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Abstract: False data injection attacks are executed in the electricity markets of smart grid systems
for financial benefits. The attackers can maximize their profits through modifying the estimated
transmission power and changing the prices of market electricity. As a response, defenders need to
minimize expected load losses and generator trips through load and power generation adjustments.
The selection of strategies of the attacking and defending sides turns out to be a symmetric game
process. This article proposes a hybrid game theory method for analyzing the attack–defense
confrontation: firstly, a micro-grid-based power market model considering false data injection attacks
is established using the Nash equilibrium method; secondly, the attack–defense game function is
constructed and solved via the Stackelberg equilibrium algorithm. The Markov game algorithm and
distributed learning algorithm are used to update equilibrium function; finally, a dynamic game
behavior model of the two players is constructed through simulating the attack–defense probability.
The evolutionary game method is used to select the optimal defense strategy for dynamic probability
changes. Modified IEEE standard bus systems are illustrated to certify the effectiveness of the
proposed model.

Keywords: false data injection attack; micro-grid; Markov game algorithm; distributed learning
algorithm; evolutionary game method; optimal defense strategy

1. Introduction

Recently, smart grid (SG) systems with networking characteristics and uncertainty
distributed power supplies have become increasingly complex [1]. Cyber-attack problems
have become the main security issue for the reliability and security of SG operation [2].
False data injection (FDI) attacks are able to bypass the online monitoring of state esti-
mation, steal energy, and gain economic benefits through false scheduling [3]. Attackers
establish their own behavior through monitoring and injecting attacks, which may interfere
with operations and modify estimated transmission power [4]. The payoff function is
established to maximize their economic benefit with the least attack cost [5]. Meanwhile,
the defenders of the system need to establish corresponding multi-level defense measures
to deal with attacks and mitigate risks. The payoff function of defenders is established to
minimize expected load losses and generator trips based on the current attack situations [6].
The selection of strategies by the attackers and defenders whose motives and emergency
responses are contradictory can be modeled with a symmetric game process [7]. The game
method is constructed to admit equilibrium to enable the two players to maximize their
respective minimum rewards [8].

Relying on the ability to make multifaceted decisions on power grid security issues,
game theory is widely applied in the field of network security [9–16]. In [9], a security
resource allocation game model is established to discuss the load redistribution attacks
problem. Both system operators and attackers maximize their own payoffs through se-
lecting the optimal strategy; in [10], the game composed of attackers and defenders is
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constructed with a probability-weighting algorithm, and the optimal investment strate-
gies of the players are obtained using the Nash Equilibrium. However, refs. [9,10] are
inadequate in describing how both offensive and defensive strategies change with each
other; ref. [11] investigates the Stackelberg game through having legitimate launchers act
as leaders, and disruptors acting as followers. A genetic algorithm was used to obtain the
optimal frequency hopping speed and optimal transmission power; ref. [12] formulates
a Stackelberg game model through making the Cloud provider the leader and making
attackers the second player, and obtains the utility function through applying artificial
neural networks. Refs. [11,12] establish the master–slave change of offensive and defensive
strategies. However, the model lacks in describing the cumulative profits in a dynamic,
changing game process; ref. [13] establishes a Markov anti-attack model, compares the
effectiveness of network space simulation defense under different attack types, and uses
dynamic games with incomplete information to determine the optimal strategy; ref. [14]
formulates a multistage optimization model for the deployment of a mobile target defense
mechanism under a Markov decision, maximizing the profits under environmental con-
straints. However, each iteration solution of [13,14] depends on the revenue in the current
unit time, ignoring the previous revenue, bringing in an exponential increase in complex
calculations; in [15], a Markovian–Stackelberg game is proposed to simulate the sequential
actions of attackers and defenders, and a secure constrained optimal power flow is given,
which preserves the safety margin of key components to minimize the power outage scale
and potential future risks; in [16], the adversarial interaction of the attacker and defender is
modeled as a resource-constrained game, and a linear-time algorithm is used to obtain the
optimal defense strategy. However, the game process in the above works assumes that both
sides (attacker and defender) of the game are in pure rationality. In practice, the players
will constantly adjust their strategies and dynamically pursue profits. Therefore, common
rational game models overlook the limitations of bounded rationality, which can lead to
deviations between attack and defense behaviors and actual situations, thereby weakening
the accuracy and guiding value of security defense strategy selection methods. Regarding
the above problem, evolutionary game method [17] is put in to analyze the ability of limited
rationality in offensive and defensive behavior. The evolutionary game takes bounded
rational players as the basis of game analysis. Based on the idea of biological dynamic
evolution, it depicts both sides of attack and defense through a learning mechanism, and
constantly improves the internal drive of behavior strategy [18,19]. The evolutionary game
in the above works has established the evolutionary game between attackers and defend-
ers according to system dynamics. The goal of optimal overall network performance is
achieved. However, the method of solving evolutionary game equilibrium and the specific
strategy selection method are not designed, which makes it difficult to guide the security
defense decision.

Therefore, in view of the selection of the security defense strategy in network attack–
defense confrontation, this paper analyzes the evolutionary trend of offensive and defensive
behavior from limited rationality in reality. On this basis, the evolutionary stability strategy
solution method is proposed to achieve the selection of optimal defense strategies. At
the same time, low-income players in the game process are constantly learning from the
strategies of the high-income players. This reflects the dynamic evolutionary trend of
offensive and defensive confrontation under bounded rationality constraints. In addition,
the law of forming an evolutionary stable equilibrium in different situations is also analyzed
and summarized.

Further, this article considers the impact of the optimized output of micro-grid (MG)
energy management on the dynamic strategy selection of two participants. The MG
combines distributed energy, storage devices, and corresponding loads in a reduced space
through advanced control systems [20]. The MG can participate in the electricity market
through online trading with the main power grid, and can also operate independently
in island mode to balance internal supply and demand [21,22]. The MG has played an
increasingly important role in maintaining the power balance of the entire SG power system
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and reducing generation costs. The optimal operation results of the electricity market and
generation output are considered in the game equilibrium solution.

The main contributions of this paper are listed as follows:

(1) MG-based electricity markets model of an SG power system is considered for FDI
attacks. The electricity market is established with a double-sided bidding mechanism
using the Nash equilibrium game theory.

(2) A hybrid game model of payoff function between attack and defense is established.
Game theoretic methods are proposed to discuss the interaction behavior between
attack and defense sides.

(3) The benefits according to attack and defense strategies are quantified using the evolu-
tionary game method, and the dynamic evolutionary learning of attack and defense
probability is discussed.

(4) The optimal defense strategy is selected after the evolutionary stable equilibrium
solution is solved, and the dynamic confrontation trend of both sides is studied.

This article proposes a hybrid game theory method for analyzing the attack–defense
confrontation: firstly, a micro-grid-based power market model considering false data injec-
tion attacks is established using the Nash equilibrium method; secondly, the attack–defense
game function is constructed and solved via the Stackelberg equilibrium algorithm. The
Markov game algorithm and distributed learning algorithm are used to update equilibrium
function; finally, a dynamic game behavior model of the two players is constructed through
simulating the attack–defense probability. The evolutionary game method is used to select
the optimal defense strategy for dynamic probability changes.

The rest of this paper is organized as follows: The power market attack model with
micro-grid participation is provided in Section 2; in Section 3, the game model of payoff
function between attack and defense is established. Game theoretic methods are pro-
posed to discuss the interaction behavior between the attacking and defending sides. An
attack–defense evolutionary game model is constructed to obtain optimal strategies against
the dynamic changing probability in Section 4. The optimal selection strategies for the
defender are also listed in this section; numerical examples and discussions of the modified
IEEE standards for 14 bus systems and 118 bus systems are presented in Section 5; the
concluding remarks and future works are submitted in Section 6.

2. Electricity Markets Attack Model

In an electricity power market, the net power injection is expressed as the difference
between generation and load. The state variable x is expressed by the relationship between
power generation vector P and demand vector L as below.

x =
[

LT , PT
]T

(1)

Then the line flow vector F will be expressed as below.

F = H f x = H f

[
LT , PT

]T
(2)

H f is the measurement matrix of the distribution factor for the transmission line flow vector.
In an FDI attack process, attackers modify node prices to gain profits in the electricity

market [23]. In this section, we will introduce the general structure of MG-based electricity
market models and discuss real-time market attack models. The price is determined using
a DC model that ignores reactive power and marginal losses.

2.1. Electricity Markets Model with MGs

In the electricity market, MGs, as participants who pursue maximum profits through
exchanging electricity, can establish a bidirectional bidding mechanism model through
calculating the market clearing price (MCP) and location marginal price (LMP) [24]. The
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Nash equilibrium game theory [25] is proposed in this section to make decisions on bidding
and quotation strategies.

(1) Strategy for MGs: In the bidding process, the strategy of participants is formulated
based on the range of power generation capacity in a specific strategic space:

PMGi ,τ ∈
{

ΦMGi ,τ =
[

Pmin
MGi ,τ , Pmax

MGi ,τ

]}
(3)

where PMGi′ ,τ is the generation scheduling of the i′th MG player MGi′,τ, i′ =
(
1, 2, . . . , Mg

)
.

Pmin
MGi′ ,s

and Pmax
MGi′ ,s

are the minimum and maximum capacities of PMGi′ ,τ.

(2) Bidding profit function Bi′τ

(
PMGi′ ,τ

)
for the i′th player:

Bi′τ

(
PMGi′ ,τ

)
= λre f ,i′τ PMGi′ ,τ − (1 + θi′τ)Ci′τ

(
PMGi′ ,τ

)
(4)

where Ci′τ

(
PMGi′ ,τ

)
= a0i′τ + a1i′τ PMGi′ ,τ + a2i′τ P2

MGi′ ,τ
. a0i′τ , a1i′τ , and a2i′τ are cost coef-

ficients. θi′τ is the scale factor of each player adding to the bidding cost function. λre f ,i′τ
stands for the market unified trading price for players during the bidding period. In the
day-ahead market, the problem is solved in a linearized DC model as below.

maxmize Bi′τ

(
PMGi′ ,τ

)
subject to

Mg

∑
i′=1

PMGi′ ,τ +
Mg

∑
i′=1

Pexchangei′ ,τ =
D
∑

j′=1
Lj′τ

Pmin
MGi′ ,τ

≤ PMGi′ ,τ ≤ Pmax
MGi′ ,τ

(5)

where Mg is the number of buses. PMGi′ ,τ is the generation at bus i′. D is the number of
loads. Pexchangei′ ,τ is the transmitted power from/to the main grid. Lj′τ is the forecast load
at bus j′. Pmin

MGi′ ,τ
and Pmax

MGi′ ,τ
are the lower and upper capacity bounds of PMGi′ ,τ . The

Lagrangian function for real-time optimal problems can be constructed as follows:

LLagrangei′ ,τ

(
PMGi′ ,τ

)
= Bi′τ

(
PMGi′ ,τ

)
+ µi′τ

(
Pmin

MGi′ ,τ
− PMGi′ ,τ

)
+ υi′τ

(
PMGi′ ,τ − Pmax

MGi′ ,τ

)
(6)

where µi′τ and υi′τ denote the Lagrangian multipliers for the upper and lower limits of
generator capacity.

(3) Nash equilibrium game: The Nash equilibrium
(

PMG1,τ , PMG2,τ , . . . , PMGMg ,τ

)
means

that when PMGi′ ,τ is implemented in the game, no player can gain additional profits
through changing their power generation scheduling. The strategy set of all players
can be calculated through the following optimal iterations:

∂LLagrangei′ ,τ

(
PMGi′ ,τ

)
∂PMGi′ ,τ

=
∂Bi′τ

(
PMGi′ ,τ

)
∂PMGi′ ,τ

− µi′τ + υi′τ = 0 (7)

After the above optimal function is calculated, the MCP of the i′th MG can be obtained
when µi′τ and υi′τ converge into an allowed range [26]:

λre f ,i′τ = (1 + θi′τ)
(

a1i′τ + a2i′τ PMGi′ ,τ

)
(8)

where λre f ,i′τ is the day-ahead locational marginal price of the ith player. The MCP λre f ,τ
can be represented as the highest bid price for all players during the bidding period:

λre f ,τ = max
{

λre f ,i′τ , i′ =
{

1, 2, . . . , Mg
}}

(9)
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2.2. Attack Model of the Real-Time Market

In the real-time market, due to the randomness and real-time dynamic characteristics
of load demand, the runtime state is different from the optimal value:

x∗ = x + ω∗ (10)

F∗ = H f x∗ = H f x + ω f (11)

where x∗ and F∗ are the state variables and line flow vector in real time. ω∗ and ω f are the
measurement noise. The attacker manipulates the electricity prices through modifying the
power flow measurement with a vector of false data. With the correction of power flow, the
economic dispatch of the power system will also change. The attack will succeed when the
following physical characteristics of the system are met:

∆F = H f ∆x = H f

[
∆LT , ∆PT

]T
(12)

The strategy equation of attackers in real-time electricity trading can be expressed
as follows:

∆
M

∑
i=1

Ug,itPg,it − ∆Lit + ∆Pbuy,it − ∆Psell,it = 0 (13)

∆Flt = H f ∆xt = |∆Pit| =
∣∣∆Pjt

∣∣ (14)

where ∆pg,it is the change in injection power at node i and Ug,it is the scale factor. ∆Pbuy,it
and ∆Psell,it are the change powers for buying and selling, respectively. ∆Pit and ∆Pjt
represent changes of power in node i and j, respectively. ∆Flt is the change in branch power
flow l. The LMP λlmp,t can be obtained through calculating the minimum cost added in the
power system:

λlmp,t = λre f ,τ +
∂Ploss,t

∂Pi,t
λre f ,τ + λcongestion,t (15)

where λre f ,τ is the reference marginal obtained from (9). ∂Ploss,t
∂Pi,t

λre f ,τ is the marginal loss
component. λcongestion,t is the congestion component, which is further explained. Pit

∗,
Ljt

∗, and Flt
∗ are defined as the optimal values of solution Pit, Ljt, and Flt observed in the

day-ahead market. P̂it and L̂jt are the real-time state variables. The economic dispatch
model can be obtained as follows:

minimize
Pg,it

N
∑

i=1

T
∑

t=1
Cit
(

P̂g,it + ∆P̂g,it + ∆Psell,it
)

subject to
N
∑

i=1

T
∑

t=1

(
∆P̂g,it + ∆Pbuy,it − ∆Psell,it

)
= 0

∆Pmin
g,it ≤ ∆P̂g,it ≤ ∆Pmax

g,it

N
∑

i=1

T
∑

t=1
∆Pit =

N
∑

j=1

T
∑

t=1
∆Ljt

∆Flt ≤ 0 ∀lcongset ∈
{

l+ : F̂lt ≥ Fmax
lt

}
∆Flt ≥ 0 ∀lcongset ∈

{
l− : F̂lt ≤ Fmin

lt
}

(16)

where ∆Pit = P̂it − P∗
it, ∆Ljt = L̂jt − L∗

jt. If the estimated power flow exceeds the line flow
limit, the line is defined as congested. ∆Fl is discussed during line congestion lcongset. The
real-time Lagrange function is described in (17).
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L′
Lagrange,t =

N
∑

i=1
Cit(∆Pit)−

N
∑

j=1
Cjt
(
∆Ljt

)
− λ

(
N
∑

i=1
∆Pit −

N
∑

j=1
∆Ljt

)
+

N
∑

i=1
µmax

it
(
∆Pit − ∆Pmax

it
)
+

N
∑

i=1
υmin

it
(
∆Pmin

it − ∆Pit
)
+ ∑

l∈l+
ηl+∆Flt + ∑

l∈l−
ηl−(−∆Flt)

(17)

where λcongestion,t = HT
jt∑

l
(ηl+ − ηl−). µmax

it and υmin
it are the multipliers of the upper and

lower limits of generator capacity. Solve (17) and calculate the Lagrange multiplier, and
λlmp,jt in the real-time market will be obtained in (18). In the DC lossless model, ∂Flt

∂Ljt
= Hl jt,

and then λlmp,jt can be obtained in (19).

λlmp,jt =
∂L′

Lagrange,t

∂Ljt
= λre f ,τ + ∑

l
(ηl+ − ηl−)

∂Flt
∂Ljt

(18)

λlmp,jt = λre f ,τ + HT
jt∑

l
(ηl+ − ηl−) (19)

where Hl jt is the element on the lth row and jth column of matrix Hjt. ηl+ and ηl− are the
multipliers of the maximum and minimum limits of power flow at line l, respectively. It is
clear that when ηl+ = ηl− and λlmp,jt = λre f ,τ , the congested routes have been alleviated.
Assuming the attacker purchases electricity Pl at bus i with prices λre f ,is in the current
market, and sells it at bus j with prices λre f ,js; then purchases equal quantities of electricity
at bus j with prices λlmp,jt in the real-time market and sells it at bus i with prices λlmp,it, the
profit of the attacker can be obtained when the value of the following formula is positive:

Profitatt =
(

λre f ,iτ − λre f ,jτ

)
Pl +

(
λlmp,jt − λlmp,it

)
Pl (20)

3. Behavior Model of Attackers and Defenders

In the attack and defense game model, attackers formulate allocation strategies for
attack resources to achieve higher economic benefits. The defender then reduces the loss
of the power grid to the minimum through the method of power flow distribution and
generator output dispatching. In this section, the payoff game model of attackers and
defenders with objective function are provided.

3.1. Attack Payoff Modeling

Electrical equipment is protected by hardware and software protection systems. The
ultimate goal of the attack is to cause varying degrees of damage, such as a power outage
within the system, through executing erroneous destructive variables on the system control.
The motive of the attacker is to pay little cost and obtain as much revenue as possible.
Usually, the rational attacker will choose the best strategy to achieve the target according
to the profit and loss principle. Then, the payoff for an attacker UA can be expressed
as follows:

max UA = max(Profitatt − ELatt) (21)

where ELatt is the expected loss when implementing an attack. In this paper, the illustrative
model in [27] is employed to establish the success attack function. The cost of attack efforts
can be described as follows:

ELatt = Ca1PEsc + Ca2PSuc|Esc (22)

where P{Escape detection}= exp
(
−A·D√

V

)
is the probability of an attacker escaping detection

when executing an attack. V is the number of known vulnerabilities for an attacker in the system.
A is the number of available exploits of vulnerabilities for the attacker. D is the selection number
of defenses by defenders against the attack. P{Success|Escape detection} = A2

A2+D2 represents



Symmetry 2024, 16, 156 7 of 22

the probability that an attack can be successfully executed without being detected. The
probability of obtaining a successful attack is as below.

PSuc = PEsc · PSuc|Esc= exp
(
− AN · DN√

VN

)
·
(

A2
N

A2
N + D2

N

)
(23)

VN , AN , and DN are influenced by the skill levels of attackers and defenders, respectively.
Ca1 and Ca2 are the costs of conducting attacks. Ca1 is the escaping detection cost that ties
to the technical difficulty and duration of protective measures against attacking targets. Ca2
is the succeeding attack cost, responding to a defense adjustment after an attack.

3.2. Defense Payoff Modeling

The defense reaction is made through readjusting the generator output to maintain
system balance. When it still cannot meet the load demand, measures of shedding loads
are taken to prevent cascading failures of the power grid and ensure the stable operation of
the power grid. The defense model is quantified with an objective function while expecting
the minimal cost of shedding loads and generator tripping. The defender’s payoff function
can be expressed as follows:

min UD = min
{
(CD + CG)PSuc + CM

(
PEsc − PSuc|Esc

)}
(24)

where CD and CG are the costs for load loss and generator tripping after the attack is
successful established. CM is the maintenance cost of protection against a successful
attack. The system operator minimizes the system operation cost considering operating
constraints (25)–(28).

0 ≤
N

∑
j=1

T

∑
t=1

Sjt ≤
N

∑
j=1

T

∑
t=1

(
Ljt + ∆Ljt

)
(25)

PG,it =
N

∑
i=1

T

∑
t=1

(1 − bG,it)PC
G , bG,it ∈ {0, 1} (26)

Pi =
N

∑
i=1

N

∑
j=1

ViVj
(

gij cos θij + bij sin θij
)

(27)

(Pi − ∆Pi)−
N

∑
i=1

N

∑
j=1

VibijVj
(
θij − ∆θij

)
= 0 (28)

(25)–(28) show the operating and capacity constraints of load and generator, where Sjt is the
shedding load of bus i at time t. θij = θi − θj is the voltage phase angle difference between
bus i and j. PG,it is the tripped generators of bus i at time t. PC

G is the capacity of generator
G. bG,it is a binary variable indicating whether the generator has tripped. Vi and Vi are
the plural voltages of bus i and bus j. Pi and ∆Pi are the active injection power and power
change of node i. bij and gij are the susceptance and conductance between bus i and j.

3.3. Hybrid Game Method

In this section, a hybrid game model is proposed to describe the interaction process of
attack and defense competition. The game model played over a finite state space, defined
as (S, ΩA, ΩD, UA, UD, pA, qD), with the players of attacker and defender. The components
in the game model are described as follows:

(1) ΩA = (ΩA1, ΩA2, . . . , ΩAn) represents the game strategy space of attackers;
(2) ΩD = (ΩD1, ΩD2, . . . , ΩDm) represents the game strategy space of defenders; n and

m are the numbers of offense and defense, respectively, and n, m ≥ 2;
(3) UA = (UA1, UA2, . . . , UAn) represents the payoff function of attackers corresponding

to the strategies of (ΩA, ΩD);
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(4) UD = (UD1, UD2, . . . , UDm) is the payoff function of defenders;
(5) pA = (pA1, pA2, . . . , pAn) is the probability of attackers corresponding to (ΩA, ΩD);
(6) qD = (qD1, qD2, . . . , qDm) is the probability of defenders

where S is the state space of the game.

3.3.1. Stackelberg Equilibrium

In the attack–defense confrontation, the attacker makes the strategy of obtaining
higher economic benefits with a lower cost of attacking. The defender takes the defense
strategy through reducing the loss. In the attack–defense confrontation, each player aims
to maximize their rewards while keeping the rewards of other players minimal. (21) and
(24) become a Stackelberg equilibrium problem.

Let β∗ be a solution for (21) and η∗ be a solution for (24). Then, the point (β∗, η∗)
becomes a Stackelberg equilibrium solution of the proposed game model, if for any (β, η)
with β ≥ 0 and η ≥ 0, the following conditions are satisfied:

max UA(β∗, η∗) ≥ max UA(β, η∗) (29)

min UD(η
∗, η∗

−, β∗) ≤ min UD(η, η∗
−, β∗) (30)

where η∗
− is the other equilibrium strategies. When all game participants’ strategies are in

Stackelberg balance, the effectiveness of all players’ profits reach the maximum, and any
participants cannot achieve greater benefits through changing their own strategies alone.

3.3.2. Markov Game Solution

In the network attack–defense confrontation, different participants have different
levels of security knowledge, leading to different decision making. Meanwhile, with the
time going on and the driving force of the learning mechanism, low-income participants
continue to learn the strategies of the high-income participants and improve their behaviors.
The dynamic game process of the attack and defense depends on the previous game
process and the actions taken by all players. In this section, we use the minmax method
of the Markov game and Q-learning algorithm in [28] with expected immediate rewards
and expected long-term rewards equations to update the payoff functions. The optimal
discounted sum of expected rewards for the attacker under a pair of strategies (ΩA, ΩD)
can be represented as follows:

QA(s, ΩA, ΩD) = RA(s, ΩA, ΩD) + γ∑
s′

T
(
s, ΩA, ΩD, s′

)
VA
(
s′
)

(31)

VA
(
s′
)
= min

ΩD
max

pA
QA(s, ΩA, ΩD)pA (32)

where s, s′ ∈ S. 0 ≤ γ ≤ 1 is a discount factor, which gives the discount factor of future
rewards on the optimal decision. RA(s, ΩA, ΩD) and RD(s, ΩA, ΩD) are the expected
immediate rewards for the attacker and defender in state s. VA(s′) is the payoff function for
the attacker in state s′. Similarly, the optimal discounted sum of expected rewards function
for the defender is obtained:

QD(s, ΩA, ΩD) = RD(s, ΩA, ΩD) + γ∑
s′

T
(
s, ΩA, ΩD, s′

)
VD
(
s′
)

(33)

VD
(
s′
)
= min

ΩA
max

qD
QD(s, ΩA, ΩD)qD (34)

where QA(s, ΩA, ΩD) and QD(s, ΩA, ΩD) are the expected long-term rewards for the
attacker and defender in state s. VD(s′) is the payoff function for the defender in state s′.
T(s, ΩA, ΩD, s′) is the probability of the state transition from s to s′.
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3.3.3. Distributed Learning Algorithm

The payoff function is updated and iterated through the Markov game algorithm.
However, each iteration depends on the reward obtained at the current time step, ignoring
previous rewards obtained. To find the optimal equilibrium of the Markov game, in this
subsection, a distributed learning algorithm is provided. The algorithm updates the mixed
strategy vectors according to the framework of learning automata as below.

q(ω)(t + 1) = q(ω)(t) + εrω(t)
(

e(ω)(t)− q(ω)(t)
)

(35)

In this subsection, each player ω firstly initializes the strategy vector q(ω)(t) at time
instant t. Then, each player randomly and independently selects a strategy based on the
probability distribution of their strategy vector. The set of actions taken by players at
different times results in a reward for each player expressed as rω(t). ε is an arbitrarily
small positive constant. e(ω)(t) is a column vector with a length equal to the size of the
player’s action set ω. The updated strategies are employed in the Markov game equations
and Stackelberg game equations for the optimal equilibrium.

4. Design of the ADEG strategy

In the game process, the probability of both sides adopting different strategies varies.
As the attack is random and the probability changes with time under a learning mechanism,
the selection of attack/defense strategy forms a dynamic change process. In order to simu-
late the dynamic game process and obtain the optimal defense strategy against differential
attack strategies, this section designs an attack–defense evolutionary game (ADEG) model
to discuss the dynamic changes in the probability of players with complete and partial
system information.

4.1. ADEG Model and Analysis
4.1.1. ADEG Model Construction

In this section, it is assumed that the attacker selects two attack strategies dynamically,
and the defender selects two strategies for defense accordingly. Define (auv, buv) as the
attack and defense payoffs when they take (ΩAu, ΩDv). The dynamic change rate is
expressed by the solution of the replication dynamic equation.

(1) Profits of all the players:

UAu =
m

∑
v=1

qDvauv, UA =
n

∑
u=1

pAuUAu (36)

UDv =
n

∑
u=1

pAubuv, UD =
m

∑
v=1

qDvUDv (37)

where UAu and UDv are the expected profits for the attacker and defender. UA and UD are
the corresponding average profits.

(2) Replication dynamic equations for the profits:

dpAu
dt

= pAu
(
UAu − UA

)
(38)

dqDv
dt

= qDv
(
UDv − UD

)
(39)

(3) Stable equilibrium solution: {
dpAu

dt = 0
dqDv

dt = 0
(40)
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4.1.2. Evolutionary Stable Solution

In this section, a specific example with four strategies (ΩA1, ΩD1), (ΩA1, ΩD2), (ΩA2,
ΩD1), and (ΩA2, ΩD2) are given for the solution of evolutionary stable equilibrium. The
attacking and defending sides choose strategies with different probabilities, and generate
different benefits. The game tree is shown in Figure 1.
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The process of solution for the defenders and attackers can be described as follows:

(1) Expected and average profit of a defender:

UD1 = pA1b11 + pA2b21 (41)

UD2 = pA1b12 + pA2b22 (42)

UD = qD1UD1 + qD2UD2 (43)

where UD1 and UD2 represent the expected profits in defense strategies 1 and 2, respectively;
UD represents the average profit of the defender. The replication dynamic equation of the
defender over time can be represented by (44).{

dqD1(t)
dt = qD1(UD1 − UD)

dqD2(t)
dt = qD2(UD2 − UD)

(44)

(2) Expected and average profit of an attacker:

UA1 = qD1a11 + qD2a21 (45)

UA2 = qD1a12 + qD2a22 (46)

UA = pA1UA1 + pA2UA2 (47)

where UA1 and UA2 are the expected profits in attack strategies 1 and 2, respectively; UA
represents the average profit of the attacker. The replication dynamic equation of the
attacker over time can be represented by (48).{

dpA1(t)
dt = pA1(UA1 − UA)

dpA2(t)
dt = pA2(UA2 − UA)

(48)
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(3) Based on the proposed ADEG model, when

{
dqD1(t)

dt = − dqD2(t)
dt

dpA1(t)
dt = − dpA2(t)

dt

is satisfied, the

solution can be obtained only through calculating

{
dqD1(t)

dt = 0
dpA1(t)

dt = 0
. Through the equa-

tions, five sets of solutions for pA1 and qD1 can be obtained in Table 1.

Table 1. Selection of the attack and defense strategies for solutions.

RDE Solutions Defense Strategy With
Probability Attack Strategy With

Probability

pA1 = 0, qD1 = 0 ΩD1 0 ΩA1 0
pA1 = 0, qD1 = 1 ΩD2 1 ΩA1 0
pA1 = 1, qD1 = 0 ΩD1 0 ΩA2 1
pA1 = 1, qD1 = 1 ΩD2 1 ΩA2 1

pA1 = b22−b21
b11−b21−b12+b22

,
qD1 = a22−a21

a11−a21−a12+a22

ΩD1,
ΩD2

( a22−a21
a11−a21−a12+a22

,
1 − a22−a21

a11−a21−a12+a22
)

ΩA1, ΩA2
( b22−b21

b11−b21−b12+b22
,

1 − b22−b21
b11−b21−b12+b22

)

4.2. ADEG-Based Optimal Defense Strategy Selection

In addition to the defense strategy that the defender can choose according to the attack
probability, it can also influence the attack probability selection and send messages to the
attacker. In this section, the dynamic relationship between the two players is discussed
through the evolutionary stable equilibrium solutions. The replication dynamic model
with three situations is shown in Figure 2.
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Figure 2. The replication dynamic model curve. (a) The variation of the defender when
p1 < d22−d21

d11−d21−d12+d22
. (b) The variation of the defender when p1 > d22−d21

d11−d21−d12+d22
. (c) The variation of

the defender when p1 = d22−d21
d11−d21−d12+d22

. (d) The variation of the attacker when q1 > a22−a21
a11−a21−a12+a22

.
(e) The variation of the attacker when q1 < a22−a21

a11−a21−a12+a22
. (f) The variation of the attacker when

q1 = a22−a21
a11−a21−a12+a22

.

(1) For the defender, when pA1 = b22−b21
b11−b21−b12+b22

, with any probability selection of defense

strategy qD1, there is dqD1(t)
dt = 0. However, once the value of pA1 shifts, dqD1(t)

dt will
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change dramatically, indicating that the state represented by the graph is not stable;
once pA1 ̸= b22−b21

b11−b21−b12+b22
, qD1 = 0 and qD1 = 1 are two stable states. According

to these, when pA1 > b22−b21
b11−b21−b12+b22

, qD1 = 0 is the evolution stable strategy; when

pA1 < b22−b21
b11−b21−b12+b22

, qD1 = 1 is the strategy.

(2) For the attacker, when qD1 > a22−a21
a11−a21−a12+a22

, pA1 = 1 is the strategy; when

qD1 < a22−a21
a11−a21−a12+a22

, pA1 = 0 is the strategy; when qD1 = a22−a21
a11−a21−a12+a22

, for any pA1,

there is dpA1(t)
dt = 0. However, once the value of qD1 is shifted, dpA1(t)

dt will undergo
significant changes, leading to an unstable state.

Define pA, qD as the selection probability of attack strategies and defense strategies.
After the update of the proposed hybrid game method above, the final optimal objective
function of game model can be obtained as follows:

maxpA[U∗
A(β∗, η∗)] ≥ maxpA[U∗

A(β, η∗)] (49)

minqD[U∗
D(η

∗, η∗
−, β∗)] ≤ minqD[U∗

D(η, η∗
−, β∗)] (50)

The attack–defense strategies are developed based on simulated probabilities, provid-
ing a new defense strategy selection probability in advance to cope with possible attack
situations. The simplified process of obtaining the optimal defense strategy is shown
in Algorithm 1.

Algorithm 1. Process of obtaining the optimal defense strategy

Phase 1-:
(1) Define the state space of power grid S.

(2) Define attacker’s and defender’s strategy space ΩA, ΩD.

(3) Derive state transition matrix T(s, ΩA, ΩD, s′).

(4) Find the Stackelberg equilibrium solution (β∗, η∗).

(5) Obtain the expected rewards from the attacker and defender RA(s, ΩA, ΩD), RD(s, ΩA, ΩD)
according to (β∗, η∗).

Phase 2-

(1) Set initial

QA(s, ΩA, ΩD), QD(s, ΩA, ΩD), VA(s′), VD(s′)

(2) Initialize q(ω)(0).

while Not Converged do
Collect the payoff rω(t)
Update the strategy q(ω)(t + 1) = q(ω)(t) + εrω(t)

(
e(ω)(t)− q(ω)(t)

)
Check Convergence
if Converged then

break
end if

end while

(3) Return the strategy vector q(ω)(t).

(4) Update QA(s, ΩA, ΩD), QD(s, ΩA, ΩD) according to (31), (33).

(5) Update VA(s′), VD(s′) according to (32), (34).

(6) Define the ADEG model.

(7) Calculate the replication dynamic equation of both of the players.

(8) Derive the optimal Stackelberg equilibrium solution according to (49), (50).

(9) Derive the final optimal strategy of the defenders through solving the equilibrium solution.
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The simplified process of obtaining the optimal network defense strategy based on the
hybrid game algorithm is shown in Figure 3.
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5. Discussion

In this section, a simulation case is constructed to demonstrate the electricity markets
attack case in an SG with MGs connected. We will verify the proposed network attack and
defense game model and discuss the optimal operation. In this section, we introduced
simulations using IEEE 14 bus systems and IEEE 118 bus systems.

5.1. Optimal Attack–Defense Strategies Game Model

According to the above model, system dynamics are used to verify the effect of
the ADEG model. In this paper, the evolutionary stable solution is in four situations
of pA = 0, qD = 0; pA = 0, qD = 1; pA = 1, qD = 0; and pA = 1, qD = 1. The
two attack–defense strategies selection with different initial probabilities are listed in
Tables 2 and 3 as below.

Table 2. Attack strategies selection.

Initial Attack Strategies Attacked Line
Power Flow (MW)

Attack Level (%) Initial Probability
Without Attack With Attack

ΩA1 2–3 54.7 27.35 50 pA = 1
ΩA2 2–3, 4–5 54.7 49.3 10 pA = 0

ΩA1, ΩA2 2–3, 4–5 54.7 43.9 20 pA = 0.4
ΩA1, ΩA2 2–3 54.7 16.41 80 pA = 0.6
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Table 3. Defense strategies selection.

Initial Defense Strategies
Detection Mode Selection

Initial Probability
MGs in Grid-Connected Mode Load Shedding

ΩD1 with without qD = 1
ΩD2 without with qD = 0

ΩD1, ΩD2 with with qD = 0.5
ΩD1, ΩD2 with with qD = 0.6

In the real-time market, prices will change after modifying the estimated line flow.
The system power will be reduced below the thermal limit of the transmission line, and
congested lines will be alleviated. The impact of different attack probabilities on LMP is
shown in Figure 4. The proposed method will be validated using the MATPOWER 4.0
software package for age verification [29].
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For further comparison, 100,000 experiments are generated in both transmission lines
2–3 and 4–5 of the IEEE-14 bus system. The ratio of attacks on two routes is 1:1. The
detection performances of the four attack strategies are discussed and compared in Table 4.

Table 4. Final detection result with ratio of 1:1.

Initial Attack Strategies Detection Delay Detection Rate

ΩA1 28 85.03%
ΩA2 12 90.98%

ΩA1, ΩA2 9 92.01%
ΩA1, ΩA2 10 95.35%

Based on the proposed game methods, the optimal payoff value of the two players
under different game methods can be calculated and shown as follows.

5.1.1. Players with Complete Information

a. IEEE 14-bus system

The proposed method was tested on an improved IEEE 14 bus testing system, where
some of the generators were replaced by MGs with distributed and renewable generator
units as well as storage units. The power value and demand are maintained under the
same basic conditions as the IEEE standard 14 bus structure [30]. The system consists of
one utility grid generator, four MGs, and eleven loads. MGs are located on buses 2, 3, 6,
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and 8, with 11 loads located on buses 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, and 14. The game solution
when the players obtain complete information is shown in Table 5.

Table 5. Optimal attack–defense payoff value in 14-bus.

Initial Probabilities
Attack Payoff ($) Defense Payoff ($)

Profitatt ELatt CD + CG CM

Stackelberg
method

pA = 0 qD = 0 29.38 6.35 27.32 + 0.85 5.06
pA = 0 qD = 1 59.82 7.31 37.01 + 20.21 12.10
pA = 1 qD = 0 67.33 13.06 32.09 + 10.50 14.88
pA = 1 qD = 1 36.48 12.45 48.53 + 1.21 9.35

Markov
Algorithm

pA = 0 qD = 0 34.41 8.25 28.44 + 0.91 5.73
pA = 0 qD = 1 63.12 8.81 39.33 + 20.45 13.00
pA = 1 qD = 0 37.52 12.50 49.44 + 1.81 10.01
pA = 1 qD = 1 69.41 13.86 33.09 + 11.23 14.90

Proposed
algorithm

pA = 0 qD = 0 33.31 7.05 27.00 + 0.71 5.01
pA = 0 qD = 1 62.05 7.02 36.52 + 19.11 11.99
pA = 1 qD = 0 36.88 10.50 46.55 + 1.05 9.12
pA = 1 qD = 1 68.22 11.12 30.09 + 9.15 12.76

From Table 5, it can be concluded that:

(1) When the attacker chooses ΩA1, the defender will choose ΩD1 to defend as the cost of
CD in ΩD2 is high;

(2) When the attacker chooses ΩA2, the defender will choose ΩD2 to defend as the cost
CG, CM in ΩD1 is high;

(3) To achieve the best defense effect, the defender will choose ΩD1 when the attacker
selects ΩA1, and the defender will choose ΩD2 when the attacker selects ΩA2;

(4) When the players choose the Markov game algorithm, the profit values both increase,
but the costs for both the players are also increased;

(5) When the distributed learning algorithm is employed, the costs for two players are
decreased obviously. The optimal payoff values are obtained.

Table 6 displays the different power generation outputs of MGs under different initial
probabilities in the IEEE-14 system. Pg2~8 represent the generators of MG2~MG8:

(1) When the defender chooses ΩD1, the power generation costs of MG2 and MG3 are
low, thus the power generation is close to full output. The power generation of MG8
is lower, and MG6 keeps maintaining an isolated mode as the power generation cost
is high.

(2) When the attacker chooses ΩD2, the outputs of MG2 and MG6 remain at the same
level of value. MG2 needs to purchase electricity to meet sudden changes in load
demand, and MG8′s output decreases to prevent a sharp increase in the cost of the
entire power system. It is obvious that when MG3 cannot purchase electricity, the
output of MG8 increases sharply.

Table 6. MG outputs (MW) under different initial probabilities in 14-bus.

Pg2 Pg3 Pg6 Pg8

no attack 28.01 28.92 0.04 11.93
pA = 0, qD = 0 28 33.97 0.01 7.16
pA = 0, qD = 1 28 25.32 0.01 15.93
pA = 1, qD = 0 28 40.01 0.01 1.72
pA = 1, qD = 1 28 30 0 11.94

b. IEEE 118-bus system

The IEEE 118-bus system includes 19 generators, 177 transmission lines, 9 transformers,
and 91 loads [31]. The generator G1 is the reference bus, and G2–G19 that connected to
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buses 10, 12, 25, 26, 31, 46, 49, 54, 59, 61, 65, 66, 69, 80, 87, 89, 100, 103, and 111 are replaced
by MGs. The game solution when the players obtain complete information is shown
in Table 7.

Table 7. Optimal attack–defense payoff value in 118-bus.

Initial Probabilities
Attack Payoff ($) Defense Payoff ($)

Profitatt ELatt CD + CG CM

Stackelberg
method

pA = 0 qD = 0 217.42 40.35 200.93 + 8.62 37.21
pA = 0 qD = 1 415.31 46.52 215.66 + 140.37 76.06
pA = 1 qD = 0 288.88 79.31 274.59 + 9.33 40.15
pA = 1 qD = 1 428.51 80.92 212.11 + 70.38 80.75

Markov
Algorithm

pA = 0 qD = 0 235.78 42.62 202.11 + 9.31 38.40
pA = 0 qD = 1 438.42 48.11 227.72 + 142.15 78.11
pA = 1 qD = 0 310.53 80.56 280.30 + 10.15 42.53
pA = 1 qD = 1 451.66 83.33 223.11 + 70.56 81.15

Proposed
algorithm

pA = 0 qD = 0 230.69 30.00 189.12 + 7.78 46.35
pA = 0 qD = 1 421.83 32.45 205.38 + 130.96 78.12
pA = 1 qD = 0 300.96 68.91 260.45 + 8.89 48.49
pA = 1 qD = 1 440.72 70.83 208.30 + 68.55 89.70

From Table 7, it can be concluded that:

(1) Compared with the IEEE-14 system, the effect of the distributed learning algorithm in
the IEEE-118 system is better, but the computational complexity increases, thus the
value of CM is higher;

(2) The IEEE-118 system is more complex with many generators and loads, and CD and
CG are higher, but the profit of the attacker is lower, and the defense effect is better;

(3) The difference between defense cost is smaller in the IEEE-118 system, and the pro-
posed game method is numerically better than other game methods at the equilibrium
point, indicating that the method proposed in this paper is suitable for complex
large systems.

5.1.2. Players with Partial Information

The optimal payoff value for the two players in partial information with system
topology is shown in Table 8. The game solution is obtained in both the IEEE-14 system and
the IEEE-118 system. Table 9 shows the generation outputs of MGs considering different
game methods.

Table 8. Optimal attack–defense payoff value.

Initial Probabilities
Attack Payoff ($) Defense Payoff ($)

Profitatt ELatt CD + CG CM

IEEE-14
system

pA = 0.4 qD = 0.5 28.12 5.11 24.00 + 6.15 7.12
pA = 0.4 qD = 0.6 36.33 4.89 28.30 + 23.52 13.00
pA = 0.6 qD = 0.5 29.00 8.32 44.12 + 8.35 11.54
pA = 0.6 qD = 0.6 40.15 9.06 29.11 + 15.30 14.98

IEEE-118
system

pA = 0.4 qD = 0.5 189.45 20.83 170.35 + 14.56 50.34
pA = 0.4 qD = 0.6 405.61 21.42 200.11 + 160.50 84.12
pA = 0.6 qD = 0.5 289.33 60.35 230.25 + 16.35 50.66
pA = 0.6 qD = 0.6 410.54 68.44 198.45 + 82.31 94.30
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Table 9. MG outputs (MW) under different initial probabilities in 118-bus.

Pg2 Pg3 Pg6 Pg8

no attack 28.01 28.92 0.04 11.93
pA = 0.4, qD = 0.5 28 29.99 0.01 12.58
pA = 0.4, qD = 0.6 28.01 29.99 0.04 13.15
pA = 0.6, qD = 0.5 28 40.01 0.01 11.68
pA = 0.6, qD = 0.6 28.01 40.01 0.04 14.10

From Tables 8 and 9, it can be concluded that:

(1) When the players have partial information, payoff on both sides is reduced, as the
attack is not established completely and the defense is not using the optimal strategy;

(2) In this situation, the cost of CG is higher than CD, and defenders choose to readjust
the generator output instead of shedding loads;

(3) When the mixed strategy is chosen, the defense effect of the IEEE-118 system is better
than the IEEE-14 system because the generator and load are more complex.

For maximum attack–defense benefits, the selection of the optimal defense strategy
should refer to the continuous evolution of attack and defense probability. In the next
subsection, the final defense strategy is established according to the ADEG model.

5.2. ADEG-Based Optimal Defense Strategy Selection
5.2.1. Effectiveness of the ADEG Model

The purpose of this case is to verify the influence of the dynamic evolution of proba-
bility on the strategy, and the selection of the optimal defense strategies under different
initial probabilities shown above. Based on the evolutionary stable solutions, experimental
results of the evolution trend can be obtained as in Figure 5a–j.
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(1) From Figure 5a–d, when pA = 1 or pA = 0, the final selection probability of the
attacker is always 1 or 0. Similarly when qD = 1 or qD = 0, the final selection
probability of the defender is always 1 or 0;

(2) From Figure 5e–h, when the mixed probability strategies are selected, the stable solu-
tion will be b22−b21

b11−b21−b12+b22
= 0.51 and a22−a21

a11−a21−a12+a22
= 0.59. Then, when the initial

attack probability is larger than 0.51, the final selection probability of the defender
will eventually change to 1; when the initial attack probability is less than 0.51, the
final selection probability of the defender will eventually change to 0. Similarly for
the attacker, when the initial defense probability is larger than 0.59, the final selection
probability of the attacker will eventually change to 1; when the initial defense proba-
bility is less than 0.59, the final selection probability of the attacker will eventually
change to 0;

(3) To further illustrate the dynamic effect of ADEG model, and verify the probability that
the two players can be affected by each other, the following scenarios are proposed as
shown in Figure 5i,j:

(a) Situation 1: the initial probability of pA and qD are selected as fixed values of
0.2 and 0.9. When t = 5 s, we make pA suddenly rise to 0.8, and observe the
variation of qD;

(b) Situation 2: the initial probability of pA and qD are selected as fixed values
of 0.5 and 0. When t = 5 s, we make qD suddenly rise to 0.9, and observe the
variation of pA.

5.2.2. Final Defense Strategies Selection

From the cases, the conclusion can be drawn that the selection probability of attack and
defense strategy will change in real time, and the two players will change the probability of
the attack–defense strategy choice considering the current game situation. The purpose of
the defender is to select the final optimal defense strategies according to the evolutionary
stable solutions. Define ΩD1 = (qD = 0), ΩD2 = (qD = 1), then the final optimal defense
strategies can be chosen as follows:

(1) For the fixed value of the evolutionary stable solutions, the final optimal defense
strategies are selected in Table 10;

(2) For the mixed selection of initial probabilities, the final optimal defense strategies are
selected in Table 11;

(3) When the mixed selection of initial probabilities changes in real time, the final optimal
defense strategies are selected in Table 12;
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(4) To illustrate the effectiveness of the ADEG model in selecting strategies, dynamic
situations with a constant value of initial probabilities have been shown in Table 13.

Table 10. Optimal defense strategies selection 1.

Initial Probabilities Evolutionary Stable Solutions Final Defense Strategies

pA = 0, qD = 0 pA = 0, qD = 0 ΩD1
pA = 0, qD = 1 pA = 0, qD = 1 ΩD2
pA = 1, qD = 0 pA = 1, qD = 0 ΩD1
pA = 1, qD = 1 pA = 1, qD = 1 ΩD2

Table 11. Optimal defense strategies selection 2.

Initial Probabilities Evolutionary Stable
Solutions Final Defense Strategies

pA = 0.4, qD = 0.5 pA = 0, qD = 0 ΩD1
pA = 0.4, qD = 0.6 pA = 0, qD = 1 ΩD2
pA = 0.6, qD = 0.5 pA = 1, qD = 0 ΩD1
pA = 0.6, qD = 0.6 pA = 1, qD = 1 ΩD2

Table 12. Optimal defense strategies selection 3.

Initial Probabilities Probabilities Change Final Defense Strategies

pA = 0.4, qD = 0.5 pA = 0.5 → 0.9 ΩD1 → ΩD2
pA = 0.4, qD = 0.6 pA = 0.6 → 0.2 ΩD2 → ΩD1
pA = 0.6, qD = 0.5 pA = 0.5 → 0.9 ΩD1 → ΩD2
pA = 0.6, qD = 0.6 pA = 0.6 → 0.2 ΩD2 → ΩD1

Table 13. Optimal defense strategies selection 4.

Initial Probabilities Probabilities Change Final Defense Strategies

pA = 0.4 (fixed value), qD = 0.5 pA = 0.4 → 0.9 ΩD1 → ΩD2
pA = 0.4 (fixed t value), qD = 0.6 pA = 0.4 → 0.1 ΩD1 → ΩD1
pA = 0.6 (fixed value), qD = 0.5 pA = 0.6 → 0.1 ΩD2 → ΩD1
pA = 0.6 (fixed value), qD = 0.6 pA = 0.6 → 0.9 ΩD2 → ΩD2

6. Conclusions

To analyze the dynamic game behavior of attackers and defenders in the electricity
markets and choose the optimal defense strategy for the defender, this paper has carried
out the following work through using hybrid game methods: firstly, the power market
model with MG participation while considering FDI attack is established using the Nash
equilibrium method. Influence on the impact of the optimization output for MGs energy
management is discussed. Meanwhile, the behaviors of both the attackers and defenders
are discussed. The payoff functions of the two players are constructed and solved via the
Stackelberg equilibrium algorithm. The Markov game algorithm and distributed learning
algorithm are used to update the payoff function; secondly, evolutionary game theory is
used to discuss the dynamic game behavior of the two players, according to the analysis of
the attack–defense probability. The optimal defense strategy is selected according to the
dynamic changing probability; finally, based on the evolutionary stability strategy, the final
optimal defense strategies selection algorithm is designed. The strategies are considered
with different initial attack probabilities and evolutionary stable solutions. Modified IEEE
standard bus systems are illustrated to certify the effectiveness of the proposed model. The
simulation results have shown the game relationship between the benefits of both attack
and defense sides, and the important role of the optimal output of MGs. In addition, the
proposed ADEG model is proved to be effective with different initial probabilities, and the
optimal defense strategy can be derived from the evolutionary model.
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In the future, defense strategy selection when attacks are unpredictable will be studied.
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2. Habibi, M.R.; Baghaee, H.R.; Blaabjerg, F.; Dragičević, T. Secure MPC/ANN-Based False Data Injection Cyber-Attack Detection

and Mitigation in DC Microgrids. IEEE Syst. J. 2022, 16, 1487–1498. [CrossRef]
3. Li, B.; Lu, R.; Xiao, G.; Li, T.; Choo, K.-K.R. Detection of False Data Injection Attacks on Smart Grids: A Resilience-Enhanced

Scheme. IEEE Trans. Power Syst. 2021, 37, 2679–2692. [CrossRef]
4. Rodríguez, M.; Betarte, G.; Calegari, D. A Process Mining-based approach for Attacker Profiling. In Proceedings of the 2021 IEEE

URUCON, Montevideo, Uruguay, 24–26 November 2021; pp. 425–429.
5. Sandal, Y.S.; Pusane, A.E.; Kurt, G.K.; Benedetto, F. Reputation Based Attacker Identification Policy for Multi-Access Edge

Computing in Internet of Things. IEEE Trans. Veh. Technol. 2020, 69, 15346–15356. [CrossRef]
6. Rappoport, J.S. The Problem of Approach of Controlled Objects in Dynamic Game Problems with a Terminal Payoff Function.

Cybern. Syst. Anal. 2020, 56, 820–834. [CrossRef]
7. Zhang, B.; Dou, C.; Yue, D.; Park, J.H.; Zhang, Y.; Zhang, Z. Game and Dynamic Communication Path-Based Pricing Strategies

for Microgrids under Communication Interruption. IEEE/CAA J. Autom. Sin. 2023, 10, 1032–1047. [CrossRef]
8. Aydeger, A.; Manshaei, M.H.; Rahman, M.A.; Akkaya, K. Strategic Defense Against Stealthy Link Flooding Attacks: A Signaling

Game Approach. IEEE Trans. Netw. Sci. Eng. 2021, 8, 751–764. [CrossRef]
9. Liu, Z.; Wang, L. Defense Strategy Against Load Redistribution Attacks on Power Systems Considering Insider Threats. IEEE

Trans. Smart Grid 2021, 12, 1529–1540. [CrossRef]
10. Pirani, M.; Nekouei, E.; Sandberg, H.; Johansson, K.H. A Graph-Theoretic Equilibrium Analysis of Attacker-Defender Game on

Consensus Dynamics under H2 Performance Metric. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1991–2000. [CrossRef]
11. Li, Y.; Bai, S.; Gao, Z. A Multi-Domain Anti-Jamming Strategy Using Stackelberg Game in Wireless Relay Networks. IEEE Access

2020, 8, 173609–173617. [CrossRef]
12. Jakóbik, A. Stackelberg Game Modeling of Cloud Security Defending Strategy in the Case of Information Leaks and Corruption.

Simul. Model. Pract. Theory 2020, 103, 102071. [CrossRef]
13. Chen, Z.; Cui, G.; Zhang, L.; Yang, X.; Li, H.; Zhao, Y.; Ma, C.; Sun, T. Optimal Strategy for Cyberspace Mimic Defense Based on

Game Theory. IEEE Access 2021, 9, 68376–68386. [CrossRef]
14. Zhou, Y.; Cheng, G.; Zhao, Y.; Chen, Z.; Jiang, S. Toward Proactive and Efficient DDoS Mitigation in IIoT Systems: A Moving

Target Defense Approach. IEEE Trans. Ind. Inform. 2022, 18, 2734–2744. [CrossRef]
15. Zhang, Z.; Huang, S.; Chen, Y.; Li, B.; Mei, S. Cyber-Physical Coordinated Risk Mitigation in Smart Grids Based on Attack-Defense

Game. IEEE Trans. Power Syst. 2022, 37, 530–542. [CrossRef]
16. Emadi, H.; Clanin, J.; Hyder, B.; Khanna, K.; Govindarasu, M.; Bhattacharya, S. An Efficient Computational Strategy for Cyber-

Physical Contingency Analysis in Smart Grids. In Proceedings of the 2021 IEEE Power & Energy Society General Meeting
(PESGM), Washington, DC, USA, 26–29 July 2021; pp. 1–5.

17. Shi, Y.; Rong, Z. Analysis of Q-Learning Like Algorithms Through Evolutionary Game Dynamics. IEEE Trans. Circuits Syst. II
Express Briefs 2022, 69, 2463–2467. [CrossRef]

18. Zhang, H.; Tan, J.; Liu, X.; Huang, S.; Hu, H.; Zhang, Y. Cybersecurity Threat Assessment Integrating Qualitative Differential and
Evolutionary Games. IEEE Trans. Netw. Serv. Manag. 2022, 19, 3425–3437. [CrossRef]

19. Chen, G.; Yu, Y. Convergence Analysis and Strategy Control of Evolutionary Games with Imitation Rule on Toroidal Grid. IEEE
Trans. Autom. Control. 2023, 68, 8185–8192. [CrossRef]

20. Zhang, B.; Dou, C.; Yue, D.; Zhang, Z.; Zhang, T. A Packet Loss-Dependent Event-Triggered Cyber-Physical Cooperative Control
Strategy for Islanded Microgrid. IEEE Trans. Cybern. 2021, 51, 267–282. [CrossRef] [PubMed]

21. Monica, P.; Kowsalya, M.; Guerrero, J.M. Logarithmic droop-based decentralized control of parallel converters for accurate
current sharing in islanded DC microgrid applications. IET Renew. Power Gener. 2021, 15, 1240–1254.

https://doi.org/10.1109/TSG.2021.3095896
https://doi.org/10.1109/JSYST.2021.3086145
https://doi.org/10.1109/TPWRS.2021.3127353
https://doi.org/10.1109/TVT.2020.3040105
https://doi.org/10.1007/s10559-020-00303-z
https://doi.org/10.1109/JAS.2023.123138
https://doi.org/10.1109/TNSE.2021.3052090
https://doi.org/10.1109/TSG.2020.3023426
https://doi.org/10.1109/TNSE.2020.3035964
https://doi.org/10.1109/ACCESS.2020.3025160
https://doi.org/10.1016/j.simpat.2020.102071
https://doi.org/10.1109/ACCESS.2021.3077075
https://doi.org/10.1109/TII.2021.3090719
https://doi.org/10.1109/TPWRS.2021.3091616
https://doi.org/10.1109/TCSII.2022.3161655
https://doi.org/10.1109/TNSM.2022.3166348
https://doi.org/10.1109/TAC.2023.3291957
https://doi.org/10.1109/TCYB.2019.2954181
https://www.ncbi.nlm.nih.gov/pubmed/31841428


Symmetry 2024, 16, 156 22 of 22

22. Mohammadhassani, A.; Teymouri, A.; Mehrizi-Sani, A.; Tehrani, K. Performance Evaluation of an Inverter-Based Microgrid
Under Cyberattacks. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE),
Budapest, Hungary, 2–4 June 2020. [CrossRef]

23. Liu, C.; Zhou, M.; Wu, J.; Long, C.; Kundur, D. Financially Motivated FDI on SCED in Real-Time Electricity Markets: Attacks and
Mitigation. IEEE Trans. Smart Grid 2019, 10, 1949–1959. [CrossRef]

24. Hasankhani, A.; Hakimi, S.M. Stochastic energy management of smart microgrid with intermittent renewable energy resources in
electricity market. Energy 2021, 219, 119668. [CrossRef]

25. Razmi, P.; Buygi, M.O.; Esmalifalak, M. A Machine Learning Approach for Collusion Detection in Electricity Markets Based on
Nash Equilibrium Theory. J. Mod. Power Syst. Clean Energy 2021, 9, 170–180. [CrossRef]

26. Dou, C.; Yue, D.; Li, X.; Xue, Y. Mas-based management and control strategies for integrated hybrid energy system. IEEE Trans.
Ind. Inform. 2016, 12, 1332–1349. [CrossRef]

27. Major, J.A. Advanced techniques for modeling terrorism risk. J. Risk Financ. 2002, 4, 15–24. [CrossRef]
28. Ma, C.Y.T.; Yau, D.K.Y.; Lou, X.; Rao, N.S. Markov Game Analysis for Attack-Defense of Power Networks under Possible

Misinformation. IEEE Trans. Power Syst. 2012, 28, 1676–1686. [CrossRef]
29. Zimmerman, R.D.; Murillo-Sanchez, C.E.; Thomas, R.J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for

Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19. [CrossRef]
30. Foo Eddy, Y.S.; Gooi, H.B.; Chen, S.X. Multi-agent system for distributed management of microgrids. IEEE Trans. Power Syst.

2015, 30, 24–34. [CrossRef]
31. Hassan, M.H.; Kamel, S.; El-Dabah, M.A.; Khurshaid, T.; Domínguez-García, J.L. Optimal Reactive Power Dispatch with

Time-Varying Demand and Renewable Energy Uncertainty Using Rao-3 Algorithm. IEEE Access 2021, 9, 23264–23283. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/SoSE50414.2020.9130524
https://doi.org/10.1109/TSG.2017.2784366
https://doi.org/10.1016/j.energy.2020.119668
https://doi.org/10.35833/MPCE.2018.000566
https://doi.org/10.1109/TII.2016.2569506
https://doi.org/10.1108/eb022950
https://doi.org/10.1109/TPWRS.2012.2226480
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2014.2322622
https://doi.org/10.1109/ACCESS.2021.3056423

	Introduction 
	Electricity Markets Attack Model 
	Electricity Markets Model with MGs 
	Attack Model of the Real-Time Market 

	Behavior Model of Attackers and Defenders 
	Attack Payoff Modeling 
	Defense Payoff Modeling 
	Hybrid Game Method 
	Stackelberg Equilibrium 
	Markov Game Solution 
	Distributed Learning Algorithm 


	Design of the ADEG strategy 
	ADEG Model and Analysis 
	ADEG Model Construction 
	Evolutionary Stable Solution 

	ADEG-Based Optimal Defense Strategy Selection 

	Discussion 
	Optimal Attack–Defense Strategies Game Model 
	Players with Complete Information 
	Players with Partial Information 

	ADEG-Based Optimal Defense Strategy Selection 
	Effectiveness of the ADEG Model 
	Final Defense Strategies Selection 


	Conclusions 
	References

