodic points on the real axis.
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1. Introduction

Newton’s method for finding roots is an elegant and straightforward application of
the geometry of tangent lines. If one “zooms in” on a point on the graph of a real-valued
differentiable function, the graph will begin to look precisely like the tangent line at that
point. Thus, it is reasonable to make an initial guess at the root of our function, but then
(since the odds are not in our favor that we would successfully guess a root out of the
uncountably many possible choices) consider the tangent line at the guessed value rather
than the function itself. It is computationally trivial to find the root of a nonconstant linear
function, so we can quickly find a (presumably) better guess than our initial one by using
the root of the tangent line. Iterating this process produces Newton’s method.

As a numerical algorithm, Newton’s method has been studied for hundreds of years.
Much of the attention has been focused on numerical issues—how to estimate roots faster
and more accurately, especially with the advent of computers. See, for example, Gilbert’s
discussion in the mid-1990s of the computational issues involved when the function in
question has multiple roots [1]. Moreover, over time, some classes of functions proved
easier to estimate convergence than others. Indeed, even straightforward-seeming cubic
polynomials present nontrivial computational difficulties, as Walsh’s analysis of Newton’s
method on cubic polynomials demonstrated [2].

Compared to Newton’s method, the development of complex dynamics is relatively
recent. Alexander, Iavenaro, and Rosa’s history details the seminal contributions to the
field, beginning with Schröder in the late 19th century [3]. Schröder’s fixed point theorem
and the resulting classification of fixed points provided the vocabulary for analyzing the
behavior of dynamical systems.

Indeed, Schröder himself considered Newton’s method by extending the domain from
R to C and studying this process as a complex dynamical system [3]. Haeseler and Peitgen’s
historical survey is valuable here, with its restatements of classical results by Cayley and
Schröder in modern form [4].

However, with a few notable exceptions, such as Blanchard’s conference proceeding [5],
most of the focus surrounding Newton’s method has been as a numerical method for
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calculating roots rather than as an example of a dynamical system with complex fractal
geometric behavior. The fractals created by considering Newton’s map as a dynamical
system, however, are too beautiful and far too mysterious to ignore. Thus, we have taken
this point of view in recent papers describing the dynamics of Newton’s method for rational
functions [6,7] and the function tan(z) [8].

In this paper, we continue our investigation by considering the function sin(z). To
begin, we will present a brief overview of the necessary background material. More details,
including the standard definitions, proofs, and further examples, are found in Saff and
Snieder’s standard text [9] and Stankewitz’s contribution to the MAA’s recent text, which
takes an exploratory approach to key topics in complex variables [10].

For an analytic function f and a point z in the domain of f , the orbit of z is the sequence
of iterates

{
z, f (z), f 2(z), . . . , f n(z), . . .

}
. Here, f n(z) refers to the iteration formed by

composing f with itself n times. The study of dynamics is interested in the behavior of the
orbits that emerge from each z, that is, the behavior of { f n(z0)} as n→ ∞ .

A point z is a fixed point if f (z) = z. Similarly, if f n(z) = z for some n ∈ Z, and
z, f (z), . . . , f n−1(z) are all distinct points, then z is a periodic point with period n. The
orbit

{
z, f (z), . . . , f n−1(z)

}
is then called an n-cycle for f. If the images of z bounce around

a bit first, that is, if the orbit contains preliminary values before settling at a fixed point
( f n+1(z) = f (z) for some n > 1) or a periodic orbit ( f n+p(z) = f n(z) for some n > 1, where
p is the period, then z is an eventually fixed point or eventually periodic, respectively.

For an analytic function f (z), we define the Newton map of f at points where f ′ is
nonzero as

Ff (z) = z − f (z)
f ′(z)

.

Newton’s method of finding roots can be seen as just iterating the Newton map,
starting from an initial guess at the root. Note that at a root a, we see f (a) = 0, and thus
Ff (a) = a. That is, the roots of f found by Newton’s method are precisely the fixed points
of the iteration of Ff .

Beyond just rephrasing the problem of finding roots as a problem of finding fixed
points, however, switching our perspective from Newton’s method to the complex dynam-
ical system created by iteration of the Newton map allows us to explore the fascinating
fractal nature of the images formed by these iterations.

For example, if a is a fixed point of our iteration, the basin of attraction of a under the
function Ff is the set of all starting points whose iterates converge to the point a. Note that
this basin need not be connected; indeed, we are especially interested in cases where the
basin of attraction consists of disparate disconnected sets with wildly fractal boundaries.
We refer to the connected component of the basin of attraction containing a as the primary
(or immediate) basin of attraction of a under Ff .

This primary basin of attraction will contain not only a, but an open ball about a. See
Stankewitz’s outline of the proof in [11]. The size of this ball will vary depending on both
the point a and the fractal behavior of iteration by Ff . Indeed, describing the size of the
basins of attraction will occupy much of our attention below.

If f is a map from its domain set G (a subset of either R or C) into itself, then a finite
fixed point a in C is an attracting fixed point (of f ) if there exists a neighborhood U of a
such that for any point z ∈ G ∩U \ {a}, we have | f (z)− a|<|z− a|. If a fixed point is
attracting, the iterates of any seed value in the neighborhood U converge monotonically to
the fixed point.

2. Newton’s Method and sin(z)

The historical development of the dynamics of the Newton maps of rational functions
is summarized in the work of Barnard et al. [6]. The research is more limited in the case
of trigonometric functions. Bray et al. [8] provide bounds and other properties for the
dynamics of the Newton map of tan(z), but much less is known about the Newton maps of
sin(z) and cos(z).
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2.1. Introduction to the Dynamics of the Newton Map of sin(z)

The Newton map of s(z) = sin(z) is given by

Fs(z) = z− sin(z)
cos(z)

=
zcos(z)− sin(z)

cos(z)
.

For all n ∈ Z, the fixed points of Fs are zn = nπ.
Because of the periodic nature of sin(z), the basins of attraction of iteration of Fs

appear periodic, with strips of width π about each fixed point. See Figure 1. Points within
each strip will generally converge to the root inside each strip, but not always. Indeed,
we can see fractal behavior near the boundaries of the strips, and the dynamics here are
decidedly non-trivial. Notice that the Newton map of sin(z) is not defined at π

2 + nπ, the
zeros of cos (z), which produces the fractal boundary behavior shown in Figure 2. Further
snapshots are displayed in Figures 3 and 4, which are close-up images of the behavior of
Fs(z) near the singularities.
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2.2. Symmetry of Fs(z)
We can begin to understand the symmetry that we observed in Figure 1 by recalling

the following properties of the complex functions sin(z) and cos(z) [9,11]:

sin(−z) = − sin(z)

cos(−z) = cos (z).

sin(z) = sin(z)

cos(z) = cos(z).

It follows easily that Fs(z) is symmetric about the x-axis for all z ∈ C[4]. If Fs(z) = z− sin(z)
cos(z) ,

then
Fs(z) = z− sin(z)

cos(z) =z− sin(z)
cos(z)

= z− sin(z)
cos(z)

= z− sin(z)
cos(z)= z1 = Fs(z).
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Similarly, Fs(−z ) = −Fs(z); hence, Fs is symmetric about the y-axis.
This symmetry of Fs means that we can restrict ourselves to an exploration of the

dynamics that occur in the first quadrant to gain a full understanding of the global dynamics
of Fs. See Figure 5.
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Symmetry about the line x = π (or any root of sin(z)) also follows from the periodicity
of sin(z). If Fs takes z = x + iy to z1 = x1 + iy1, then it takes 2π − z = 2π − x + iy to
2π − z1 = 2π − x1 + iy1.

Finally, it can also be shown that there is symmetry about the line x = π
2 (or any

vertical line midway between the vertical lines along the roots of sin(z)). Indeed, if Fs takes
z = x + iy to z1 = x1 + iy1, then it takes π − z = π − x + iy to π − z1 = 2π − x1 + iy1.

2.3. Bounding the Primary Basins

We will now consider how we might construct some bounds on the basins of attraction
of the fixed points zn = nπ. We also explore the implications of maintaining the condition
that |Fs(z)− zn|<|z− zn|.

2.3.1. Bounds and Convergence along the x-Axis

Recall that the Newton map for sin(z) is Fs(z) = z− sin(z)
cos(z) . Since sin(x) and cos(x)

are real for real values of x, then clearly, points on the real axis remain on the real axis
under the iteration of Fs.

Since z = 0 is a root of sin(z), and thus a fixed point of Fs(z), let us begin our
exploration by considering the behavior of Fs(z) near 0. The primary basin of attraction of
0 will contain some real interval about 0, but how large can this interval be?

Consider the root x∗ ≈ 1.166 of sin(x)
cos(x) − 2x = 0 and notice

Fs

(
x*
)
= x* −

sin
(
x*)

cos(x*)
= x* − 2x* = −x*

Fs

(
−x*

)
= −x* −

sin
(
−x*)

cos
(
−x*

) = −x* +
sin
(
x*)

cos(x*)
= −x* + 2x* = x*.

Thus, x∗ and −x∗ constitute a cycle of length 2, and we see the intersection of the
primary basin of attraction of 0 with R cannot extend past −x∗ on the left and x∗ on
the right.

Moreover, since sin(x)
cos(x) > 0 on (0, x∗), then for all x ∈ (0, x∗),

Fs(x) = x− sin(x)
cos(x)

< x.
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Next, notice that 2x− sin(x)
cos(x) has zeros at −x∗, 0, and x∗, is negative on (−x∗, 0), and

is positive on (0, x∗). Thus, for all x ∈ (0, x∗),

0 < 2x− sin(x)
cos(x)

−x < x− sin(x)
cos(x)

= Fs(x).

As a result,
|Fs(x)| <|x|

and every x in (0, x∗) does indeed move toward 0 under Fs.
By a similar argument (or simply relying on the symmetry of tan(x)), we also see that

every point in (−x∗, 0) also moves toward 0 under Fs. Consequently, the intersection of R
with the primary basin of attraction of 0 is precisely the interval (−x∗, x∗).

The preceding analysis can be generalized to show, for all n ∈ Z, that Fs(nπ − x∗)
= nπ + x∗ and Fs(nπ + x∗) = nπ − x∗. Likewise, initial seed values in the range nπ − x∗ <
x < nπ + x∗ converge to the fixed point zn = nπ.

2.3.2. Periodic Points along the x-Axis

We noted in the previous section that nπ ± x∗ constituted a cycle of period 2. We now
consider more general periodic orbits.

The function Fs maps the interval
((

n + 1
2

)
π, (n + 1)π − x∗

)
onto the interval

((n + 1)π + x∗, ∞) and maps the interval
(

nπ + x∗,
(

n + 1
2

)
π
)

onto the interval
(−∞, nπ − x∗). In fact, it appears that if we take any real point on the boundary of a basin
of attraction for any fixed point, any neighborhood of that point contains points in the
basins of attraction of all other fixed points.

For an integer j, define Ij =
[

jπ + x*, (j + 1)π − x*
]
. Note that this interval contains(

j + 1
2

)
π. Then, Fs(Im) ⊃ Ik for all k 6= m.

Let {a n}
∞
n=0 be a sequence of integers such that ak 6= ak−1. Define Jn = Ian .

Define Q0 = J0. Since J1 ⊂ f (Q0), ∃Q1 ⊂ Q0 such that f (Q1) = J1.
Continuing, J2 ⊂ f (J1) = f ( f (Q1)), so there exists Q2 ⊂ Q1 ⊂ Q0 such that

f ( f (Q2)) = f 2(Q2) = J2.
By induction, we have Qn ⊂ Qn−1 ⊂ · · · ⊂ Q0 such that ∀k ≤ n, f k(Qk) = Jk. Since

Jn+1 ⊂ f (Qn), we can continue the process and obtain f k(Qk) = Jk∀k = 0, 1, 2, · · ·
The intersection of nested closed sets is non-empty, so ∃ ∼x ∈ ⋂∞

k=0 Qk. f m
(∼

x
)
E Jm ∀ m =

0, 1, 2, · · ·
Stopping after a finite number, with the last integer the same as aj = a0, we have

f j(Qj
)
= Jj = J0 = Q0. Recall the one-dimensional version of Brouwer’s fixed point

theorem, which states that any continuous function mapping a closed bounded interval to
itself has a fixed point. Hence, for all j, f j has a fixed point, and we conclude that we have
periodic orbits of all periods on the real axis. These results are related to those of Li and
Yorke [12].

2.3.3. Bounds along Vertical Lines x = nπ

Recall the standard identities, sin(z) = eiz−e−iz

2i , and cos(z) = eiz+e−iz

2 , which gives

sin(iz) =
e−z − ez

2i
, and cos(iz) =

e−z + ez

2
,
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Hence, for purely imaginary seed values, z = bi, b ∈ R, we have Fs(bi) = bi− sin(bi)
cos(bi)

= bi− i eb−e−b

eb+e−b = i
(

b− eb−e−b

eb+e−b

)
. Hence, all orbits that begin on the imaginary axis remain on

that axis.
We can show that the imaginary axis is just a special case. Let us consider seed values

on the vertical lines through the fixed points, that is, z = nπ + bi, n ∈ N, b ∈ R. Then,
we have

Fs(nπ + bi) = nπ + bi− sin(nπ+bi)
cos(nπ+bi)

= nπ + bi− sin(nπ+bi)
cos(nπ+bi)= nπ + bi− sin(bi)

cos(bi)

= nπ + bi− i eb−e−b

eb+e−b = nπ + i
(

b− eb−e−b

eb+e−b

)
.

Hence, all orbits that begin on a vertical line through a fixed point remain on that line.

2.3.4. Convergence along Vertical Lines x = nπ

The preceding calculations show that the convergence behavior along any of the
vertical lines x = nπ is identical where b is transformed to b− eb−e−b

eb+e−b on each iteration.
We require that bFs(z)− znc < bz− znc. This means that we require bFs(nπ + bi)− nπ c

< b(nπ + bi)− nπc on the vertical lines:⌊
nπ + i

(
b− eb − e−b

eb + e−b

)
− nπ

⌋
< bbic

⌊
i

(
b− eb − e−b

eb + e−b

)⌋
< bbic

⌊
b− eb − e−b

eb + e−b

⌋
< bbc

To verify this condition, we look at two cases.
The case of b > 0.
Note that for a, z ∈ R, if 0 < a < z, then z− a < z; hence, |z− a|<|z|. Therefore, we

will prove that 0 < eb−e−b

eb+e−b < b. Clearly, eb−e−b

eb+e−b > 0 for b > 0.

To prove the second part of the inequality, we consider I(b) = b− eb−e−b

eb+e−b , and we note
that I(b) can be written as b− Tanh(b).

It follows that I′(b) = 1−
(
1− Tanh2(b) ) = Tanh2(b)). That means that I′(b) > 0, and

I(b) is an increasing function for b > 0.
Since I(0) = 0 and I(b) is increasing for b > 0, we deduce that I(b) > 0 for b > 0, that

is, b > eb−e−b

eb+e−b , as required.

Since we have shown that 0 < eb−e−b

eb+e−b < b, we can conclude that
⌊

b− eb−e−b

eb+e−b

⌋
< bbc,

as required.
The case of b < 0.
The development is analogous to that for b > 0.
Note that for a, z ∈ R, if z < a < 0, then z− a > z; hence, |z− a|<|z|. Therefore, we

will prove that b < eb−e−b

eb+e−b < 0. Clearly, eb−e−b

eb+e−b < 0 for b < 0.

In order to prove the second part of the inequality, we consider I(b) = b− eb−e−b

eb+e−b , and
we note again that I(b) can be written as b− Tanh(b).

It follows that I′(b) = 1−
(

1− Tanh2 (b) ) = Tanh2(b). That means that I′(b) > 0 and
I(b) is an increasing function for b < 0.
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Since I(0) = 0 and I(b) is increasing for b < 0, we deduce that I(b) < 0 for b < 0, that
is, b < eb−e−b

eb+e−b , as required. Since we have shown that b < eb−e−b

eb+e−b < 0, we can conclude that⌊
b− eb−e−b

eb+e−b

⌋
< bbc, as required.

The preceding calculations have shown that convergence is monotone along the
vertical lines that intersect the x-axis at the roots of sin(z).

2.3.5. Convergence in the Complex Plane

It was shown in Section 2.3.1 that points on the real axis |x| < x∗, where x∗ ∼= 1.166,
converge to the fixed point at 0. It appears numerically that the entire disk |z| < r ∼= 1.166
is within the immediate basin of attraction.

Furthermore, the analysis in Section 2.3.2 shows that x∗ is a sharp bound on the
immediate basin of attraction on the real axis. Hence, |z| < r ∼= 1.166 is the largest possible
disk centered at 0 in the immediate basin of attraction. This analysis can be extended to
show that disks with the same radius surround all the fixed points of the Newton map of
the Sine function.

For large values of Im(z), numerical simulations show that the Newton map behaves
almost as z = z− i sgn (Im (z)). As points approach the x-axis close to the singularity
at
(

n + 1
2

)
π, they are then projected off towards distant fixed points, as described in

Section 2.3.2. This explains the general nature of the fractal behavior shown along the
imaginary axis in Figure 1 and in the more refined image in Figure 4. It is illustrative of
the chaotic nature of the Newton map how the behavior close to the imaginary axis is not
uniform, as can be seen in the different sized bulbs shown in Figures 2 and 3.

3. Comparison of Newton Maps of sin(z) and cos(z)

The images generated by iteration of the Newton map of the complex Cosine function
Fc(z) = z+ cos(z)

sin(z) appear to be almost identical to those of the iteration of the Newton map
of the complex Sine function, and some of those images are displayed in Figures 6–8.

These images can be compared with those for the Newton map of the complex Sine
function shown in Figures 1–4. The similarities should be expected, since Fc

(
z + π

2
)
=

z + π
2 +

cos(z+ π
2 )

sin (z+ π
2 )

= z + π
2 +

− sin(z)
cos(z) = Fs(z ) + π

2 . In other words, an iteration of the Newton

map of Cosine beginning at z + π
2 is identical to an iteration of the Newton map of Sine

beginning at z and then adding π
2 .
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4. Conclusions

The fractal image created from iterating the Newton map of s(z) = sin(z) is symmetric
about both the x and y axes as well as with respect to each fixed point. In general, that
which can be said about the dynamics surrounding z0 = 0 can be said about the dynamics
about zn = nπ. Indeed, we have shown monotonic convergence of all seed values on the
x-axis close to the fixed points and on the vertical lines x = nπ. More complicated behavior
occurs close to the vertical lines x =

(
n + 1

2

)
π.
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