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Abstract: In this paper, we first develop an active set identification technique, and then we suggest a
modified nonmonotone line search rule, in which a new parameter formula is introduced to control
the degree of the nonmonotonicity of line search. By using the modified line search and the active
set identification technique, we propose a global convergent method to solve the NMF based on
the alternating nonnegative least squares framework. In addition, the larger step size technique is
exploited to accelerate convergence. Finally, a large number of numerical experiments are carried
out on synthetic and image datasets, and the results show that our presented method is effective in
calculating speed and solution quality.

Keywords: active set; alternating nonnegative least squares; projected barzilai-borwein method;
nonmonotone line search; larger step size

1. Introduction

As a typical nonnegative data dimensionality reduction technology, nonnegative
matrix factorization (NMF) [1–5] can efficiently mine hidden information from data, so
it has been gradually applied to research into high-dimensional data. This method as a
data reduction technique appears in many applications, such as image processing [2], text
mining [6], blind source separation [7], clustering [8], music analysis [9], and hyperspectral
imaging unmixing [10], to name a few. Generally speaking, the fundamental NMF problem
can be summarized as follows: given an m × n data matrix V = (Vij) with Vij ≥ 0 and a
predetermined positive integer r < min(m, n), then NMF plans to find two nonnegative
matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ such that

V ≈ WH. (1)

Our visualization illustration of NMF is shown in Figure 1.

Figure 1. Visualization illustration of NMF.
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One of the most commonly used models of NMF (1) is

min
W,H

f (W, H) ≡ 1
2
∥V − WH∥2

F

subject to W ≥ 0, H ≥ 0.
(2)

where ∥ · ∥F is the Frobenius norm.
The project Barzilai-Borwein (PBB) algorithm is regarded as a popular and effective

method for solving (2) which was originated by Barzilai and Borwein [11]. In recent years,
a large number of studies [12–16] have shown that the PBB algorithm is a very effective
algorithm in solving optimal problems. The PBB algorithm has the characteristics of simple
calculation and high efficiency, so it has been paid attention to by various disciplines. So
far, the research results based on the PBB have been widely used in the field of NMF
(see [17–21]).

In view of the perfect symmetry of the interaction between W and H, we will focus on
the updating of matrix W based on the PBB algorithm. Remember that Hk is an approximate
value of H after kth update, and there are

f (W, Hk) =
1
2
∥V − WHk∥2

F ∀k. (3)

At each step for solving (3), there are three different updates:

Wk+1 = min
W≥0

f (W, Hk); (4)

Wk+1 = min
W≥0

f (W, Hk) + ⟨∇ f (W), W − Wk⟩+
Lk

W
2

∥W − Wk∥2
F; (5)

Wk+1 = min
W≥0

⟨∇ f (Wk), W − Wk⟩+
Lk

W
2

∥W − Wk∥2
F, (6)

where Lk
W > 0, ∇ f (W) = ∇W f (W, Hk).

Original cost function (4) is the most frequently used form in the PBB method for NMF
and has been widely and deeply researched [17,20–23]. But the major disadvantage of (4)
is that it is not strongly convex [24–28], and we can only hope that this method can find
a stationary point, rather than a global or local minimizer. To overcome this drawback, a
proximal modification of cost function (4) is presented in [18,19], namely, the proximal cost
function (5).

At present, the proximal cost function (5) has been used with the PBB method for NMF
in [18,19]. When the cost function (5) is a strongly convex quadratic optimization problem,
their lower bound is zero, so the subproblem (5) has a unique minimizer. In [18], the authors
present a quadratic regularization nonmonotone PBB algorithm to solve (5) and established
its global convergence result under mild conditions. Recently, it is revisited in [19] for the
monotone PBB method and is also shown to converge globally to a stationary point of (3),
and through the analysis of numerical experiments, it is proved that the monotone PBB
method can win over the nonmonotone one under certain conditions. However, when
solving the problems (4) and (5), the existing gradient methods based on the PBB converge
slowly due to the nonnegative conditions. Therefore, this project intends to develop a new
fast NMF algorithm.

In this paper, we introduce a prox-linear approximation of f (W, Hk) at Wk based on
∇ f (W) which is the cost function (6). And then we propose an active set identification tech-
nique. Next, we present a modified nonmonotone line search technique so as to improve
the efficiency of nonmonotone line search, in which a new parameter formula is presented
to attempt to control the degree of the nonmonotonicity of line search, and thus improve
both the possibility of finding the global optimal solution and the convergence speed. By
using the active set identification strategy and the modified nonmonotone line search, a
global convergent method is proposed to solve (6) based on the alternating nonnegative
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least squares framework. In particular, in each iteration, identification techniques are used
to determine active and free variables. We take (Dt)ij = 0 or (Dt)ij = −(Zt)ij to update
some active variables, while using a projected Barzilai-Borwein method to update the
free variables and some active variables. The calculation speed is improved by using the
method of larger step size. Finally, through the numerical experiments of simulation data
and image data, it is proved that the proposed algorithm is effective.

This paper is organized in the following manner. In Section 3, we introduce our
estimation of active set, put forward an efficient NMF algorithm, and present the global
convergence results of this method. The experimental results are given in Section 4. Finally,
Section 5 is the conclusion of the thesis.

2. A Fast PBB Algorithm

In this section, we present an efficient algorithm for solving the NMF and establish
the global convergence of our algorithm. Now, let us first introduce some main results of
the objective function f (W, Hk) that we know.

Lemma 1 ([29]). The following two statements are valid.

(i) The objective function f (W, Hk) of (3) is convex.
(ii) The gradient

∇W f (W, Hk) = (WHk − V)(Hk)T

is Lipschitz continuous with the constant LW = ∥Hk(Hk)T∥2.

In order to facilitate the discussion, we mainly focus on (6) and then rewrite it. Note
that the cost function (7) is closely related to the one in Xu et al. [30], but has the following
difference: matrix U is Wt in our cost function (7), however, to [30] the matrix U is an
extrapolation point in Wt.

min
W≥0

φ(U, W) := ⟨∇ f (U), W − U⟩+ LW
2

∥W − U∥2
F, (7)

where the fixed matrix U ≥ 0.
According to (ii) of the Lemma 1, φ(U, W) is strictly convex in W for any given U. In

each iteration, we will first solve the following strongly convex quadratic minimization
problem, so as to obtain a Zt value

min
W≥0

φ(Wt, W). (8)

Because the objective function of the problem (8) is strongly convex, the solution of
the problem is unique and closed-form

Zt = P[Wt −
1

LW
∇W f (Wt, Hk)], (9)

Here, the operator P[X] projects all negative terms of X to zero.
Let Wt+1 = Zt + Dt, where Dt is the direction which is obtained by (23) with αt being

the BB stepsize [11], whereby we see that the convergence of {Wt+1} can not be guaranteed.
Therefore, a global optimization strategy is proposed based on the modified Armiji line
search [31].

Therefore, a globalization strategy based on the modified Armiji line search [31] has
been proposed, that is, we ask for a step size λt, so that

f (Zt + λtDt) ≤ max
0≤j≤min{t,M−1}

f (Zt−j) + γλt⟨∇ f (Zt), Dt⟩, (10)
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here M > 0. Owing to the maximum function, a good function value obtained in any
iteration will be discarded, and the numerical performance depends largely on the selection
of M in some cases (see [32]).

So as to overcome these shortcomings and obtain a large step size in each procedure,
we present a modified nonmonotone line search rule. The modified line search is as follows:
for the known iteration point Zt and search direction Dt at Zt, we select ηt ∈ [ηmin, ηmax],
where 0 < ηmin < ηmax < 1, γt ∈ [γmin, γmax(1 − ηmax)], where γmax < 1, 0 < γmin <
(1 − ηmax)γmax, 0 ≤ µ ≤ 1, and s > 1, to find a λt satisfying the following inequality:

St+1 ≤ St + γtλt[⟨∇ f (Zt), Dt⟩+
µ

αt
∥Dt∥2], (11)

where St is defined as

St =

{
f (W0), if t = 0,
f (Wt) + ηt−1(St−1 − f (Wt)), if t ≥ 1,

(12)

Similar to M in (10), the selection ηt in (12) is an important factor in determining the
degree of nonmonotonicity (see [33]). Thus, to improve the efficiency of a nonmonotone
line search, Ahookhosh et al. [34] choose a varying value for the parameter ηt by using a
simple formula. Later, Nosratipour et al. [35] decided that ηt should be related to a suitable
criterion to measure the distance to the optimal solution. Thus, they defined ηt by

ηt = 1 − e−∥∇ f (Zt)∥. (13)

However, we found that if the iterative sequence {Zt} is trapped in a narrow curved
valley, then it can lead to ∇ f (Zt) = 0, from which we can obtain ηt = 0, so the nonmono-
tone line search is reduced to the standard Armijo line search, which is inefficient owing to
the generation of very short or zigzagging steps. To overcome this drawback, we suggest
the following ηt:

ηt =
2
π

arctan(| f (Zt)− f (Zt−1)|). (14)

It is obvious that | f (Zt)− f (Zt−1)| is large when the function value decreases rapidly,
and then ηt will also be large, so therefore the nonmonotone strategy will be stronger.
However, when f (Zt) is close to the optimal solution, we can obtain | f (Zt) − f (Zt−1)|
which tends toward zero, and then ηt also tends toward zero, so then the nonmonotone
rule will be weaker and it tends to be a monotone rule.

As was observed in [16], the active set method can enhance the efficiency of the local
convergence algorithm and reduce the computing cost. There-in-after, we will recommend
an active set recognition technology to approximate the right sustain of the solution points.
In our context, we deal with the active set which is considered as the subset of zero
components of Z∗. Now, we introduce the active set L as the index set corresponding to the
zero component. Meanwhile, the inactive set F is to be the support of Z∗.

Definition 1. Let Ω = {Z ∈ Rm×r : Z ≥ 0} and Z∗ be a stationary point of (3). We define the
active set as follows:

L = {ij : Z∗
ij = 0}, (15)

We further define an inactive set F which is a complementary set of L,

F(Z) = I\L(Z), (16)

where I = {11, 12, . . . , 1r, 21, 22, . . . , 2r, . . . , m1, m2, . . . , mr}.
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Then, for any (Zt) ∈ Ω, we define the following approximations L(Zt) and F(Zt) as L̄
and F̄, respectively,

L(Zt) = {ij : (Zt)ij ≤
1
αt
∇ f (Zt)ij}, (17)

F(Zt) = I\L(Zt), (18)

where αt is the BB step size. For simplicity, we abbreviate L(Zt) and F(Zt) as Lt and Ft,
respectively. Similar to the Lemma 1 in [21], we have that if the strict complementarity is
satisfied at Zt, then L(Zt) coincides with the active set if Zt is sufficiently close to Z∗.

In order to obtain a well estimate of the active set, the active set is further subdivided
into two sets

L1(Zt) = {ij ∈ L(Zt) : ∇ f (Zt)ij ≥ c}, (19)

and

L2(Zt) = {ij ∈ L(Zt) : ∇ f (Zt)ij < c}, (20)

here c > 0 is a constant.
Obviously, L2(Zt) is the index set of variables with the first-order necessary condition.

Therefore, we have reason to set the variables with indices in L2(Zt) to 0. In addition,
because L1(Zt) is an index set that does not satisfy the first-order necessary condition, we
further subdivide L1(Zt) into two subsets

L̄1(Zt) = {ij : ij ∈ L1(Zt) and (Zt)ij = 0}, (21)

and

L̃1(Zt) = {ij : ij ∈ L1(Zt) and (Zt)ij ̸= 0}. (22)

When a variable is with indices in L̄1(Zt), we consider the direction of the form 0. And
for the variables of the indexs in L̃1(Zt), we consider the direction of the form −Zt, so as to
to improve the corresponding components. Thus, through the above discussion, we define
this direction in the following compact form:

(Dt)ij =


0, if ij ∈ L̄1(Zt),
−(Zt)ij, if ij ∈ L̃1(Zt),
(P[Zt − αt∇ f (Zt)]− Zt)ij, if ij ∈ L2(Zt) ∪ F(Zt),

(23)

where αt is the BB stepsize.
Finally, we let

Wt+1 = Zt + λtDt, (24)

where λt is the step size which is found by using a nonmonotonic line search (11).
It is known from [36] that the larger step size technique can significantly accelerate the

rate of convergence of the algorithm, so by adding a relaxation factor s to the update rule of
Wt+1 (24), we modify the update rule (24) as

Wt+1 = Zt + sλtDt (25)

for relaxation factor s > 1. We show that the optimal parameter s in (25) is s = 1.7 by
number experiments in Section 4.4.

Based on the above discussion, we develop a nonmonotone projected Barzilai-Borwein
method based on the active set strategy proposed in Section 3 and outline the proposed
algorithm in Algorithm 1. We can follow a similar procedure for updating H.
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Algorithm 1 Nonmonotone projected Barzilai-Borwein algorithm (NMPBB).

1. Initialize α0 = 1, ηt ∈ (0, 1), choose parameters ηt ∈ [ηmin, ηmax], γt ∈ [γmin, γmax(1 −
ηmax)], αmax > αmin > 0, µ ∈ [0, 1], ρ ∈ (0, 1), s > 1, LW = ∥Hk(Hk)T∥2 and W0 = Wk.
Set t = 0.

2. If ∥P[Wt −∇ f (Wt)]− Wt∥ = 0, stop.
3. Compute Zt = P[Wt − 1

LW
∇ f (Wt, Hk)].

4. Compute St by (12) and compute Dt by (23).
5. Nonmonotone line search. Let mt be the smallest nonnegative integer m satisfying

St+1 ≤ St + γtρ
m[⟨∇ f (Zt), Dt⟩+

µ

αt
∥Dt∥2], (26)

where Dt = P[Zt − αt∇ f (Zt)]− Zt. Set λt = ρmt , calculate Wt+1 = Zt + sλtDt.
6. Calculate Xt = Wt+1 − Zt and Yt = ∇ f (Wt+1)−∇ f (Zt). If ⟨Xt, Xt⟩/⟨Xt, Yt⟩ ≤ 0, set

αt+1 = αmax; otherwise, set αt+1 = min{αmax, max{αmin, ⟨Xt, Xt⟩/⟨Xt, Yt⟩}}.
7. Set t = t + 1 and go to step 2.

Remark 1. According to (11), from the definition of St, we obtain

(1 − ηt) f (Zt + sλtDt) ≤ (1 − ηt)St + γtλt[⟨∇ f (Zt), Dt⟩+
µ

αt
∥Dt∥2].

Since ηt < 1, we can find that (11) equals

f (Zt + sλtDt) ≤ St +
1

1 − ηt
γtλt[⟨∇ f (Zt), Dt⟩+

µ

αt
∥Dt∥2]. (27)

If γmin and γmax are close to 0 and 1, respectively, and µ = 0, then (11) reduces to the Gu’s
line search in [33] with γt =

γ
1−ηt

and γ ∈ [γmin(1 − ηt), γmax], which implies that the linear
search condition of Gu in [33] can be regarded as a special case of (11). In addition, when µ = 0 and
ηt = 0, the line search rule (11) can be reduced to the Armijo line search rule.

Next, we prove that the improved nonmonotone line search is well-defined. Before
presenting this fact, we state the scaled projected gradient direction by

Dα(W) = P[W − α∇ f (W)]− W (28)

for all α > 0 and W ≥ 0.
For each α > 0 and W ≥ 0. The next Lemma 2 is very important in our proof.

Lemma 2 ([37]). For each α ∈ (0, αmax], W ≥ 0,

(i) ⟨∇ f (W), Dα(W)⟩ ≤ − 1
α∥Dα(W)∥2 ≤ − 1

αmax
∥Dα(W)∥2,

(ii) The stationary point of (3) is at W if and only if Dα(W) = 0.

The lemma that follows states that Dt = 0 is true if and only if the stationary point of
problem (3) is the iteration point {Zt}.

Lemma 3. Let Dt be calculated by (23), then Dt = 0 if and only if Zt is a stationary point of
problem (3).

Proof. Let (Dt)ij = 0. It is obvious that (Zt)ij is a stationary point of problem (3) when
ij ∈ L̄1(Zt). If ij ∈ L̃1(Zt), we have

0 = (Dt)ij = −(Zt)ij ≥ − 1
αt
∇ f (Zt)ij.
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The above inequality implies that ∇ f (Zt)ij ≥ 0. By the KKT condition, we can find
that (Zt)ij is a stationary point of problem (3). If (Dt)ij = 0, ij ∈ L2(Wt) ∪ F(Wt), by (ii) of
Lemma 2, we know that (Zt)ij is a stationary point of problem (3).

Assume that Zt is a stationary point of (3). From the KKT condition, (17) and (18),
we have

L̄t = {ij : (Zt)ij = 0}, F̄t = {ij : (Zt)ij > 0}.

By the definition of (Dt)ij, we have (Dt)ij = 0 for all ij ∈ L1(Zt). And then from the
(ii) of Lemma 2, we have (Dt)ij = 0 for all ij ∈ L2(Zt). Therefore, we have (Dt)ij = 0 for all
ij ∈ L̄(Zt). For another case, since ∇ f (Zt)ij = 0, for ij ∈ F̄t, and {Zt}ij is a feasible point,
from the definition of (Dt)ij, we have (Dt)ij = 0, ∀ij ∈ F̄t.

The next Lemma 4 is very important in our proof.

Lemma 4. Sequence {Zt} produced by Algorithm 1, we have

⟨∇ f (Zt), Dt(Zt)⟩ ≤ − 1
αt
∥Dt(Zt)∥2, (29)

∥Dt(Zt)∥ ≤ αt∥∇ f (Zt)∥. (30)

Proof. By (23), we know

Dij =


0, if ij ∈ L̄1(Zt),
−(Zt)ij, if ij ∈ L̃1(Zt),
(P[Zt − αt∇ f (Zt)]− Zt)ij, if ij ∈ L2(Zt) ∪ F(Zt).

If ij ∈ L̄1(Zt), it is obvious that ⟨∇ f (Zt)ij, (Dt(Zt))ij⟩ ≤ − 1
αt
∥(Dt(Zt))ij∥2 holds.

If ij ∈ L2(Zt) ∪ F(Zt), from (i) of Lemma 2, we have

⟨∇ f (Zt)ij, (Dt(Zt))ij⟩ ≤ − 1
αt
∥(Dt(Zt))ij∥2. (31)

Thus, we now only need to prove that

⟨∇ f (Zt)ij, (Dt(Zt))ij⟩ ≤ − 1
αt
∥(Dt(Zt))ij∥2, ∀ij ∈ L̃1(Zt). (32)

If (Dt(Zt))ij = 0, the inequality (32) holds. If (Dt(Zt))ij ̸= 0, for all ij ∈ L̃1(Zt),
from (21), we have

(Dt(Zt))ij = −(Zt)ij and (Zt)ij ≤
1
αt
∇ f (Zt)ij,

which lead to

⟨∇ f (Zt)ij, (Dt(Zt))ij⟩ ≤ − 1
αt
∥(Dt(Zt))ij∥2, ∀ij ∈ L̃1(Zt). (33)

The above deduction implies that the inequality (29) holds for ij ∈ L̄1(Zt). Combining
(13) and (33), we obtain that (29) holds. By means of the Cauchy equality, from (29), we
obtain (30).

The following lemma is borrowed from Lemma 3 [18].

Lemma 5 ([18]). Suppose Algorithm 1 generates {Zt} and {Wt}, there is

f (Zt) ≤ f (Wt)−
LW
2

∥Zt − Wt∥2 (34)
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Now, we will show the nice property of our line search.

Lemma 6. Suppose Algorithm 1 generates sequences {Zt} and {Wt}, there is

f (Wt) ≤ St. (35)

Proof. Based on the definition of St, we have

St − St−1 = f (Wt) + ηt−1(St−1 − f (Wt))− St−1

= (1 − ηt−1)( f (Wt)− St−1) ≤ 0,
(36)

where the last inequality from Lemma 2 and µ ∈ [0, 1]. From 1 − ηt−1 > 0, it concludes that
f (Wt)− St−1 ≤ 0, i.e., f (Wt) ≤ St−1.

Therefore, if ηt−1 ̸= 0, from (12), we have

St − f (Wt) = f (Wt) + ηt−1(St−1 − f (Wt))− f (Wt)

= ηt−1(St−1 − f (Wt))

≥ 0

(37)

where the last inequality follows from (36). Thus, (37) indicates

f (Wt) ≤ St. (38)

In addition, if ηt−1 = 0, we have f (Wt) = St.

It follows from Lemma 6 that

f (Wt) ≤ St ≤ S0 = f (W0).

In addition, for any initial iterate W0 ≥ 0, Algorithm 1 generates sequences {Zt} and
{Wt} that are both included in the level set.

L(W0) = {W| f (W) ≤ f (W0), W ≥ 0}.

Again, from Lemma 6, the theorem shown below can be easily obtained.

Theorem 1. Assume that the level set L(W0) is bounded, so the sequence {St} is convergent.

Proof. First, we show that {Wt} ⊂ L(W0). Apparently, according to (35) we have

f (Wt) ≤ St ≤ St−1 ≤ . . . ≤ S0 = f (W0) ∀t ∈ N. (39)

Therefore, we obtain that {Wt} ⊂ L(W0) for all t ∈ N.
From (39), we can obtain that

∃τ ≥ 0 s.t. ∀n ∈ N : τ ≤ f (Wt+n) ≤ St+n ≤ St−1+n ≤ . . . ≤ St+1 ≤ St,

that is, the sequence {St} has a lower bound. Since the sequence {St} is nonincreasing, the
sequence {St} is convergent.

Next, we will exhibit that the line search (11) is well-defined.

Theorem 2. Assume Algorithm 1 generates sequences {Zt} and {Wt}, so step 5 of the Algorithm 1
is well-defined.
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Proof. For this purpose, we prove that the line search stops at a limited value of steps. To
establish a contradiction, we suppose that λt such that (26) does not exist, and then for all
adequately large positive integers m, according to Lemmas 5 and 6, we have

St+1 > St + γtρ
m[⟨∇ f (Zt), Dt⟩+

µ

αt
∥Dt∥2], (40)

According to (40), from the definition of St, we have

(1 − ηt) f (Zt + sρmDt) > (1 − ηt)St + γtρ
m[⟨∇ f (Zt), Dt⟩+

µ

αt
∥Dt∥2].

Since ηt < 1, we can find that (40) is equivalent to

f (Zt + sρmDt) > St +
1

1 − ηt
γtρ

m[⟨∇ f (Zt), Dt⟩+
µ

αt
∥Dt∥2]. (41)

From Lemmas 5 and 6, we have

f (Zt + sρmDt) > f (Zt) +
γtρ

m

(1 − ηt)
[⟨∇ f (Zt), Dt⟩+

µ

αt
∥Dt∥2].

Due to ⟨∇ f (Zt), Dt⟩+ µ
αt
∥Dt∥2 ≥ ⟨∇ f (Zt), Dt⟩, thus,

f (Zt + sρmDt)− f (Zt) >
1

(1 − ηt)
γtρ

m⟨∇ f (Zt), Dt⟩.

According to the mean-theorem, there is a θt ∈ (0, 1) such that

sρm⟨∇ f (Zt + θtsρmDt), Dt⟩ >
1

(1 − ηt)
γtρ

m⟨∇ f (Zt), Dt⟩,

that is,

⟨∇ f (Zt + θtρ
mDt)−∇ f (Zt), Dt⟩ > (

γt

s(1 − ηt)
− 1)⟨∇ f (Zt), Dt⟩.

When m → ∞, we find that

(
γt

s(1 − ηt)
− 1)⟨∇ f (Zt), Dt⟩ ≤ 0.

Since 0 < γt
1−ηt

< 1 < s, ⟨∇ f (Zt), Dt⟩ ≥ 0 is correct. This is not consistent with the
fact that ⟨∇ f (Zt), Dt⟩ ≤ 0. Therefore, step 5 of Algorithm 1 is well-defined.

3. Convergence Analysis

In this part, we prove the global convergence of NMPBB. To establish the global
convergence of NMPBB, we firstly present the following result.

Lemma 7. Suppose that Algorithm 1 generates a step size λt, if the stationary point of (3) is not
Wt+1, so there is a constant λ̃ that will cause λt ≥ λ̃.
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Proof. For the resulting step size λt, if λt does not satisfy (26), namely,

f (Zt + sλtDt) > St +
1

1 − ηt
γtλt[⟨∇ f (Zt), Dt⟩+

µ

αt
∥Dt∥2]

≥ St +
1

1 − ηt
γtλt⟨∇ f (Zt), Dt⟩

≥ f (Zt) +
1

1 − ηt
γtλt⟨∇ f (Zt), Dt⟩

where Lemmas 5 and 6 lead to the final inequality. Thus,

f (Zt + sλtDt)− f (Zt) ≥
1

1 − ηt
γtλt⟨∇ f (Zt), Dt⟩. (42)

By the mean-value theorem, we can find an θ ∈ (0, 1) that makes

f (Zt + sλtDt)− f (Zt) = sλt⟨∇ f (Zt + θsλtDt), Dt⟩
= sλt⟨∇ f (Zt), Dt⟩+ sλt⟨∇ f (Zt + θtsλtDt)

−∇ f (Zt), Dt⟩
≤ sλt⟨∇ f (Zt), Dt⟩+ s2LWλ2

t ∥Dt∥2,

(43)

where LW > 0 is the Lipschitz constant of ∇ f (Wt).
Substitute the last inequality we obtained from (43) into (42) to find

λt ≥
s(1 − ηt)− γt

LWs2αmax(1 − ηt)
. (44)

From ηt−1 ∈ [ηmin, ηmax] and γt ∈ [γmin, γmax(1 − ηmax)], we have

λt ≥
s(1 − ηmax)− γmax

LWs2αmax(1 − ηmin)
:= λ̃. (45)

Lemma 8. Assume that Algorithm 1 generates the sequence {Wt}, for the given level set L(W0),
if it is considered bounded, so there is

(i)

lim
t→∞

St = lim
t→∞

f (Wt). (46)

(ii) there is a positive constant δ makes

St − f (Wt+1) ≥ δ∥Dt+1∥2. (47)

Proof. (i) By the definition of St+1, for t ≥ 1 we have

St+1 − St = (1 − ηt)( f (Wt+1)− St).

Since ηmax ∈ [0, 1], and ηt ∈ [ηmin, ηmax] for all t,

1 − ηmin ≥ 1 − ηt ≥ 1 − ηmax > 0.

According to Theorem 1, as t → ∞,

lim
t→∞

1
1 − ηmax

(St+1 − St) = lim
t→∞

1
1 − ηmin

(St+1 − St) = 0. (48)
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which implies that

lim
t→∞

( f (Wt+1)− St) = 0. (49)

(ii) From (11) and Lemma 2 (i), we have

St − f (Wt+1) ≥ − 1
1 − ηt

γtλt[⟨∇ f (Zt), Dt⟩+
µ

αt
∥Dt∥2]

≥ γmin
1 − ηmin

λt

αt
(1 − µ)∥Dt∥2

≥ γminλ̃(1 − µ)

(1 − ηmin)αmax
∥Dt∥2

= δ∥Dt∥2,

(50)

where δ = γminλ̃(1−µ)
(1−ηmin)αmax

.

The global convergence of Algorithm 1 is proved by the theorem shown below.

Theorem 3. Suppose that Algorithm 1 generates sequences {Zt} and {Wt}, so we obtain

lim
t→∞

∥Dt∥ = 0. (51)

Proof. According to Lemma 8 (ii), we have

St − f (Wt+1) ≥ δ∥Dt∥2 ≥ 0 ∀t ∈ N.

Based on Lemma 8 (i), as t → ∞, we can obtain

lim
t→∞

∥Dt∥ = 0.

According to Theorem 3, Lemma 3, and (25), we will exhibit the main convergence
results we find as follows.

Theorem 4. For a given level set L(W0), assume that it is bounded, hence Algorithm 1 computes
the generated sequence {Wt}, and any accumulation point obtained is a stationary point of (3).

4. Numerical Experiments

In the following content, by using synthetic datasets and real-world datasets (ORL
image database and Yale image database (Both ORL and Yale image datasets in MATLAB
format are available at http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
(accessed on 26 December 2023))), we exhibit the main numerical experiments to com-
pare the performance of NMPBB with that of the other five efficient methods includ-
ing the NeNMF [29], the projected BB method (APBB2 [17]) (The code is available at
http://homepages.umflint.edu/$\sim$lxhan/software.html (accessed on 26 December
2023)), QRPBB [18], hierarchical alternating least squares (HALS) [38], and block coordinate
descent (BCD) method [39]. All of the reported numerical results are performed using
MATLAB v8.1 (R2013a) on a Lenovo laptop.

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://homepages.umflint.edu/$\sim $lxhan/software.html
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4.1. Stopping Criterion

According to the Karush-Kuhn-Tucker (KKT) conditions optimized by existing con-
straints, we know that (Wk, Hk) is a stationary point of NMF (2) if and only if ∇P

W f (W, H) = 0
and ∇P

H f (W, H) = 0 are simultaneously satisfied, here

[∇P
W f (W, H)]ij =

{
[∇W f (W, H)]ij, if Wij > 0,
min{0, [∇W f (W, H)]ij}, if Wij = 0,

and ∇P
H f (W(k), H(k)) is also written as shown above. Hence, we employ the stopping

criteria shown below, which is also used in [40] in numerical experiments:

∥[∇P
W f (W(k), H(k)),∇P

H f (W(k), H(k))T ]∥ (52)

≤ ϵ∥[∇P
W f (W(1), H(1)),∇P

H f (W(1), H(1))T ]∥, (53)

here ϵ > 0 is a tolerance. When employing the stop criterion (52), we need to pay attention
to the scale degrees of freedom of the NMF solution, as discussed in [41].

4.2. Synthetic Data

In this section, first the NMPBB method and the other three ANLS-based methods are
tested on synthetic datasets. Since the matrix V in this test happens to be a low-rank matrix,
it will be rewritten as V = LR, and here we generate the L and R by using the MATLAB
commands max(0, randn(m, r)) and max(0, randn(r, n)), respectively.

For NMPBB, in a later experiment we adopt the parameters shown below:

αmax = 1020, αmin = 10−20, ρ = 0.25, γ = 10−3.

The settings are identical with those of APBB2 and QRPBB. Take s = 1.7 for NMPBB,
the reason of selecting relaxation factor s = 1.7 is given in Section 4.4, and take tol = 10−8

for all comparison algorithms. In addition, for NMPBB we choose η0 = 0.15 and the update
ηt by the following recursive formula

ηt =

{ η0
2 , if t = 1,
ηt−1+ηt−2

2 , if t ≥ 2.

We unify the maximum number of iterations of all algorithms to 50,000. All other
parameters of APBB2, NeNMF, and QRPBB are unified as default values.

For all the problems we are considering, casually generated 10 diverse starting values,
and the average outcomes obtained from using these starting points are presented in Table 1.
The item iter represents that the number of iterations required to satisfy the termination
condition (52) is met. The item niter represents the total number of sub-iterations for solving
W and H. ∥V − Wk Hk∥F/∥V∥F is relative error, ∥[∇P

H f (Wk, Hk),∇P
W f (Wk, Hk)]∥F is the

final value of the projected gradient norm, and CPU time (in seconds) separately measures
performance.

Table 1 clearly indicates that all methods met the condition of convergence within a
reasonable number of iterations. Table 1 also clearly indicates that our ANMPBB needs the
least execution time and the least number of sub-iterations among all methods, particularly
in the case of large-scale problems.

Since the NMPBB method is closely related to the QRPBB method, as we all know
that the hierarchical ALS (HALS) algorithm for NMF is the most effective upon most
occasions, we use the coordinate descent method to solve subproblems in NMF. We further
examine algorithms of NMPBB, QRPBB, HALS, and BCD. We show that these four methods
compare on eight randomly generated independent Gaussian noise measures when the
signal-to-noise ratio which is 30 dB in Figures 2–4 is terminated when the stopping criterion
said by the inequality in (52) satisfies ϵ = 10−8 or the maximum number of iterations is
more than 30. Figure 2 shows the value of the objective function compared to the number
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of iterations. From Figure 2, for most of the test problems, we will draw a conclusion that
NMPBB decreases the objective function much quicker than the other three methods in
30 iterations. This may be because our NMPBB exploits an efficient modified nonmonotone
line search and adds a relaxing factor s to the update rules of Wt+1 and Ht+1. Hence our
NMPBB significantly outperforms the other three methods. Figure 3 shows the relationship
between the relative residual errors and the number of iterations. Figure 4 exhibits the
relative residual errors versus CPU time. The results shown in Figures 3 and 4 are consistent
with those shown in Figure 2.

Table 1. Experimental results on synthetic datasets.

(m n r) Alg Iter Niter Pgn Time Residual

(200 100 10)

NeNMF 153.3 6073.7 3.44 × 10−5 0.25 0.4596
APBB2 171.9 2442.8 2.76 × 10−5 0.26 0.4596
QRPBB 158.0 1476.4 2.66 × 10−5 0.19 0.4596
NMPBB 50.3 496.4 2.50 × 10−5 0.09 0.4596

(100 500 20)

NeNMF 1946.7 83,561.7 1.62 × 10−4 14.46 0.4257
APBB2 2798.7 48,444.2 1.31 × 10−4 15.77 0.4257
QRPBB 2365.7 26,052.7 1.32 × 10−4 8.49 0.4258
NMPBB 625.4 7400.4 1.31 × 10−4 2.67 0.4257

(500 300 25)

NeNMF 687.3 28,304.9 3.73 × 10−4 7.30 0.4496
APBB2 456.5 8077.3 3.20 × 10−4 5.00 0.4496
QRPBB 436.6 5452.2 3.26 × 10−4 3.31 0.4496
NMPBB 135.1 1958.1 2.77 × 10−4 1.46 0.4496

(700 700 30)

NeNMF 183.4 6638.0 1.04 × 10−3 3.45 0.4588
APBB2 161.5 3438.7 8.83 × 10−4 4.56 0.4588
QRPBB 153.0 2191.9 9.11 × 10−4 2.78 0.4588
NMPBB 60.7 936.4 8.41 × 10−4 1.05 0.4588

(1000 500 30)

NeNMF 221.0 7685.5 1.05 × 10−3 4.22 0.4578
APBB2 180.4 3513.8 8.62 × 10−4 4.52 0.4578
QRPBB 162.8 2195.5 9.41 × 10−4 2.63 0.4578
NMPBB 60.5 937.4 9.17 × 10−4 1.50 0.4578

(600 1000 40)

NeNMF 1139.0 43,519.6 1.69 × 10−3 33.86 0.4515
APBB2 554.4 9117.8 1.40 × 10−3 18.90 0.4515
QRPBB 434.2 5963.0 1.52 × 10−3 9.69 0.4515
NMPBB 143.4 2489.9 1.22 × 10−3 3.77 0.4515

(1000 600 40)

NeNMF 644.5 25,379.5 1.68 × 10−3 20.00 0.4518
APBB2 723.3 12,948.1 1.41 × 10−3 26.16 0.4518
QRPBB 536.5 7686.2 1.31 × 10−3 12.55 0.4518
NMPBB 137.8 2262.7 1.18 × 10−3 3.53 0.4518

(1000 2000 50)

NeNMF 330.8 12,081.3 4.98 × 10−3 25.35 0.4574
APBB2 240.3 4783.6 4.29 × 10−3 23.41 0.4574
QRPBB 252.8 4264.2 3.84 × 10−3 18.29 0.4574
NMPBB 79.1 1558.7 4.10 × 10−3 6.12 0.4574

(2000 2000 50)

NeNMF 172.3 6796.9 8.25 × 10−3 18.96 0.4629
APBB2 147.6 3734.1 7.30 × 10−3 24.92 0.4629
QRPBB 149.0 2524.7 5.83 × 10−3 16.43 0.4629
NMPBB 57.1 1089.3 5.75 × 10−3 6.81 0.4629

(3000 1000 60)

NeNMF 485.7 17,642.4 8.79 × 10−3 63.10 0.4555
APBB2 396.3 7386.3 7.29 × 10−3 64.50 0.4555
QRPBB 380.3 6049.4 6.77 × 10−3 48.12 0.4555
NMPBB 116.2 2141.4 5.81 × 10−3 16.55 0.4555

(5000 1000 70)

NeNMF 1036.9 50,207.5 1.65 × 10−2 344.92 0.4540
APBB2 1397.7 23,570.8 1.47 × 10−2 433.55 0.4540
QRPBB 1307.3 20,456.8 1.36 × 10−2 304.93 0.4540
NMPBB 281.7 5639.0 1.22 × 10−2 76.28 0.4540
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Figure 4. Residual value versus CPU time on random problem minW,H≥0
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4.3. Image Data

The ORL image database is a collection of 400 images of people’s faces belonging to
40 individuals representing 10 each. The dataset includes variations in lighting conditions,
facial expressions (including whether they open their eyes, whether they smile), and facial
details including whether they wear glasses. Some subjects have multiple photos taken at
different times. The images were captured with the subject positioned upright and facing
forward (allowing for slight movement to the sides). The background used was uniformly
dark and even. All the images were taken against a dark homogeneous background with
the subjects in an upright frontal position (with tolerance for some side movement). The
pictures used are represented by the columns of the matrix V, and V has 400 rows and
1024 columns.

The Yale face database was created at the Yale Center for Computational Vision and
Control. It consists of 165 gray-scale images, with each person in the database having
11 images associated with them. In total, there are 15 people. The facial images in question
were captured under different lighting conditions (left-light, center-light, right-light), with
various facial expressions (calm, cheerful, sorrowful, amazed, and blinking), and with or
without glasses. The pictures used are represented by the rows of the matrix V, and V has
165 rows and 1024 columns.

For all the databases we used in (52), we performed a diverse casually generated
starting iteration with ϵ = 10−8, the maximum number of iterations (maxit) for all algo-
rithms is set to 50,000, and the average results are presented in Table 2. From Table 2, we
conclude that the QRPBB method converges in fewer iterations and CPU times than APBB2
and NeNMF, and in contrast to QRPBB, our NMPBB method requires 1/4 CPU time to
satisfy the set tolerance. Although the residuals by NMPBB are not the smallest among all
algorithms appearing for all the databases we use, the results of pgn mean that solutions
by NMPBB are nearer to the point of stationary.

Table 2. Experimental results on Yale and ORL datasets.

(m n r) Alg Iter Niter Pgn Time Residual

(165 1024 25)

NeNMF 3735.1 178,254.1 4.41 × 10−1 65.78 0.1930
APBB2 3079.6 97,375.7 6.42 × 10−2 78.75 0.1930
QRPBB 2711.1 54,215.7 6.16 × 10−2 42.25 0.1931
NMPBB 1019.2 24,063.1 2.60 × 10−2 16.57 0.1930

(400 1024 25)

NeNMF 13,613.4 836,034.3 7.71 × 10−2 349.62 0.1117
APBB2 9430.6 446,361.6 6.88 × 10−2 474.26 0.1117
QRPBB 7593.5 213,178.5 7.05 × 10−2 205.26 0.1117
NMPBB 1982.7 41,597.0 6.25 × 10−2 34.22 0.1117

4.4. The Importance of Relaxation Factor s

In the following content, the clear experimental results indicate that relaxation factor
s is used for updating rules of Wt+1 and Ht+1. We implement NMPBB using diverse s
given s = 0.1, 0.3, 0.7, 1.0, 1.3, 1.7, 1.9 on synthetic datasets which are the same as those
in Section 4.2. We set the required maximum number of iterations to 30, and the other
parameters required in the experiment will have the same values as those in Section 4.2.
Figure 5 shows the relationship between the relative residuals error and the run-time results.
In Figure 5, we can see that the relaxation factor s fails to accelerate the convergence when
s < 1 and increasing constant s significantly accelerates the convergence when 1 < s < 2.
As for NMPBB, it seems that s = 1.7 is the best compared with other experimental values in
terms of speed of convergence, and hence s = 1.7 was used as our NMPBB in all experiments.
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5. Conclusions

In this paper, a prox-linear quadratic regularization objective function is presented,
and the prox-linear term leads to strongly convex quadratic subproblems. Then, we propose
a new line search technique based on the idea of [33]. According to the new line search, we
put forward a global convergent method with larger step size to solve the subproblems.
Finally, a series of numerical results are given to show that the method is a promising tool
for NMF.

Symmetric nonnegative matrix factorization is a special but important class of NMF
which has found numerous applications in data analysis such as various clustering tasks.
Therefore, a direction for future research would be to extend the proposed algorithm to
solve symmetric nonnegative matrix factorization problems.
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