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Abstract: In the present paper, we review the progress of the project of the classification and con-
struction of invariant differential operators for non-compact, semisimple Lie groups. Our starting
point is the class of algebras which we called earlier ‘conformal Lie algebras’ (CLA), which have
very similar properties to the conformal algebras of Minkowski space-time, though our aim is to
go beyond this class in a natural way. For this purpose, we introduced recently the new notion of
a parabolic relation between two non-compact, semi-simple Lie algebras G and G’ that have the same
complexification and possess maximal parabolic subalgebras with the same complexification.
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1. Introduction and Preliminaries

Invariant differential operators play a very important role in the description of physical
symmetries—starting from the early occurrences in the Maxwell, d’Allembert and Dirac,
equations to the latest applications of (super)differential operators in conformal field
theory, supergravity and string theory (for reviews, cf., e.g., [1,2]). Thus, it is important for
applications in physics to systematically study such operators. For more relevant references
cf., e.g., [3-73], and others throughout the text. Especially, we would like to point out
the book [74] which contains a section devoted to groups of conformal transformations of
curved spacetime.

In a recent paper [75], we started the systematic explicit construction of invariant
differential operators. We gave an explicit description of the building blocks, namely, the
parabolic subgroups and subalgebras from which the necessary representations are induced.
Thus, we have set the stage for the study of different non-compact groups. Up to 2016,
relevant references may be found in our monograph [76] and also in [77-111].

Our canonical construction is applicable also to quantum groups, super groups, to (super-)
Virasoro and Kac-Moody algebras, see our monographs: [112-114].

Preliminaries

Let G be a semi-simple, non-compact Lie group, and K a maximal compact subgroup
of G. Then, we have an [wasawa decomposition G = KAgNy, where Ay is an Abelian simply
connected vector subgroup of G and Nj is a nilpotent simply connected subgroup of G
preserved by the action of Ajy. Furthermore, let My be the centralizer of Ay in K. Then,
the subgroup Py = MyAgNy is a minimal parabolic subgroup of G. A parabolic subgroup
P = M'A’N’ is any subgroup of G which contains a minimal parabolic subgroup.

Furthermore let G, K, P, M, A, N denote the Lie algebras of G, K, P, M, A, N, resp.

For our purposes, we shall be restrict maximal parabolic subgroups P = MAN, i.e.,
rankA = 1, resp., to maximal parabolic subalgebras P = M & A& N with dim A = 1.

Let v be a (non-unitary) character of A, v € A*, parameterized by a real number 4,
called the conformal weight or energy.

Furthermore, let y fix a discrete series representation D¥ of M on the Hilbert space V),
or the finite-dimensional (non-unitary) representation of M with the same Casimirs.
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We call the induced representation x = Indg( i @ v ® 1) an elementary representation of
G [24]. (These are called generalized principal series representations (or limits thereof) in [115].)
Their spaces of functions are

Cx = {F € C¥(G, V)| F(gman) = ™M) DI (m™1) F(g)} 1)

where a = exp(H) € A, H e A',m € M, n € N'. The representation action is the left
regular action:

(TX()F)(8") =F(s7'8), 88 €G. @
e  Animportant ingredient in our considerations are the highest/lowest-weight represen-
tations of GC. These can be realized as (factor-modules of) Verma modules V2 over

GC, where A € (HC)*, HC is a Cartan subalgebra of G© and weight A = A(x) is
determined uniquely from yx [76].

Actually, since our ERs may be induced from finite-dimensional representations
of M (or their limits) the Verma modules are always reducible. Thus, it is more convenient
to use generalized Verma modules V* such that the role of the highest/lowest-weight vector
vp is taken by the (finite-dimensional) space V), vy . For the generalized Verma modules
(GVMs) the reducibility is controlled only by the value of the conformal weight d. Relatedly,
for the intertwining differential operators, only the reducibility with regard to non-compact
roots is essential.

e  Another main ingredient of our approach is as follows. We group the (reducible) ERs
with the same Casimirs in sets called multiplets [76]. The multiplet corresponding to
fixed values of the Casimirs may be depicted as a connected graph, the vertices of which
correspond to the reducible ERs and the lines (arrows) between the vertices correspond
to intertwining operators. The explicit parameterization of the multiplets and of
their ERs is important in understanding of the situation. The notion of multiplets
was introduced in [116] and applied to representations of SO,(p,q) and SU(2,2),
resp., induced from their minimal parabolic subalgebras. Then it was applied to the
conformal superalgebra [117], to infinite-dimensional (super)algebras [113] and to
quantum groups [112]. (For other applications, we refer to [114].)

In fact, the multiplets contain explicitly all the data necessary to construct the inter-
twining differential operators. Actually, the data for each intertwining differential operator
consist of the pair (B, m), where § is a (non-compact) positive root of G&, m € N, such that
the BGG Verma module reducibility condition (for highest-weight modules) is fulfilled:

(A+p,BY)=m, B =2p/(Bp) ®)

where p is half the sum of the positive roots of GC. When the above holds, then the
Verma module with shifted weight VA~ (or VA~"F for GVM and B non-compact) is
embedded in the Verma module VA (or V*). This embedding is realized by a singu-
lar vector vs determined by a polynomial P, 4(G ™) in the universal enveloping algebra
(U(G-)) vo, and G~ is the subalgebra of GC generated by the negative root generators
[118]. More explicitly, [76,119], vin,ﬁ = Pm,pvo (or vfn,ﬁ = Pu,p Vuvo for GVMs). Then,
there exists [76,119] an intertwining differential operator

Dung : C(n) — Cx(a-mp) @)

given explicitly by:
Dunp = Pup(G7) ®)

where g/: denotes the right action on the functions F.
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In most of these situations, the invariant operator Dy, g has a non-trivial invariant
kernel in which a subrepresentation of G is realized. Thus, studying the equations with
trivial RHS is also very important:

Dupf=0,  fe€Cyn) (6)

For example, in many physical applications, in the case of first-order differential operators,
ie., form = mg =1, these equations are called conservation laws, and the elements
f € ker D, g are called conserved currents.

The above construction also works for the subsingular vectors vss, of Verma modules.
Such vectors are also expressed by a polynomial Pss,(G ™) in the universal enveloping
algebra: v, = Pssu(G ) v, cf. [120]. Thus, there exists a conditionally invariant differential
operator given explicitly by Dssp = Psso (gA— ), and a conditionally invariant differential equation;
for many more details, see [121]. (Note that these operators (equations) are not of the
first order.)

In our exposition below, we shall use the so-called Dynkin labels:

miE(A—O—p,DciV), i=1,...,n, (7)

where A = A(x), p is half the sum of the positive roots of GC.
We shall use also the so-called Harish-Chandra parameters:

mg=(A+p,B), ®8)

where B is any positive root of GC. These parameters are redundant, since they are expressed
in terms of the Dynkin labels; however, some statements are best formulated in their terms.
(Clearly, both the Dynkin labels and Harish—-Chandra parameters have their origin in the
BGG reducibility condition (3).).

Finally, we shall introduce the notion of “parabolically related non-compact semisimple
Lie algebras’ [122]. This notion is not part of our procedure for constructing invariant
differential operators, but just a tool to extend the construction from one Lie algebra
to another.

Definition 1. Let G, G’ be two non-compact semi-simple Lie algebras with the same complex-
ification GC = G'C. We call them parabolically related if they have parabolic subalgebras
P=MaAaN, P =M &A &N, suchthat ME = M'C (= PC = PC)¢

Certainly, there are many such parabolic relationships for any given algebra G. Further-
more, two algebras G, G’ may be parabolically related via different parabolic subalgebras.

The paper is organized as follows. In Section 2, we consider the case of the pseudo-
orthogonal algebras so(p, q) which are parabolically related to the conformal algebra so(n,2)
for p+q = n+2. In Section 3, we consider the CLA su(n,n) and the parabolically
related sl(2n,R), and for n = 2k : su*(4k). In Section 4, we consider the CLA sp(n)
and—for n = 2r—the parabolically related sp(r,r). In Section 5, we consider the al-
gebras so*(2n) (which are CLA when 7 is even) and the parabolically related algebras.
In Section 6, we consider the CLA E7(_»5) and the parabolically related E; 7). In Section 7,
we consider the hermitian symmetric case Eg(_14) and the parabolically related Eg () and
Eg(2)- In Section 8, we consider the algebra Fy and its real forms F; and F;'. In Section 9, we
consider the algebra G, ).

We would also like to list some more recent relevant references [123-229].

2. Conformal Algebras so(n,2) and Parabolically Related Algebras

The most widely used algebras are the conformal algebras so(n,2) in n-dimensional
Minkowski space-time. In that case, there is a maximal Bruhat decomposition [230] that has
direct physical meaning;:
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son,2)=Mad AdN dN, 9
M =s0(n—1,1), dimA=1, dimN =dimN =n

where so(n —1,1) is the Lorentz algebra of n-dimensional Minkowski space-time, the sub-
algebra A = so0(1,1) represents the dilatations and the conjugated subalgebras N, N are
the algebras of translations and special conformal transformations, both being isomorphic to
n-dimensional Minkowski space-time.

Another physically important feature is that the algebras so(#,2) have discrete series
representations. We recall that by the Harish—Chandra criterion [231], these are groups
where the following holds:

rank G = rank K,

where K is the maximal compact subgroup of the non-compact group G.
Furthermore, the algebras so(n,2) belong to the class of Hermitian symmetric spaces.
The practical criterion is that in these cases, the maximal compact subalgebra K is of the form:

K = so(2)a K’ (10)
The Lie algebras from this class are as follows:
so(n,2), sp(n,R), su(m,n), so*(2n), Eg_14), Ez_o5) (11)

These groups/algebras have highest/lowest-weight representations, and relatedly, holomorphic
discrete series representations.
We label the signature of the ERs of G as follows:

x={m,...,mpc}y, ne€l/2, c=d-1%, h=1[4], (12)
|ny| <mnp <---<mn;, neven,
O0<m <np<---<mn mnodd,

where the last entry of x labels the characters of A, and the first /i entries are labels of the
finite-dimensional nonunitary irreps of M = so(n —1,1).

The reason to use the parameter c instead of 4 is that the parametrization of the ERs in
the multiplets is given in a simple intuitive way (cf. [232]):

X1i = Aeny,..., np En ), ny <njq,
x> = Aem,.... mj_y, np .y Eng}
X5 = emi... mj_y npng, 0}
o (13)
Xﬁi = {enynz,..., np, ny q; £na}
Xf:::-i-l = Afeny,..., ny, nj q; £n1}
=+, n even
€= {1, n odd
Furthermore, we denote by C li the representation space with signature )(ii .
The number of ERs in the corresponding multiplets is equal to
IW(GE,HO) |/ WME,HE)| = 2(1+]) (14

where HC, H§, are Cartan subalgebras of G€, MC, resp. This formula is valid for the main
multiplets of all conformal Lie algebras.
Now, in Figure 1, we show the general even case so(p, q), p + q = 2h + 2-even [76,232].
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Figure 1. Diagram for the cases so(p, q), p + 9 = 2h + 2, even, showing only the differential operators,
while the integral operators are assumed as symmetry w.r.t. the bullet in the centre.

In Figure 2, we show the general odd case so(p, q), p +q = 2h + 3-odd [76,232].

dn
A

ht1
dps1

+
Ah+1

U
h

Ay

Figure 2. The cases so(p, q), p + g = 2h + 3, showing only the differential operators, while the integral
operators are assumed as symmetry w.r.t. the bullet in the centre.



Symmetry 2024, 16, 151

6 of 42

The ERs in the multiplet are related by intertwining integral and differential operators.
The integral operators were introduced by Knapp and Stein [233]. They correspond to
elements of the restricted Weyl group of G. These operators intertwine the pairs C li

GF :CF —CF, i=1,...,1+h (15)

The intertwining differential operators correspond to non-compact positive roots of the
root system of so(n + 2, C), cf. [76]. (In the current context, compact roots of so(n + 2, C) are
those that are roots also of the subalgebra so(n, C), the rest of the roots are non-compact.)
The degrees of these intertwining differential operators are given just by the differences of
the c entries [76]:

degd; = degd, = Mjyoi = Mpq_ir i=1,...,h, Vn (16)
degd; ; =mny+mny, neven

where dj, is omitted from the first line for (p + q) even.

Matters are arranged so that in every multiplet only the ER with signature x; contains
a finite-dimensional nonunitary subrepresentation in a subspace £. The latter corresponds
to the finite-dimensional unitary irrep of so(n + 2) with signature {ny,..., nj, nj}.
The subspace £ is annihilated by the operator G, , and is the image of the operator G; .

o Interlude:

We mention one more special feature of so(1,2), namely that the complexification
of the maximal compact subgroup is isomorphic to the complexification of the first two
factors of the Bruhat decomposition:

K€ = so(n,C) @s0(2,C) = so(n—1,1) ®s0(1,1)¢ = MCqp A®. (17)
The coincidence of the complexification of the semi-simple subalgebras

K€ = MC (18)

means that the sets of finite-dimensional (nonunitary) representations of M are in 1-to-1
correspondence with the finite-dimensional (unitary) representations of K. The latter leads
to the fact that the corresponding induced representations are representations of finite
KC-type [234].

It turns out that some of the hermitian-symmetric algebras share the above-mentioned
special properties of so(n,2). This subclass consists of

so(n,2), sp(n,R), su(n,n), so*(4n), Ez_ps) (19)
with the corresponding analogs of Minkowski space-time V being

R, Sym(n,R), Herm(n,C), Herm(n,Q), Herm(3,0) (20)

In view of applications to physics, we proposed to call these algebras ‘conformal Lie
algebras’ (or groups).

We summarize the algebras parabolically related to conformal Lie algebras with
maximal parabolics fulfilling (18) in Table 1 below. Also, some non-CLAs are included.

There, sl(n, C)g denotes sl(n,C) as a real Lie algebra (thus, (sI(1,C)g)® = sl(n,C) @
sl(n,C)); es denotes the compact real form of E4 ; and we have imposed restrictions to avoid
coincidences or degeneracies due to well-known isomorphisms: so(1,2) = sp(1,R) =
su(1,1),50(2,2) = s0(1,2) ®so(1,2), su(2,2) = so(4,2), sp(2,R) = s0(3,2), sp(1,1) =
s0(4,1),s0%(4) = s0(3) ®so(2,1),s0%(8) = s0(6,2).
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Table 1. Table of conformal Lie algebras (CLA) G with M-factor fulfilling (18) and the corresponding
parabolically related algebras G’; we display also some non-CLA cases.

g K M g’ M
dimV
so(n,2) so(n) ®so(2) so(n—1,1) so(p,q), so(p—1,9—1)
n>3 prag=n+2
n
I(n,R)®
su(n,n) u(n) @ su(n) sl(n,C)r sl(2n,R) SS(ZIZn,]I)Q)
n>3
” 2k) &
n? su*(2n), n =2k Sleu’(‘(2;c)
sp(n,R) u(n) sl(n,R) sp(r,r),n=2r su*(2r),n =2r
rank =n >3
n(n+1)/2
s0*(4n) u(2n) su*(2n) so(2n,2n) sl(2n,R)
n>3
n(2n—1)
E7(_25) ee D 50(2) Eg(_26) E7@z) Eq )
27
below not CLA
" 1(4,R) &
s0*(10) u(5) su(3,1) & su(2) 50(5,5) sit (2,12&)
13
Eg(—14) 50(10) & so(2) su(5,1) Eg(6) sl(6,R)
21 E6(2) SM(S, 3)
I3,R)®
E, sp(3) & su(2) Ss(l(Z,H)Q)
20
Fy 50(9) s0(7)
15
Ga2) su(2) @ su(2) 0 min.
sl(2,R) max.
6 min.
5 max.

Although the diagram in Figure 1 is valid for arbitrary so(p, q) (even p +q > 5) due
to the parabolic relatedness, the contents are very different. (The same remark holds for
the diagram in Figure 2 valid for so(p,q) for odd p +¢q < 5.) We comment only on the
ER with signature X1+ . In all cases, it contains a UIR of so(p, ) realized on an invariant
subspace D of the ER x; . That subspace is annihilated by the operator G; , and is the
image of the operator G; . (Other ERs contain more UIRs.)

If pg € 2N, the mentioned UIR is a discrete series representation. (Other ERs contain
more discrete series UIRs.)

And if g = 2, the invariant subspace D is the direct sum of two subspaces D = D' &
D~ , in which a holomorphic discrete series representation and its conjugate anti-holomorphic dis-
crete series representation, resp., are realized. Note that the corresponding lowest-weight GVM
is infinitesimally equivalent only to the holomorphic discrete series, while the conjugate
highest-weight GVM is infinitesimally equivalent to the anti-holomorphic discrete series.

Note that degd;, degd, are Harish-Chandra parameters corresponding to the non-
compact positive roots of so(n 4 2,C). From these, only degd; corresponds to a simple
root; i.e., it is a Dynkin label.
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Above, we considered so(n,2) for n > 2. The case n = 2 is reduced to n = 1 since
50(2,2) = s50(1,2) @ so0(1,2). The case s0(1,2) is special and must be treated separately.
But, in fact, it is contained in what we presented already. In that case, the multiplets contain
only two ERs which may be depicted by the top pair Xfc in the pictures that we presented.
And they have the properties that we described for so(n,2) with n > 2. The case so(1,2)
was given already in 1946-7 independently by Gel’fand et al. [235] and Bargmann [236].

3. The Lie Algebra su(n,n) and Parabolically Related Algebras

LetG = su(n,n),n > 2. The maximal compact subgroup is K = u(1) @ su(n) & su(n),
while M = sl(n, C)g . The number of ERs in the corresponding multiplets is equal to

2n
w(gS, )/ e w5 = (%)
The signature of the ERs of G is
x = {m,...,ny 1,001 ..., 00p_1,C}, ne€N, c=d-n

The Knapp-5Stein restricted Weyl reflection is given by

GKS : C}( — Cx’ ’ X/ = {(nll‘ e My—1,Np41,-- -/n2n—1)*; _C}

£ .
(nlr e M1, My 41, - - /nZn—l) - (”n—i—l/ e Nop—1,N1,.-+, nn—l)

Below, in Figures 3 and 4, we give the diagrams for su(n,n) for n = 3,4 [237]. (The
case n = 2 is already considered since su(2,2) = so(4,2).) These are also diagrams for the
parabolically related sI(2n,R), and for n = 2k, these are also diagrams for the parabolically
related su*(4k) [122].

Figure 3. Pseudo-unitary symmetry su(3, 3) The pseudo-unitary symmetry su(p, p) is similar to
conformal symmetry in p? dimensional space, and for p = 2 coincides with the 4-dimensional
conformal case. By parabolic relation the su(3, 3)diagram above is valid also for sI(6, R).



Symmetry 2024, 16, 151

9 of 42

We use the following conventions. Each intertwining differential operator is repre-
sented by an arrow accompanied by a symbol i;_; encoding the root f; i and the number
mg, , which is involved in the BGG criterion.

s
/e
T
(L)

S

Jo7
i
¥,

Figure 4. Pseudo-unitary symmetry in 16-dimensional space. By parabolic relation the su(4,4)
diagram above is valid also for sI(8, R) and su*(8).

4. The Lie Algebras sp(n,R) and sp(%, 5) (n-even)

Letn > 2. Let G = sp(n,R) be the split real form of sp(n,C) = G€. The maximal
compact subgroup is K = u(1) @ su(n), while M = sl(n,R). The number of ERs in the
corresponding multiplets is

IW(GE,HO)| / [WMEHEG)| = 2"
The signature of the ERs of G is

x ={m,....,ny_1;c}, neN,
The Knapp-5Stein Weyl reflection acts as follows:

Gks : Cp — CX’/X, = {(ny,...,n,1)% —c},

(ny,...,ny—1)" = (My_1,...,m)

Below, in Figures 5-8, we give pictorially the multiplets for sp(n, R) for n = 3,4, 5,6 [238].
(The case n = 2 is already considered since sp(2,R) = so(3,2).) For n = 2r, these are also
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multiplets for sp(r,r), r =1,2,3 [122]. (The case n = 2,r = 11is already considered due to
sp(1,1) = s0(4,1) and the parabolic relation between s0(3,2) and so(4,1).)

Ay
333
A-

a

223

Figure 6. Main multiplets for sp(4, R) and sp(2,2).
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Figure 7. Main multiplets for Sp(5,R).
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Figure 8. Main multiplets for Sp(6,R) and sp(3, 3).

5. The Lie Algebra so*(2n)
The Lie algebra G = so*(2n) is given by

so*(2n) = {Xe€so(2n,C):J,CX = X],C}
b
= {X= (_aE a) | a,begl(nC),
tg = —a, b+:b}.

dimg G =n(2n — 1), rank G = n.
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The maximal compact subalgebra is K = u(n). Thus, G = s0*(2n) has discrete series
representations and highest/lowest-weight representations. The split rank is r = [n/2].
The maximal parabolic subalgebras have M-factors as follows [75]:

MPP = s0™(2n — 4f) B su”(2)), (21)
j=1...,r.

5.1. Case of so*(12)

For even n = 2r, we may choose a maximal parabolic P = MAN such that A =
so(1,1), M = MP®>* = su*(n). We note also that

K€ 2=u1)Casl(nC) = A e MC

Thus, with this choice we utilize the property which distinguishes the class of ‘conformal
Lie algebras’ to which class the algebras so* (4r) belong.

Furthermore, we restrict ourselves to G = so*(12).

We label the signature of the ERs of G as follows:

X - {7’11,7‘[2, ns,ny4,ns, C}/
n€Zly, c=d-— 12—5

where the last entry of x labels the characters of A, and the first five entries are labels of
the finite-dimensional (nonunitary) irreps of M = su*(6) when all ; > 0 or limits of the
latter when some n; = 0.

Below, we shall use the following conjugation on the finite-dimensional entries of
the signature:

(n1,m2,n3,n4,n5)" = (ns,n4,n3,n2,1m1) .

The ERs in the multiplet are related also by intertwining integral operators introduced

in [KnSt]. These operators are defined for any ER, the general action being:

Ggs CX — CX”
X = {1’11,...,7’15,'C},
X = {(ny,...,n5)% —c}.

Furthermore, we give the correspondence between the signatures ) and the highest
weight A. The connection is through the Dynkin labels:

m; = (A+p,u¢;/) = (A+pu;), i=1,...,5

where A = A(x), p is half the sum of the positive roots of GC. The explicit connection is

ng = ms
c = —%(ml + 2my + 3mgz + 4my +
+2ms5 + 3mg)

Finally, we recall that according to [75], the above considerations are applicable also
for the algebra so(6,6) with parabolic M-factor sI(6,R).

The main multiplets are in 1-to-1 correspondence with the finite-dimensional irreps
of s0*(12); i.e., they are labeled by the six positive Dynkin labels m; € N.

The number of ERs/GVMs in the corresponding multiplets is [75]

W(GE,HO) /W (K HE)| =
= [W(s0(12,C))|/[W(sl(6,C))| = 32

where H is a Cartan subalgebra of both G and K.
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They are given explicitly in the Figure 9 below. The pairs A* are symmetric with
regard to to the bullet in the middle of the figure—this represents the Weyl symmetry
realized by the Knapp-Stein operators

The statements made for the ER with signature x,, in the previous cases also remain
valid here. Also, the conjugate ER x contains a unitary discrete series subrepresentation
split in highest/lowest-weight representations.

All the above is valid also for the algebra so(6,6), cf. [75]; however, the latter algebra
does not have highest/lowest-weight representations.

We present only the main multiplets. The reduced multiplets may be seen in [92].

Figure 9. SO*(12) main multiplets.



Symmetry 2024, 16, 151

15 of 42

5.2. Case of s0*(8)

This case was already considered for the choice of generic maximal parabolic subalgebra
of 50(6, 2) & so* (8), but here, we shall consider a Heisenberg maximal parabolic subalgebra.
We recall that G = s0*(8) = s0(6,2) has minimal parabolic:

My = s0(3) &s0(3) (22)
The Satake-Dynkin diagram of G is
7
e O—© (23)

where, by standard convention, the black dots represent the so(3) subalgebras of M.
We shall use the Heisenberg maximal parabolic (21) with M-subalgebra:

M = 50™(4) ®s0(3) 2 s0(2,1) Bso(3) Dso(3) (24)

The Satake-Dynkin diagram of M is a subdiagram of (23):
O

o [ (25)

From the above, it follows that the M-compact roots of G* are (given in terms of the
simple roots):
X2 = Y1, 034 = 73, Paa = 74 (26)
By definition, the above are the positive roots of MC.
The positive M-noncompact roots of G© in terms of the simple roots are:

Y2=71+72 Y3="T1 Y2+ 73 Y2 Y23 = 12+ 73, (27a)
Brz=71+27+713+7 Bs=11+"2+ 713+ 74
Ba=71+712+7 B =72+73+ 74 Pou =72+ 74 (27b)

where, for convenience, we use the notation Vij = Xijt1
To characterize the Verma modules, we shall first use the Dynkin labels:

m = (A+p,v’), i=1,...4 (28)
where p is half the sum of the positive roots of GC. Thus, we shall use:
xa = {my,my, mz, my} (29)

Note that when all m; € N, then x, characterizes the finite-dimensional irreps
of G€ and its real forms, in particular, so*(8). Furthermore, my,m3,my € N character-
izes the finite-dimensional irreps of the M subalgebra.

For the M-noncompact roots of G€, we shall also use the Harish-Chandra parameters:

mij = (A+p, 'yg) , (30a)
mij = (A+pB) (30b)

and explicitly in terms of the Dynkin labels (compare (27)):
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xac = {mp=m+my mz=m+my+m;,

my, Moz = My + Mg,

M1y = my + 2my + mz + my,

tityg = my + my + mz + my,

g = my + mp + my,

Mg = My + M3 + My, Mg = My +my }

Main multiplets of SO*(8)
The main multiplets are in 1-to-1 correspondence with the finite-dimensional irreps
of s0*(8); i.e., they are labeled by the four positive Dynkin labels m; € N.
We take xo = xnc. It has one embedded Verma module with HW A, = Ag — my7».
The number of ERs/GVMs in a main multiplet is 24. We give the whole multiplet as follows:

Xo
Xa
Xb
XC
Xd
XE
Xf
Xg
Xh
Xi
Xj
Xk

X
Xp
Xa
Xo

{my1,my, ms, my}
{mip, —mp,moz,mpus},  Ng = Ag—myy2
{ma, —mip,miz, mppa}, Ap =Ny —miy1n
{my3, —maz, my, mos},  Ae= Ng —m3y23
{miza, —mps,mog,ma}, ANg=Ng—myPoy
{maz, —mi3,mip, mig}, A= Ac—miy12
{mo4, —migq,mig,mia},  Ap= Ny —maPoy
{mig, —mag, mog,mp}, ANg = Ac—myPog = Ng—m3zy23
{mag, —mig, mipg, miz}, Ay = Ne —myPoy
{ms, —miz,my,migp}, Nj= N —may13
{ma, —mipa, misp,mi}y, Aj=Af—myPa
{mia, —mog, my,ms},  Ap = Ag —maf3
{mia, —mig,my,mz},  NF = A —mipro
{my, —myg, Mg, m1}, A;r = Aj —m3P1n
{mz, —myg,mi,myan}, Af = A;j—myPin
{mag, —migo,mipg,miz}y, A =Ly — mapiy
{mas, —mgp,mig,mis}, NS = A —mopoy
{ma4, —miap, mig, min},  Ap =N —maPiy
{mig, —migp,myg,maz}, Ay = Ay —mify = A —mayn
{mi4, —mian, mos, my}, A} = Ajf —m1P23
{3, —mugp,ma, mu}, AL = Ay —mamiz
{ma, —mign,miz, mipa}, Ay = A —mzpiy = A}r — MyY13

{myp, —mygp, Moz, mas}, A} =N —miBos
b
{m1, —myg, mz,my}, A=A —myPiz

We shall label the signature of the ERs of G also as follows:

. _ 1 _ _ _
X = [n,ny,nz;cl, c=—zmyy, n=my, ny=mz, n3 =y,

(31a)

(31b)

(32)

(33)

(34)

where the last entry labels the characters of .4, and the first three entries of x are labels of
the finite-dimensional irreps of M when all 7; > 0 or limits of the latter when some n; = 0.
Note that m14p = my + 2my + m3 + my is the Harish-Chandra parameter for the highest

root B13.

Use of this labeling signatures may be given in the following pair-wise manner:



Symmetry 2024, 16, 151 17 of 42
Xo = [m1,mz,my; £3my]
Xi = [mi,mos,mpu £iml,
Xiy [m2, M3, mae; £ 3mos),
X& = [miz ma,mos £imigl,
X?f = [mi, Moy, mp; 1 >M13],
X& = [mo,mip,mis £imoyl, (35)
X? = [mou, mia, mip; £imas)],
Xgi = [m1g,ma 4, myz; £3my),
Xf = [mpg, mips, miz; =3 >M2),
X5 = [ms,my,ms; £imy,
)CfE = [mg, mygp, my; £3ms),
X = [migp, ma,ma; £im]

The ERs in the multiplet are alsonrelated by intertwining integral operators introduced
n [233]. These operators are defined for any ER, the general action being;:

Ggs CX — CX”
/

X = [nl/nZInS;C]/ X = [7’11,7’12,1’13,’ _C]- (36)

The main multiplets are given explicitly in Figure 10. The pairs x* are symmetric with
regard to to the dashed line in the middle the figure—this represents the Weyl symmetry
realized by the Knapp-Stein operators Ggs : C,v — Cy+

Some comments are in order.

Matters are arranged so that in every multiplet only the ER with signature x,, contains
a finite-dimensional nonunitary subrepresentation in a finite-dimensional subspace £. The
latter corresponds to the finite-dimensional irrep of so*(8) with signature [my, ..., my].
The subspace £ is annihilated by the operator G*, and is the image of the operator G~
The subspace £ is annihilated also by the intertwining differential operator acting from
Xo to x; - When all m; = 1, then dim & = 1, and in that case, £ is also the trivial one-
dimensional UIR of the whole algebra G. Furthermore, in that case, the conformal weight

iszero;d:%+c_%—l(m1+2m2+m3+m4)\ =0.

In the conjugate ER x, there is a unitary dlscrete series subrepresentation in an infinite-
dimensional subspace D with conformal weight d = g +c= % + %(ml + 2my + m3 + my).
It is annihilated by the operator G, and is the image of the operator G*.

Thus, for so*(8) the ER with signature x/ contains both a holomorphic discrete
series representation and a conjugate anti-holomorphic discrete series representation. The
direct sum of the holomorphic and the antiholomorphic representations spaces form the
invariant subspace D mentioned above. Note that the corresponding lowest-weight GVM
is infinitesimally equivalent only to the holomorphic discrete series, while the conjugate
highest-weight GVM is infinitesimally equivalent to the anti-holomorphic discrete series.

In Figure 10, we use the notation: AT = A(x™). Each intertwining differential operator
is represented by an arrow accompanied either by a symbol ij; encoding the root 7y and
the number m,,, which is involved in the BGG criterion, or a symbol i i encoding the root
Bjr and the number m Bik from BGG.

Finally, we recall that according to [122], the above considerations are applicable also
for the algebra so(p,q) (with p+¢q = 8, p > q > 3) with maximal Heisenberg parabolic
subalgebra: P = M' @ A/ @ N/, M' =so(p—2,q4—2) ®sl(2,R).

We present only the main multiplets. The reduced multiplets may be seen in [239].
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Figure 10. Main multiplets for SO*(8) using induction from maximal Heisenberg parabolic.

5.3. Case of so*(10)
The case so*(10) is also special. It is not of the class of ‘conformal Lie algebras’ but
belongs to the wider class of Hermitian symmetric spaces as described in the Introduction.
The maximal parabolic subalgebras of so*(2n) have M-factors as follows [75]:

MP™ = so*(2n —4f) @su(2]), j=1,...,r. 57)

The A/* factors in the maximal parabolic subalgebras have dimensions dim (/\/]-i)max =

j(4n —6j—1).
The case j = 1 is special. In this case, we have a maximal Heisenberg parabolic with
M-factor

IPrllzixsenberg = so” (211 - 4) ® su(2) (38)
which we use in this section.
Furthermore, we restrict ourselves to our case of study G = s0*(10) with minimal
parabolic:
My = s0(2) ®so(3) ®so(3) (39)

The Satake-Dynkin diagram of § is:
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O
| N
e O—0-O (40)

where, by standard convention, the black dots represent the so(3) subalgebras of M and
the left-right arrow represents the so(2) subalgebra of M.
We shall use the Heisenberg maximal parabolic (37) with M-subalgebra:

M = 50™(6) ®so(3) = su(3,1) su(2) (41)

The Satake-Dynkin diagram of M is a subdiagram of (40):

O
| N
® o O (42)

where the single black dot represents the so(3) subalgebra, while the connected part of the
diagram represents the su(3,1) subalgebra.

From the above follows that the M-compact roots of G© are (given in terms of the
simple roots):

X12 = 71, (43a)
X34 = Y3, K45 = V4, Pas = s, (43b)
®35 = Y3+ Y4, Paa =3+ va+7rs5 B3s=73+7s5

By definition, the above are the positive roots of MC, namely: su(2)® (43a) and su(3,1) =
sl(4,C) (43b).
The positive M-noncompact roots of G in terms of the simple roots are
T2 =71 +72, YVB3=Y1 2+ Y3 Yia =71+ 2 3+ Vs
Y2, Y23 =72+ Y3, Yoa = Y2+ 3+ T4, (44a)
P=m+272+2v3+1a+7s5 Pzs=1+12+2y3+ a2+ s,
Pu=mt+mtrtratr ps=mt+r+trt+7s
Bz =712+273+74+75 Pu="2+73+ 74+ 75
Bos =72+ 713+ 75 (44b)
where, for convenience, we use the notation 7;; = «; 1
To characterize the Verma modules, we shall use first the Dynkin labels:

where p is half the sum of the positive roots of GC. Thus, we shall use:

Xa = {my,my,mz,my,ms} (46)

Note that when all m; € N, then x, characterizes the finite-dimensional irreps
of G€ and its real forms, in particular, so*(10). Furthermore, m; € N characterizes the finite-
dimensional irreps of the su(2) subalgebra, while the set of positive integers {m3, m4, ms }
characterizes the finite-dimensional irreps of su(3,1).
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For the M-noncompact roots of G€, we shall also use the Harish-Chandra parameters:

mi = (A+p,7), (47a)
g = (A+p,B) (47b)
and explicitly in terms of the Dynkin labels (compare (44)):
XHC = A{mip=my+my, mz =my+my+m3,

Mig = M1+ mp +ms3 + my, My,

Ma3 = my + m3, Myy = My + M3 + My, (48a)

iy = my + 2myp + 2m3 + my + ms,

finz = my + my + 2mg + my + ms,

Mg = mq + mp + ms + my + ms,

15 = my + my + m3 + ms,

fitys = my + 2m3 + my + ms,

Titpg = my + m3 + my + ms,

Mips = my + mz + 1115} (48b)

Main multiplets of SO*(10)

The main multiplets are in 1-to-1 correspondence with the finite-dimensional irreps
of s0*(10); i.e., they are labeled by the five positive Dynkin labels m; € N.

We take xo = xmc- It has one embedded Verma module with HW A, = Ag — my ;.
The number of ERs/GVMs in a main multiplet is 40. We give the whole multiplet as follows:

X0
Xﬂ
Xb
Xc
Xd
Xe
Xf
X3
Xh
Xi
Aj
Xk
X1
X’rﬂ
Xl’l
Xp
Xq
Xr
XS
Xt

{my, mp, m3, my, ms}
{my, —ma, mo3, my, ms},
{ma, —myp, my3, my, ms},
{m13, —mo3, ma, mag, m3s5}, A= Ng—m3z723

{ma3, —my3, mip, mag, mas},  Ag= Ay —mays = Ac —mi712
{m1y, —moq, ma, m3, mas}, A= Nc—myyy

{mi35, —maz5,ma, mas, ms},  Ap= Ac—msPos

{m3, —my3,my, moy, mp3s}, Ag = Ag—moyi3

{may4, —mig,mip, m3, mas}, Ay = Ng—myyy

{maz5, —mizs, miz, mas, ms},  Ai=~Ng—msprs = A —miyi3
{m1s, —mos, my, m35,mas},  Aj = Ne —msPas

{msy, —myy, my, moz, mas},  Ap = Ag —myyoe = Ay — may13
{ma5, —myz5,my, mos, maz},  Aj = Ag —mspPos

{mas, —m1s,m1p,m35,mas}, Am = Ay —msPos

{mis3, —mos3,maz, ms, my},  An = Aj—mszPog

{my, —mig, my,mp,mos3},  Ap = Ap —m3yia

{mzs, —mys,my, myzs5,mos}, Ay = Ax —msPos

{ms, —my35,my, mys3,ma}, A= N —m3pPis

{mas3, —mis3,mi3, ms,my}, As = Apm —m3Pog

{mi5,3, —mos3,m3,ms, my}, Ay = Ay —maPn3

Ny = Ng —moyo
Ay = Ng —myy12

(49)
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Xp = Ama,—mis,my,my,mass}, A = Ap—mspr

Xq {mas, —mi53,m1,mpzs,m},  AJ = Ag—m3pa

x5 = {ms,—ms,my,mass,me},  AS = A —maPr

Xs = {masz, —misps,miz,ms,my}, AT = Ag—myprn

xi = Amiszs, —misz,ma,ms,my}, AT = A —mipro

Xp = {mas,—miszmymy,mosy,  AF = AS —mafos

X = Amas, —misz,mymos,my}, A= AL —mapis = A —mzya
X {mas, —mi503,m1p, mas,mas}, A = A; —mafog = A — mz13
Xi = {mss —misos, maz,ms,my}, A =AS —mipos = A — myv;
X = Amoa,—misps,mip,my,mzs},  AS = AT —myPos = A, —msy
Xg = Ama,—misz,mymg,mast, AL = A —msyiy

xi = A{mass —misps, mip,mas,mzy,  AF = A —myPos = A —mypis  (50)
X;r = {ms, —misg3,my,mas,mas},  AE = A —mifos = A —mai3
X& = {mu,—misps,my,ma,ms}, Af =N —miPx

Xi = {ma, —misps,min, mas,ms s}, A;{ = A —mafoy = A —msy14
Xp = {mizs —misps, ma, mss, ms}, Ay = Af —mipo = A —mspis
X} = {mia, —mi523,mp, m3, mss}, A} = A;“ —msys = x, M

Xy = {ma, —misp3,miz,mymsy, Al = Ag — m3P1a

x& = {mis, —mispz,my,mag,mast, A = A7 —miBs

Xo {m13, —misp3,ma, mag, mas},  AJ = Af —msya=x.

Xa = A{mip,—misps,moz,my,ms}, A = NS —miPoz = Al —m3pag
xg = A{mi,—misg,mz,my,ms},  AJ =AS —mypis

We shall label the signature of the ERs of G also as follows:
X = [7’1, ¢, ny, ny, 7’13], ne I\I/ c= _%m15,23/ nj = mj+2 € Z+ ’ (51)

where the first entry n = m; labels the finite-dimensional irreps of su(2), the second entry
labels the characters of A, the last three entries of x are labels of the finite-dimensional
(nonunitary) irreps of M = su(3,1) when all #; > 0 or limits of the latter when some
nj = 0. Note that my5 93 = my 4 2my 4 2m3 4 my + ms is the Harish-Chandra parameter
for the highest root B15.

Using this labeling, signatures may be given in the following pair-wise manner:

Xoi = [my;m3,my, ms; :I:%m15,23]

Xa [m1; Moz, my, ms; +3mys 3]

XI:Jt = [le; my3, My, Ms; :E%m25,3]

X& = [miz;my, mag,mas; Eims)

7(21t [mo3; M1, M34, M3 5; j:%m25]

Xe [my4; mo, m3, mss; +3myzs)
[

+ ) Cal
Xy = l|mas ma, mss,ms; +5m14]
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)@t = [m3;my,mpq, mass; +5mss)
Xip = [mog;miy,ms,mas; £3moss)
Xii [m235; M1z, M35, M3; j:%m%]
in = [mys;mp, m35, mas; F3mas]
Xi = [mas;my, mps,mos; +3mss]
Xli = [m35;my,mys,mo3; :t%mm]
X = [mos;mu, M35, M34; i%mm]
Xi = [misz;mos, ms,my; +£imy]
X% = [myg;my,my, mos3; i%mg;]
Xét = [m3s;my,mpz 5, mps; +3m3)
Xo = [ms;mi,myss,my; £5my
X5 [m25,3; 113, M5, M4; £ 5115
Xi = [misgs;ma,ms,my; £3m]

The ERs in the multiplet are also related by intertwining integral operators introduced
in [233]. These operators are defined for any ER, the general action being;:

Ggs CX — CX”

X = [n;ny,nynzcl, X = [n;ny,ny,ng —cl. (52)

The main multiplets are given explicitly in Figure 11. The pairs xT are symmetric
with regard to to the bullet in the middle of the figure—this represents the Weyl symmetry
realized by the Knapp-Stein operators: Ggs : €,z — Cyt .

Some comments are in order.

Matters are arranged so that in every multiplet only the ER with signature x,, contains
a finite-dimensional nonunitary subrepresentation in a finite-dimensional subspace £.
The latter corresponds to the finite-dimensional irrep of so* (10) with signature {m;, ..., ms}.
The subspace £ is annihilated by the operator G*, and is the image of the operator G~ .
The subspace £ is also annihilated by the intertwining differential operator acting from
Xo to x; - When all m; = 1 then dim £ = 1, and in that case, £ is also the trivial one-
dimensional UIR of the whole algebra G. Furthermore, in that case, the conformal weight
iszero:d:%+c:%—%(m1+2m2+2m3—|—m4—|—m5)| =0.

m;=1

In the conjugate ER x{, there is a unitary discrete series subrepresentation in an
infinite-dimensional subspace D. It is annihilated by the operator G~, and is the image of
the operator G™.

Thus, for so*(10) the ER with signature xJ contains both a holomorphic discrete
series representation and a conjugate anti-holomorphic discrete series representation.
The direct sum of the holomorphic and the antiholomorphic representations spaces form the
invariant subspace D mentioned above. Note that the corresponding lowest-weight GVM
is infinitesimally equivalent only to the holomorphic discrete series, while the conjugate
highest weight GVM is infinitesimally equivalent to the anti-holomorphic discrete series.

Finally, we recall that according to [122], the above considerations are applicable also
for the algebra so(p, q) (with p +q = 10, p > g > 2) with maximal Heisenberg parabolic
subalgebra: P = M' @ A’ @ N/, M' =so(p—2,q4—2) ®sl(2,R).

We present only the main multiplets. The reduced multiplets may be seen in [240].
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Figure 11. Main multiplets for SO*(10) using induction from maximal Heisenberg parabolic.



Symmetry 2024, 16, 151 24 of 42

6. The Lie Algebras E;(_55) and Ey(7)
Let G = Ej(_z5. The maximal compact subgroup is K = e & so(2), while
The Satake diagram [241] is:

o ny
o} [ ] [ ] [ ] o (¢]
o n3 (L7} a5 Ke L4

The signatures of the ERs of G are:
x ={ny,...,ne;c},  n;eN.
expressed through the Dynkin labels:
n; = m;, c = - %(m& +my) = — %(21711 + 2my + 3mgz + 4my + 3ms + 2mg + 2my)

The same signatures can be used for the parabolically related exceptional Lie algebra E7(7)
(with M-factor Eg ).
The noncompact roots of the complex algebra E; are:

a7, X7, ..., Kg7,

1,37, X247, X17,4, X274,

X17,34, 17,35, X17,36, X17,45, X17,46/
X27,45, %2746,

X17,25,4, X17,26,4, X17,35,4, X17,36,4
X17,26,45, X17,36,45/

X17,26,35,4, X17,26,454+

X1716354 = &,

given through the simple roots «;:
njj = Dci+0€i+1+"'+06j, i<j/
txl-]-,k:ock,ij:ai+zxi+1+---—I—txj—i—ock, i<j, etc.

The multiplets of the main type are in 1-to-1 correspondence with the finite-dimensional
irreps of E7; i.e., they will be labeled by the seven positive Dynkin labels m; € N.
The number of ERs in the corresponding multiplets is equal to

IWGE,HE)| /IW(KE,HE)| = 56
The multiplets are given in Figure 12 [122,242].

The Knapp-Stein operators G}j(E act pictorially as reflections with regard to the bullet
intertwining each 7, member with the corresponding 7" member.
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Figure 12. Main type for E7(_5).
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7. The Lie Algebras Eg(_14), E¢(6) and Eg(3)

LetG = Eg(_14) - The maximal compact subalgebra is K = s0(10) & s0(2), while M =
su(5,1).

The Satake diagram [241] is:

Oy
T ©3)
The signature of the ERs of G is:
x = {ny,n3,ny,ns,ng; c}, c:d—%. (54)
expressed through the Dynkin labels as:
n,=m;, —c = %m& = %(ml + 2my + 2m3 + 3my + 2ms + myg) (55)

The same signatures can be used for the parabolically related exceptional Lie alge-
bras Eg () and Eg () with M—factors s/(6,R) and su(3, 3), resp.
Furthermore, we need the noncompact roots of the complex algebra Eg :

X, K14, &15, K16, 24, K25, &26

2,4, X245, X246, X254, X154, X264
X164, X1534, %2645, %1634, 1645 (56)

016,35, X16354, X16254 = &

The multiplets of the main type are in 1-to-1 correspondence with the finite-dimensional
irreps of G ; i.e., they will be labeled by the six positive Dynkin labels m; € N.

Since these algebras do not belong to the class of conformal Lie algebras (CLA), the
number of ERs/GVMs in the multiplet is not given by formula (14). It turns out that each
such multiplet contains 70 ERs/GVMs—see Figure 13 [122,243]. Another difference with
the CLA class is that, pictorially, the the Knapp—-Stein operators G% act as reflections with
regard to the dotted line separating the 7, members from the 7.~ members (and not as
reflections with regard to a central dot (bullet) as in the CLA cases).

Note that there are five cases when the embeddings correspond to the highest root
B: VA 5 VAT At = A~ —mzi. In these five cases, the weights are denoted as:
A;E, , A;E , AfcjE , Af , A;ﬁ ; then, mg = myq, mz, my, ms, mg, resp. Thus, their action coincides
with the action of the Knapp-Stein operators G, which, in the above five cases, degenerate
to differential operators as we discussed for so0(3,2).

Note that the figure has the standard Eg symmetry, namely, conjugation exchanging
indices 1 +— 6,3 <— 5.
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Figure 13. Main Type for Eg(_5y).
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8. The Lie Algebra Fy

The complex Lie algebra F; has two real forms denoted by F; and F;'.

The first F; is the split real form (denoted also as Fy(4))- It has discrete series rep-
resentations since rank F; = rankC = 4, where £ = sp(3) @ su(2) is the maximal

compact subalgebra.
The real form F; has several parabolic subalgebras. We shall consider a maximal (also

called Heisenberg) parabolic subalgebra:
P=MaABN,
M = sI(3,R) ®sl(2,R),
dim A4 =1, dim N = 20

Note that in what follows we shall use the case when the s/(3, R) subalgebra is formed by

the two short roots of Fy, and the sI(2,R) subalgebra is formed by a long root of F;. The

other (equivalent in our considerations) possibility is to flip the short and the long roots.
The embedding diagram is given in Figure 14.

Ay
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Figure 14. Multiplets for the real split form F; using maximal parabolic with M = sI(3, R)gortroots
SZ(Z, R)longmots~

The other (split rank one) real form of F; is denoted as F;’, sometimes as Fy(_20)-
This real form also has discrete series representations since I = s0(9). The minimal (also
maximal) parabolic P and the corresponding Bruhat decomposition are:

P=MaADN, M =5s0(7)
G=MaoANTON~
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Each main multiplet contains 24 GVMs (ERs) an777d is given in Figure 15.
Ay

44

Ay

214,14,23,3
+
Ay

314,23
A

414,233

Ag
Figure 15. Main multiplets for F}’ .
9. The Case of Lie Algebra G;(y)

Let G€ = G,, with Cartan matric: (al-]-) = <_23 _21>, simple roots a1, ay with
products: (aq,a1) = 3(ag,ap) = —2(a,a2). We choose (ap,a2) = 2; then, (a1,07) =
6, (a1, a2) = —3. As we know, G; is 14-dimensional. The positive roots are:

AT = {061, Ny, a1 +ap, o+ 20, o+ 3, 20 +3DC2} (57)

We shall use the orthonormal basis €1, €, €3. In its terms for the simple roots, we
may choose:
np =€ —2ex+¢€3, ay)=¢€ —e3 (58)
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With the chosen normalization, the roots a1, a1 + 30y = €1 + € — 2¢e3, 207 + 3ap =
2e1 — €3 — €3 have a length of 6, while ay, a1 + a2 = €1 — &3, a1 + 202 = €1 —e3 have a
length of 2. Another way to write the roots in general is § = (a1, a3, a3) under the condition
a1+ ap +az = 0. Then,
K1 = (1, —2,1), a1+ 3ap = (1, 1, —2), 201 + 3y = (2, -1, —1),
ay=(0,1,-1), a1 +ap =(1,-1,0), a1 +2ap =(1,0,—1) (59)

The dual roots are: oy = a1/3, ) = ap, (01 +a2)" = w3 +ax = 30y + o, (3 +
207)Y = oy + 20 =3y + 203, (a1 +302)" = (a1 +3a2)/3 = af +ay, (2a1 +3n)Y =
(201 4+ 302) /3 = 20) + aj.

The Weyl group of G is the dihedral group of order 12. This follows from the fact that
(s152)® = 1, where s, 5, are the two simple reflections.

The algebra G; has one non-compact real form: G = Gy(3), which is naturally split.
Its maximal compact subalgebra is K = su(2) @ su(2). Thus, G = Gy(y) has discrete
series representations. The complimentary space Q is eight-dimensional. The positive root
system of KC consists of ay = (0,1, 1), 2a1 + 3a2 = (2, —1, —1) (chosen to be orthogonal
to each other).

The minimal parabolic of G is:

Po=Mo@ Ay ® N (60)
Mo=0, dimAy=2, dimNy=6

There are two isomorphic maximal parabolic subalgebras of G which are of

Heisenberg type:

M =5sl(2,R),, dim A, =1, dim N, =5
where sl(2, R) inherits from GC the simple root ay (k = 1,2). Equivalently, the M-compact
root of GC is ax (k = 1,2). In each case, the remaining five positive roots of GC are

Mj-noncompact.
The positive roots of G€ in terms of the simple roots will be denoted as :

Y1 =1, Y13 =a&1+3a, Y3 =21 +3a (62a)
Yo =ay, Y11= &1 +ap, Y12 = 41+ 2040 (62b)

(where, as above, in (62a) are the long roots, in (62b) are the short roots).
To characterize the Verma modules, we shall use first the Dynkin labels:

mi=(A+p,v)), i=12, (63)
where p is half the sum of the positive roots of GC. Thus, we shall use:
xa = {my,mp} (64)

Note that when all m; € N, then x4 characterizes the finite-dimensional irreps of
GC and its real forms, in particular, G. Furthermore, m; € N characterizes the finite-
dimensional irreps of the M subalgebra.

We shall use also the Harish-Chandra parameters:

mij = (A+0,7) (65)
and explicitly in terms of the Dynkin labels:

Xuc = {m, miz=my+my, my =2my +my, (66a)
my, myy = 3my +my, mip = 3my +2my } (66b)



Symmetry 2024, 16, 151

31 of 42

9.1. Induction from Minimal Parabolic
Main Multiplets

The main multiplets are in 1-to-1 correspondence with the finite-dimensional irreps
of Gy;i.e., they are labeled by the two positive Dynkin labels m; € N. When we induce
from the minimal parabolic, the main multiplets of G are the same as for the complexified
Lie algebra GC.

We take xo = xpHc- It has two embedded Verma modules with HW A = Ag — mq7yq,
and Ay = Ag — my7. The number of ERs/GVMs in a main multiplet is 12 = |[W(G®)|.
We give the whole multiplet as follows:

Xo = {my,mp;—%(2my +my)}
X1 {—m1,3my + my; —3(my +ma)}, Ay =Ag—mm
X2 {m1 +ma, —ma; —3(2my +ma)}, Ay = Ag—mays
X12 {—m1 —my,3my +2mp; —Imi},  Ap = A —mpyn
X21 {2mq +my, —3my —mp; —3(my +ma)}, A = Ay —myy13
X121 {—2my —my,3my +2ma; Amy}, Aoy = Ay —mi723
X212 {2my + my, —3my — 2mp; —ym1},  Agp = Ay — may2
X1212 {—2my —my,3my + ma; L (my +ma)},  Avpia = A1 — moy12
X2121 {my 4+ ma, —3my — 2my; 3m1}, Ao = A1y — m1723 (67)
X12121 {—my —my,my; 3(2my +ma)},  A1p1o1 = A2z — M3
X21212 {my, =3my — my; 5 (m1+m2)},  Aginiz = Agio1 — maym
X212 = {—my, —mp; 3(2my +mp)} = xo2121,
A121212 = A12121 — M2Y2 = No1212 — 1M1
Aoy = Ay — (B3my +ma)72
Ao1p = A1p — (3my + 2ma) 72
Ag121 = Aiz1 — (3my +2m) 72
Ao1212 = Aq12 — (Bmy +ma) 72
A1 = Ay — (my +ma)m
A1 = Aoy — (2my +m2) 11
A1 = Ag1a — (2my +mp) 11
A12121 = Ap1o1 — (m1 +ma)m
where we have included as third entry also the parameter ¢ = — 1 (2m; + m,), related to

the Harish-Chandra parameter of the highest root (recalling that m.,, = 2m; 4 mj). Itis
also related to the conformal weight d = % +c.

The ER 121212 contains discrete series representation according to the Harish-Chandra
criterion [3] (all HC parameters are negative).

These labeling signatures may be given in the following pair-wise manner:

X = {Fmi,FmyE£lm +my)}
Xi = A{Em, FEmi+ma);£5(m +ma)},
Xy = {F(my+my), £my; £ (2m +my)}, (68)
Xin = {£(m +m), FBmy +2my); £3my}
X1 = AF@mi+m), £Bm +my);+] (my +m2)}
Xin = {E@my+my), F(Bmy +2my); F3m},
where x = x.. from (67), xg = X121212, X{ = X21212, X3 = X12121, X{3 = X2121, Xpy =

+
X1212, X121 = X212-
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The ERs in the multiplet are also related by intertwining integral operators introduced
in [233]. These operators are defined for any ER, the general action in our situation being:

Gks : CX — CX’ ,
x=I[m,nycl, X =[-n,—ny —c] (69)
This action is consistent with the parameterization in (68).
The main multiplets are given explicitly in Figure 16. The pairs x* are symmetric with

regard to to the bullet in the middle of the picture—this symbolizes the Weyl symmetry
realized by the Knapp-Stein operators:

GKsic

xF — Cxi.

777/2((11 + 02)

a2 (3mi+2ms)
a1 (2my+me

ma(a1 + 2a2)

+
A121

ma(ay + 2a9) m1(2a1 + 3az)

+ +
A21 A12

m1 (o1 + 3az2)

A3

Figure 16. Main multiplets for G, ;) using induction from the minimal parabolic.

Some comments are in order.

Matters are arranged so that in every multiplet only the ER with signature x,, contains
a finite-dimensional nonunitary subrepresentation in a finite-dimensional subspace £.
The latter corresponds to the finite-dimensional irrep of G,(,) with signature [my, my].
The subspace £ is annihilated by the operator G, and is the image of the operator G~ .
When all m; = 1, then dim £ = 1, and in that case, £ is also the trivial one-dimensional
UIR of the whole algebra G. Furthermore, in that case, the conformal weight is zero:
d= % +c= % — %(Zml +m2)|n1i:1 =0.

In the conjugate ER x{ there is a unitary discrete series subrepresentation in an
infinite-dimensional subspace D with conformal weight d = % +c= % + %(Zml +my). It
is annihilated by the operator G, and is the image of the operator G*.
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9.2. Induction from Maximal Parabolics
9.2.1. Main Multiplets When Inducing from P;

When inducing from the maximal parabolic P; = M; @ A; & N] there is one M;-
compact root, namely, #;. We take again the Verma module with Ayc = A(l)*. We
take X(l)f = Xuc- The GVM Aé* has one embedded GVM with HW A%* = Aé* —
myyp, my € N. Altogether, the main multiplet in this case includes the same number of
ERs/GVMs as in (32), so we use the same notation only adding super index 1, namely

xot = {Fm, Fmy+£12my +mp)}

xit = {dmy, F@my +my); 5 (my +my)},

aF = {F(my+my), Emy;£L(2my +my)},

X%zi = {*(my+my), F(3m +2m2);i%m1} (70)
X = {F@my+my), £Bmy +ma); £ (m +my)}

X1 = {£@m+m), FBmy +2my); Fimy},

In addition, in order to avoid coincidence with (35) we must impose in (70) the condi-
tions: my ¢ N, m; € N/2, m; ¢ N/3.

What is peculiar is that the ERs/GVMs of the main miltiplet (70) actually consist of
three submultiplets with intertwining diagrams as follows:

my

- D 1-
Ag 2N

e

) 1 subtype (A1) (71a)
D)2

At Ay

ma

A T Ay
t 1 subtype (By) (71b)

ma

1+ D 1+
A S0 A

1—- D32 1+
Ay T2 Ay

) 1 subtype (Cy) (71c)
Ay T Al

Next, we relax in (70) one of the conditions, namely, we allow m; € N/2, still keep-
ing m; ¢ N, m; ¢ N/3. This changes the diagram of subtype (C1), (71c), as given in
Figure 17a below.

Next, we relax in (70) another condition, namely, we allow m; € N/3, still keeping
my & N, mq ¢ N/2. This changes the diagrams of subtypes (B;) and (C;) combining them
as given in Figure 17b below.
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A ma(on +2a2)  AlL

ay(2my +ms) ay(2my +ms)

ma(a1 + 2as)

A Agt
(a) X )
A a1(3mi+mg) AyT
ma (o + o)
ma(ag + 2a2)
1— a1 (3mi+me 1
Al : Lgals
1 a1(3my+mo 1—
Arg ( ) Ajoy
ma(ay + a2)
ma(ay + 2a2)
1+ a1(3m1 erQ) 1+
Ay Ajy
(b)
Ay mi (201 + 3a2)  Aly,
az(3my+2ms) as(3my+2ms)
A%zﬁ mi (201 + 3az) A};
(c)

Figure 17. (a) Submultiplets type (C;) for Gy ;) using induction from the maximal parabolic P1
formy € N,my ¢ N, my € N/2, m; ¢ N/3; the (anti)diagonal arrows represent the KS operators.
(b) Submultiplets type (By)+ (C1) for Gy using induction from the maximal parabolic P1 for
my € N,my ¢ N,my ¢ N/2, my € N/3; the up-down arrows represent four pairs of KS operators.
(c) Submultiplets type (Cz) for Gy () using induction from the maximal parabolic P2 for m; € N,
my ¢ N, my € N/2; the (anti)diagonal arrows represent the KS operators.

9.2.2. Main Multiplets When Induction from P,

This case is partly dual to the previous one. When inducing from the maximal
parabolic P, = M, @ A, @ N, there is one Mj-compact root, namely, ap. We take again
the Verma module with Agyc = A(z)*. We take X%f = XHc- The GVM A(z)* has one
embedded GVM with HW A%* = A%* —my71, m € N. Altogether, the main multiplet in
this case includes the same number of ERs/GVMs as in (32), so we use the same notation
only adding super index 2, namely
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Xoo = {Fm, Fmy £ (2m +m)}

X = {Em, F(8my +ma);£1(my +my)},

X%i = {F(m + my), £my; i%(2m1 +my)},

X35 = {E(m+m), F(B3my +2my); £Imy} (72)
X%TE = {F(2my +my), £(3m +m2);ﬂ:%(m1 +mp)}

X = {E@my+my), F(3my +2my); Fym},

In addition, in order to avoid coincidence with (35) we must impose in (70) the condi-
tionsmy ¢ N, my & N/2.

Similarly to the P; case, the ERs/GVMs of the main miltiplet (72) actually consist of
three submultiplets with intertwining diagrams as follows:

my

N T A

) 1 subtype (Az) (73a)

mq

2+ D 2+
Ayt A

2—  Dil 2-

Ay T Ay
) 1 subtype (By) (73b)
2+ Dil 2

At T AST
2 DM 2—

A 3 Ay
) 1 subtype (C2) (73¢)
2+ DM 24

A 0B A

Next, we relax in (70) one of the conditions, namely, we allow m; € N/2, still keeping
my ¢ N. This changes the diagram of subtype (C2), (73c), as given in Figure 17c.
Funding: This research received no external funding.
Data Availability Statement: All used research data is in references and acknowledged where proper.

Conflicts of Interest: The author declares no conflict of interest.

References

1.  Maldacena, ].M. Large N Field Theories, String Theory and Gravity. In Lectures on Quantum Gravity; Series of the Centro De
Estudios Scientificos; Gomberoff, A., Marolf, D., Eds.; Springer: New York, NY, USA, 2005; pp. 91-150.

2. Terning, . Modern Supersymmetry: Dynamics and Duality; International Series of Monographs on Physics # 132; Oxford University
Press: Oxford, UK, 2005.

3. Chandra, H. Discrete series for semisimple Lie groups, II. Acta Math. 1966, 116, 1-111. [CrossRef]

4. Bernstein, I.N.; Gelfand, I.M.; Gelfand, S.I. Structure of representations possessing a highest weight. Funct. Anal. Appl. 1971, 5,
1-8. (in Russian) [CrossRef]

5. Bernstein, IN.; Gelfand, LM.; Gelfand, S.I. Differential operators on the base affine space and a study of g-modules. In Lie Groups
and Their Representations; Gelfand, .M., Ed.; Halsted Press: New York, NY, USA, 1975; pp. 21-64.

6.  Warner, G. Harmonic Analysis on Semi-Simple Lie Groups I; Springer: Berlin/Heidelberg, Germany, 1972.

7.  Langlands, R.P. On the classification of irreducible representations of real algebraic groups. Math. Surv. Monogr. 1988, 31, 101-170.

8.  Ferrara, S.; Wess, J.; Zumino, B. Supergauge multiplets and superfields. Phys. Lett. B 1974, 51, 239. [CrossRef]

9.  Ferrara, S.; Zumino, B. Supergauge invariant Yang-Mills theories. Nucl. Phys. B 1974, 79, 413. [CrossRef]


http://doi.org/10.1007/BF02392813
http://dx.doi.org/10.1007/BF01075841
http://dx.doi.org/10.1016/0370-2693(74)90283-4
http://dx.doi.org/10.1016/0550-3213(74)90559-8

Symmetry 2024, 16, 151 36 of 42

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.

20.

21.
22.

23.
24.

25.
26.
27.
28.
29.
30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.
44.

Ferrara, S.; Zumino, B. Transformation properties of the supercurrent. Nucl. Phys. B 1975, 87, 207. [CrossRef]

Zhelobenko, D.P. Harmonic Analysis on Semisimple Complex Lie Groups; Nauka: Moscow, Russian, 1974.

Kostant, B. Verma Modules and the Existence of Quasi-Invariant Differential Operators; Lecture Notes in Mathematics; Dold, A.,
Eckmann, B., Eds.; Springer: Berlin/Heidelberg, Germany, 1975; Volume 466, pp. 101-128.

Sokatchev, E. Projection Operators and Supplementary Conditions for Superfields with an Arbitrary Spin. Nucl. Phys. B 1975,
99, 96. [CrossRef]

Sokatchev, E. Noncommutative Geometry and String Field Theory. Phys. Lett. B 1986, 169, 209. [CrossRef]

Sokatchev, E. Harmonic superparticle. Class. Quant. Gravity 1987, 4, 237. [CrossRef]

Freedman, D.Z.; van Nieuwenhuizen, P.; Ferrara, S. Progress Toward a Theory of Supergravity. Phys. Rev. D 1976, 13, 3214-3218.
[CrossRef]

Ferrara, S.; van Nieuwenhuizen, P. The Auxiliary Fields of Supergravity. Phys. Lett. B 1978, 74, 333. [CrossRef]

Wolf, J. Unitary Representations of Maximal Parabolic Subgroups of the Classical Groups; Memoirs American Mathematical Society 180;
AMS: Providence, RI, USA, 1976.

Ademollo, M,; Brink, L.; D’Adda, A.; D’Auria, R.; Napolitano, E.; Sciuto, S.; Giudice, E.D.; Vecchia, P.D.; Ferrara, S.; Gliozzi, F,;
et al. Supersymmetric Strings and Color Confinement. Phys. Lett. B 1976, 62, 105-110. [CrossRef]

Ademollo, M,; Brink, L.; D’Adda, A.; D’Auria, R.; Napolitano, E.; Sciuto, S.; Giudice, E.D.; Vecchia, P.D.; Ferrara, S.; Gliozzi, F;
et al. Dual String with U(1) Color Symmetry. Nucl. Phys. B 1976, 111, 77-110. [CrossRef]

Fayet, P; Ferrara, S. Supersymmetry. Phys. Rep. 1977, 32, 249. [CrossRef]

Wolf, ]J. Classification and Fourier Inversion for Parabolic Subgroups with Square Integrable Nilradical; Memoirs of the American
Mathematical Society 225; AMS: Providence, RI, USA, 1979.

Knapp, A.W.; Zuckerman, G.J. Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1977; Volume 587, pp. 138-159.
Dobrev, VK.; Mack, G.; Petkova, V.B.; Petrova, S.G.; Todorov, L.T. Harmonic Analysis on the n-Dimensional Lorentz Group and Its
Application to Conformal Quantum Field Theory. Lect. Notes Phys. 1977, 63, 1-280.

Dobrev, VK.; Mack, G.; Petkova, V.B.; Petrova, S.G.; Todorov, L.T. On the Clebsch-Gordan Expansion for the Lorentz Group in n
Dimensions. Rep. Math. Phys. 1976, 9, 219-246. [CrossRef]

Dobrev, VK.; Petkova, V.B.; Petrova, S.G.; Todorov, I.T. Dynamical Derivation of Vacuum Operator Product Expansion in
Euclidean Conformal Quantum Field Theory. Phys. Rev. D 1976, 13, 887. [CrossRef]

Ogievetsky, V.; Sokatchev, E. On Vector Superfield Generated by Supercurrent. Nucl. Phys. B 1977, 124, 309-316. [CrossRef]
Ogievetsky, V.; Sokatchev, E. Structure of Supergravity Group. Phys. Lett. B 1978, 79, 222. [CrossRef]

Cremmer, E.; Sherk, J.; Ferrara, S. SU(4) Invariant Supergravity Theory. Phys. Lett. B 1978, 74, 61-64. [CrossRef]

Cremmer, E.; Ferrara, S.; Girardello, L.; Proeyen, A.V. Coupling Supersymmetric Yang-Mills Theories to Supergravity. Phys. Lett. B
1982, 116, 231-237. [CrossRef]

Speh, B.; Vogan, D. Reducibility of generalized principal series representations. Acta Math. 1980, 145, 227-299. [CrossRef]
Vogan, D. Representations of Real Reductive Lie Groups; Progress in Mathematics; Birkhduser: Boston, MA, USA; Basel, Switzerland;
Stuttgart, Germany, 1981; Volume 15.

Enright, T.; Howe, R.; Wallach, N. Representations of Reductive Groups; Trombi, P., Ed.; Birkhduser: Boston, MA, USA, 1983;
pp. 97-143.

Galperin, A.; Ivanov, E.; Kalitsyn, S.; Ogievetsky, V.; Sokatchev, E. Unconstrained N = 2 Matter, Yang-Mills and Supergravity
Theories in Harmonic Superspace. Class. Quant. Gravity 1984, 1, 469-498; Erratum in Class. Quant. Gravity 1985, 2, 127. [CrossRef]
Dobrev, VK.; Petkova, V.B. All positive energy unitary irreducible representations of extended conformal supersymmetry.
Phys. Lett. B 1985, 162, 127-132. [CrossRef]

Dobrev, V.K.; Petkova, V.B. Group-Theoretical Approach to Extended Conformal Supersymmetry: Function Space Realizations
and Invariant Differential Operators. Fortsch. Phys. 1987, 35, 537-572. [CrossRef]

Dobrev, V.K. Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras. Phys. Lett. B 1987,
186, 43-51. [CrossRef]

Delduc, F; Galperin, A.; Howe, P.S.; Sokatchev, E. A Twistor formulation of the heterotic D = 10 superstring with manifest (8,0)
world sheet supersymmetry. Phys. Rev. D 1993, 47, 578-593. [CrossRef]

Truini, P; Varadarajan, V.S. Quantization of Reductive Lie Algebras: Construction and Universality. Rev. Math. Phys. 1993, 5, 363.
[CrossRef]

Jakobsen, H.P. Lecture Notes in Physics; Springer, Berlin/Heidelberg, Germany, 1986; Volume 261, pp. 253-265.

Kac, V.G.; Wakimoto, M. Lie Theory and Geometry; Progress in Mathematics; Birkhduser: Boston, MA, USA, 1994; Volume 123,
pp- 415-456.

Kobayashi, T.S. Discrete decomposability of the restriction of A;(A) with respect to reductive subgroups and its applications. Inv.
Math. 1994, 117, 181-205. [CrossRef]

Witten, E. On the Landau-Ginzburg description of N = 2 minimal models. Int. J. Mod. Phys. A 1994, 9, 4783-4800. [CrossRef]
Witten, E. SL(2, Z) action on three-dimensional conformal field theories with abelian symmetry. In From Fields to Stings:
Circumnavigating Theoretical Physics; Shifman, M., Vainshtein, A., Wheater, J., Eds.; World Scientific: Singapore, 2004; Volume 2,
pp. 1173-1200.


http://dx.doi.org/10.1016/0550-3213(75)90063-2
http://dx.doi.org/10.1016/0550-3213(75)90058-9
http://dx.doi.org/10.1016/0370-2693(86)90652-0
http://dx.doi.org/10.1088/0264-9381/4/2/007
http://dx.doi.org/10.1103/PhysRevD.13.3214
http://dx.doi.org/10.1016/0370-2693(78)90670-6
http://dx.doi.org/10.1016/0370-2693(76)90061-7
http://dx.doi.org/10.1016/0550-3213(76)90483-1
http://dx.doi.org/10.1016/0370-1573(77)90066-7
http://dx.doi.org/10.1016/0034-4877(76)90057-4
http://dx.doi.org/10.1103/PhysRevD.13.887
http://dx.doi.org/10.1016/0550-3213(77)90318-2
http://dx.doi.org/10.1016/0370-2693(78)90228-9
http://dx.doi.org/10.1016/0370-2693(78)90060-6
http://dx.doi.org/10.1016/0370-2693(82)90332-X
http://dx.doi.org/10.1007/BF02414191
http://dx.doi.org/10.1088/0264-9381/1/5/004
http://dx.doi.org/10.1016/0370-2693(85)91073-1
http://dx.doi.org/10.1002/prop.2190350705
http://dx.doi.org/10.1016/0370-2693(87)90510-7
http://dx.doi.org/10.1103/PhysRevD.47.578
http://dx.doi.org/10.1142/S0129055X93000103
http://dx.doi.org/10.1007/BF01232239
http://dx.doi.org/10.1142/S0217751X9400193X

Symmetry 2024, 16, 151 37 of 42

45.

46.
47.

48.

49.

50.

51.

52.

53.
54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

70.

71.
72.

73.

74.
75.

76.

77.

Argyres, P.C.; Presser, M.; Seiberg, N.; Witten, E. New N = 2 superconformal field theories in four dimensions. Nucl. Phys. B 1996,
461, 71-84. [CrossRef]

Ferrara, S.; Harvey, J.A.; Strominger, A.; Vafa, C. Second-quantized mirror symmetry. Phys. Lett. B 1995, 361, 59. [CrossRef]
Ceresole, A.; Dall’Agata, G.; D’Auria, R.; Ferrara, S. Spectrum of type IIB supergravity on AdS 5x T 11: Predictions on N = 1
SCFT’s. Phys. Rev. D 2000, 61, 066001. [CrossRef]

Antoniadis, L; Ferrara, S.; Minasian, R.; Narain, K.S. R4 couplings in M-and type II theories on Calabi-Yau spaces. Nucl. Phys. B
1997, 507, 571. [CrossRef]

Branson, T.P.; Olafsson, G.; Orsted, B. Spectrum generating operators and intertwining operators for representations induced
from a maximal parabolic subgroup. J. Funct. Anal. 1996, 135, 163-205. [CrossRef]

Andrianopoli, L.; Ferrara, S.; Sokatchev, E.; Zupnik, B. Shortening of primary operators in N-extended SCFT_4 and harmonic-
superspace analyticity. Adv. Theor. Math. Phys. 2000, 4, 1149.

Ferrara, S.; Maldacena, ]. M. Branes, central charges and U duality invariant BPS conditions. Class. Quant. Gravity 1998, 15, 749-758.
[CrossRef]

Ferrara, S.; Fronsdal, C. Conformal Maxwell theory as a singleton field theory on AdS, IIB 3-branes and duality.
Class. Quant. Gravity 1998, 15, 2153. [CrossRef]

Howe, P.S.; Sokatchev, E.; West, P.C. 3-point functions in N = 4 Yang-Mills. Phys. Lett. B 1998, 444, 341. [CrossRef]

Aharony, O.; Gubser, S.S.; Maldacena, ].M.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rep. 2000,
323, 183-386. [CrossRef]

Eden, B.; Petkou, A.C.; Schubert, C.; Sokatchev, E. Partial non-renormalisation of the stress-tensor four-point function in N = 4
SYM and AdS/CFT. Nucl. Phys. B 2001, 607, 191. [CrossRef]

Dolan, L.; Nappi, C.R.; Witten, E. Conformal operators for partially massless states. J. High Energy Phys. 2001, 110, 16. [CrossRef]
Arutyunov, G.; Eden, B.; Petkou, A.C.; Sokatchev, E. Exceptional non-renormalization properties and OPE analysis of chiral
four-point functions in N = 4 SYM4. Nucl. Phys. B 2002, 620, 380. [CrossRef]

Knapp, A.W. Lie Groups Beyond an Introduction, 2nd ed.; Progress in Mathematics; Birkhduser: Boston, MA, USA; Basel, Switzerland;
Stuttgart, Germany, 2002; Volume 140.

Kac, V;; Roan, S.S.; Wakimoto, M. Quantum Reduction for AFfine Superalgebras. Comm. Math. Phys. 2003, 241, 307-342.
[CrossRef]

Ferrara, S.; Sokatchev, E. Universal properties of superconformal OPEs for 1/2 BPS operators in 3 < D < 6. New J. Phys. 2002 , 4, 2.
[CrossRef]

Kostant, B. Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra. Inv. Math. 2004,
158, 181-226. [CrossRef]

Baur, K.; Wallach, N. Nice parabolic subalgebras of reductive Lie algebras. Represent. Theory 2005, 9, 1-29. [CrossRef]

Gannon, T.; Vasudevan, M. Charges of exceptionally twisted branes. J. High Energy Phys. 2005, 507, 35. [CrossRef]

Carmeli, C.; Cassinelli, G.; Toigo, A.; Varadarajan, V.S. Unitary representations of super Lie groups and applications to the
classification and multiplet structure of super particles. Comm. Math. Phys. 2006, 263, 217. [CrossRef]

Duff, M.].; Ferrara, S. E¢ and the bipartite entanglement of three qutrits. Phys. Rev. D 2007, 76, 124023. [CrossRef]

Faraggi, A.E.; Kounnas, C.; Rizos, J. Spinor-Vector Duality in fermionic Z2x Z2 heterotic orbifold models. Nucl. Phys. B 2007,
774,208-231. [CrossRef]

Kinney, J.; Maldacena, ] M.; Minwalla, S.; Raju, S. An Index for 4 dimensional super conformal theories. Commun. Math. Phys.
2007, 275, 209-254. [CrossRef]

Gurrieri, G.; Lukas, L.; Micu, A. Heterotic string compactifications on half-flat manifolds IL. . High Energy Phys. 2007, 712, 81.
[CrossRef]

Hofman, D.M.; Maldacena, J. Conformal collider physics: Energy and charge correlations. |. High Energy Phys. 2008, 5, 12.
[CrossRef]

Bernardoni, F; Cacciatori, S.L.; Cerchiai, B.L.; Scotti, A. Mapping the geometry of the E6 group. J. Math. Phys. 2008, 49, 012107.
[CrossRef]

Kallosh, R.; Kugo, T. The footprint of E7(7) in amplitudes of N = 8 supergravity. J. High Energy Phys. 2009, 901, 072. [CrossRef]
Mizoguchi, S. Localized modes in type II and heterotic singular Calabi-Yau conformal field theories. J. High Energy Phys. 2008,
811, 022. [CrossRef]

Ferrara, S.; Kallosh, R.; Marrani, A. Degeneration of groups of type E; and minimal coupling in supergravity. J. High Energy Phys.
2012, 1206, 074. [CrossRef]

Petrov, A. New Methods in the General Theory of Relativity; Nauka: Moscow, Russia, 1966; 496p.

Dobrev, VK. Invariant differential operators for non-compact Lie groups: Parabolic subalgebras. Rev. Math. Phys. 2008,
20, 407-449. [CrossRef]

Dobrev, V.K. Invariant Differential Operators, Volume 1: Noncompact Semisimple Lie Algebras and Groups; De Gruyter Studies in
Mathematical Physics; De Gruyter: Berlin, Germany; Boston, MA, USA, 2016; Volume 35, pp. 408 + xii, ISBN 978-3-11-042764-6.
Catto, S.; Choun, Y.S.; Kurt, L. Invariance properties of the exceptional quantum mechanics (Fy) and its generalization to complex
Jordan algebras (Eg). In Lie Theory and Its Applications in Physics ; Springer Proceedings in Mathematics & Statistics; Springer:
Tokyo, Japan, 2013; Volume 36, p. 469.


http://dx.doi.org/10.1016/0550-3213(95)00671-0
http://dx.doi.org/10.1016/0370-2693(95)01074-Z
http://dx.doi.org/10.1103/PhysRevD.61.066001
http://dx.doi.org/10.1016/S0550-3213(97)00572-5
http://dx.doi.org/10.1006/jfan.1996.0008
http://dx.doi.org/10.1088/0264-9381/15/4/004
http://dx.doi.org/10.1088/0264-9381/15/8/004
http://dx.doi.org/10.1016/S0370-2693(98)01431-2
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://dx.doi.org/10.1016/S0550-3213(01)00151-1
http://dx.doi.org/10.1088/1126-6708/2001/10/016
http://dx.doi.org/10.1016/S0550-3213(01)00569-7
http://dx.doi.org/10.1007/s00220-003-0926-1
http://dx.doi.org/10.1088/1367-2630/4/1/302
http://dx.doi.org/10.1007/s00222-004-0370-7
http://dx.doi.org/10.1090/S1088-4165-05-00262-1
http://dx.doi.org/10.1088/1126-6708/2005/07/035
http://dx.doi.org/10.1007/s00220-005-1452-0
http://dx.doi.org/10.1103/PhysRevD.76.124023
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.029
http://dx.doi.org/10.1007/s00220-007-0258-7
http://dx.doi.org/10.1088/1126-6708/2007/12/081
http://dx.doi.org/10.1088/1126-6708/2008/05/012
http://dx.doi.org/10.1063/1.2830522
http://dx.doi.org/10.1088/1126-6708/2009/01/072
http://dx.doi.org/10.1088/1126-6708/2008/11/022
http://dx.doi.org/10.1007/JHEP06(2012)074
http://dx.doi.org/10.1142/S0129055X08003341

Symmetry 2024, 16, 151 38 of 42

78.

79.
80.
81.

82.
83.
84.
85.
86.

87.
88.

89.
90.

91.
92.

93.

94.

95.
96.

97.
98.
99.

100.
101.
102.
103.

104.
105.

106.
107.
108.
109.
110.
111.
112.

113.

114.

Alkalaev, K.B. Mixed-symmetry tensor conserved currents and AdS/CFT correspondence. . Phys. A Math. Theor. 2013, 46, 214007.
[CrossRef]

Borsten, L.; Duff, M.J; Ferrara, S.; Marrani, A. Freudenthal Dual Lagrangians. Class. Quant. Gravity 2013, 30, 235003. [CrossRef]
Cacciatori, S.L.; Cerchiai, B.L.; Marrani, A. Magic coset decompositions. Adv. Theor. Math. Phys. 2013, 17, 1077-1128. [CrossRef]
Chicherin, D.; Derkachov, S.; Isaev, A.P. Conformal group: R-matrix and star-triangle relation. J. High Energy Phys. 2013, 1304, 020.
[CrossRef]

Cotaescu, LI Covariant representations of the de Sitter isometry group. Mod. Phys. Lett. A 2013, 28, 1350033. [CrossRef]
Ferrara, S.; Marrani, A.; Zumino, B. Jordan pairs, Eq and U-duality in five dimensions. J. Phys. A 2013, 46, 065402. [CrossRef]
Kleinschmidt, A.; Nicolai, H. On higher spin realizations of K(E1g). J. High Energy Phys. 2013, 1308, 41. [CrossRef]

Kubo, T. On the homomorphisms between the generalized Verma modules arising from conformally invariant system. . Lie Theory
2013, 23, 847-883.

Neumann, C.; Rehren, K.-H.; Wallenhorst, L. New methods in conformal partial wave analysis. In Springer Proceedings in
Mathematics and Statistics; Springer: Tokyo, Japan; Berlin/Heidelberg, Germany, 2013; Volume 36, pp. 109-125.

Todorov, LT. Studying Quantum Field Theory. Bulg. |. Phys. 2013, 40, 93-114.

Belitsky, A.V.; Hohenegger, S.; Korchemsky, G.P,; Sokatchev, E.; Zhiboedov, A. From correlation functions to event shapes.
Nucl. Phys. B 2014, 884, 305-343. [CrossRef]

Costa, M.S.; Goncalves, V.; Penedones, J. Spinning AdS propagators. J. High Energy Phys. 2014, 1409, 64. [CrossRef]

Dobrev, VK. Invariant differential operators for non-compact Lie groups: The reduced SU(3,3) multiplets. Phys. Part. Nucl. Lett.
2014, 11, 864-871. [CrossRef]

Dobrev, V.K. Multiplet classification for SU(n,n). J. Phys. Conf. Ser. 2014, 563, 012008. [CrossRef]

Dobrev, VK. Invariant differential operators for non-compact Lie groups: The SO*(12) case. J. Phys. Conf. Ser. 2015, 597, 012032.
[CrossRef]

Godazgar, H.; Godazgar, M.; Hohm, O.; Nicolai, H.; Samtleben, H. Supersymmetric E7(7) exceptional field theory.
J. High Energy Phys. 2014, 1409, 44. [CrossRef]

Marrani, A.; Truini, P. Exceptional Lie algebras, SU(3) and Jordan pairs Part 2: Zorn-type representations. J. Phys. A 2014,
47,265202. [CrossRef]

Matumoto, H. On the homomorphisms between scalar generalized Verma modules. Compos. Math. 2014, 150, 877-892. [CrossRef]
Metsaev, R.R. BRST invariant effective action of shadow fields, conformal fields, and AdS/CFT. Theor. Math. Phys. 2014,
181, 1548-1565. [CrossRef]

Metsaev, R.R. Arbitrary spin conformal fields in (A)dS. Nucl. Phys. B 2014, 885, 734-771. [CrossRef]

Metsaev, R.R. Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT. J. High Energy Phys. 2015, 1501, 077. [CrossRef]
Metsaev, R.R. Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields. J. High Energy Phys.
2015, 1510, 110. [CrossRef]

Nikolov, M.N; Stora, R.; Todorov, I.T. Renormalization of massless Feynman amplitudes in configuration space. Rev. Math. Phys.
2014, 26, 1430002. [CrossRef]

Anand, N.; Cantrell, S. The Goldstone equivalence theorem and AdS/CFT. ]. High Energy Phys. 2015, 1508, 50. [CrossRef]
Barnich, G.; Bekaert, X.; Grigoriev, M. Notes on conformal invariance of gauge fields. J. Phys. A 2015, 48, 505402. [CrossRef]
Bekaert, X.; Erdmenger, ].; Ponomarev, D.; Sleight, C. Towards holographic higher-spin interactions: Four-point functions and
higher-spin exchange. J. High Energy Phys. 2015, 1511, 149. [CrossRef]

Costa, M.S.; Hansen, T. Conformal correlators of mixed-symmetry tensors. J. High Energy Phys. 2015, 1502, 151. [CrossRef]
Dobrev, V.K. Classification of conformal representations induced from the maximal cuspidal parabolic. Phys. At. Nucl. 2017,
80, 347-352. [CrossRef]

Elkhidir, E.; Karateev, D.; Serone, M. General Three-Point Functions in 4D CFT. J. High Energy Phys. 2015, 1501, 133. [CrossRef]
Kleinschmidt, A.; Nicolai, H. Standard model fermions and K(Eq). Phys. Lett. B 2015, 747, 251-254. [CrossRef]

Vos, G. Generalized additivity in unitary conformal field theories. Nucl. Phys. B 2015, 899, 91-111. [CrossRef]

Xiao, W. Differential equations and singular vectors in Verma modules over sl(n,C). Acta Math. Sin. Engl. Ser. 2015, 31, 1057-1066.
[CrossRef]

Zhang, G. Discrete components in restriction of unitary representations of rank one semisimple Lie groups. J. Funct. Anal. 2015,
269, 3689-3713. [CrossRef]

Hijano, E.; Kraus, P; Perlmutter, E.; Snively, R. Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks.
J. High Energy Phys. 2016, 1601, 146. [CrossRef]

Dobrev, VK. Invariant Differential Operators, Volume 2: Quantum Groups; De Gruyter Studies in Mathematical Physics; De Gruyter:
Berlin, Germany; Boston, MA, USA, 2017; Volume 39, pp. 394 + xii, ISBN 978-3-11-043543-6/978-3-11-042770-7.

Dobrev, VK. Invariant Differential Operators, Volume 3: Supersymmetry; De Gruyter Studies in Mathematical Physics; De
Gruyter: Berlin, Germany; Boston, MA, USA, 2018; Volume 49, pp. 218 + viii, ISBN 978-3-11-052-7490/978-3-11-052-6639,
ISSN 2194-3532.

Dobrev, V.K. Invariant Differential Operators, Volume 4: AdS/CFT, (Super-)Virasoro and Affine (Super-)Algebras; De Gruyter Studies in
Mathematical Physics; De Gruyter, Berlin, Boston, 2019; Volume 53, pp. 234 + x, ISBN: 3110609681 /978-3110609684.


http://dx.doi.org/10.1088/1751-8113/46/21/214007
http://dx.doi.org/10.1088/0264-9381/30/23/235003
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a4
http://dx.doi.org/10.1007/JHEP04(2013)020
http://dx.doi.org/10.1142/S0217732313500338
http://dx.doi.org/10.1088/1751-8113/46/6/065402
http://dx.doi.org/10.1007/JHEP08(2013)041
http://dx.doi.org/10.1016/j.nuclphysb.2014.04.020
http://dx.doi.org/10.1007/JHEP09(2014)064
http://dx.doi.org/10.1134/S1547477114070164
http://dx.doi.org/10.1088/1742-6596/563/1/012008
http://dx.doi.org/10.1088/1742-6596/597/1/012032
http://dx.doi.org/10.1007/JHEP09(2014)044
http://dx.doi.org/10.1088/1751-8113/47/26/265202
http://dx.doi.org/10.1112/S0010437X13007677
http://dx.doi.org/10.1007/s11232-014-0235-1
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.013
http://dx.doi.org/10.1007/JHEP01(2015)077
http://dx.doi.org/10.1007/JHEP10(2015)110
http://dx.doi.org/10.1142/S0129055X14300027
http://dx.doi.org/10.1007/JHEP08(2015)002
http://dx.doi.org/10.1088/1751-8113/48/50/505402
http://dx.doi.org/10.1007/JHEP11(2015)149
http://dx.doi.org/10.1007/JHEP02(2015)151
http://dx.doi.org/10.1134/S1063778817020132
http://dx.doi.org/10.1007/JHEP01(2015)133
http://dx.doi.org/10.1016/j.physletb.2015.06.005
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.013
http://dx.doi.org/10.1007/s10114-015-4640-7
http://dx.doi.org/10.1016/j.jfa.2015.09.021
http://dx.doi.org/10.1007/JHEP01(2016)146

Symmetry 2024, 16, 151 39 of 42

115.

116.

117.

118.
119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.
140.

141.

142.

143.

144.

145.

146.

Knapp, A.W. Representation Theory of Semisimple Groups (An Overview Based on Examples); Princeton University Press: Princeton,
NJ, USA, 1986.

Dobrev, V.K. Multiplet classification of the reducible elementary representations of real semisimple Lie groups: The SO.(p, q)
example. Lett. Math. Phys. 1985, 9, 205-211. [CrossRef]

Dobrev, VK,; Petkova, V.B. On the group-theoretical approach to extended conformal supersymmetry: Classification of multiplets
Lett. Math. Phys. 1985, 9, 287-298. [CrossRef]

Dixmier, J. Enveloping Algebras; North Holland: New York, NY, USA, 1977.

Dobrev, V.K. Canonical construction of differential operators intertwining representations of real semisimple Lie groups. Rept.
Math. Phys. 1988, 25, 159-181.

Dobrev, VK. Subsingular vectors and conditionally invariant (q-deformed) equations J. Phys. A 1995, 28, 7135-7155. [CrossRef]
Dobrev, VK. Kazhdan-Lusztig polynomials, subsingular vectors, and conditionally invariant (q-deformed) equations. In
Proceedings of the Symmetries in Science IX, Bregenz, Austria, 6-10 August 1996; Gruber, B., Ramek, M., Eds.; Plenum Press:
New York, NY, USA, 1997; pp. 47-80.

Dobrev, V.K. Invariant Differential Operators for Non-Compact Lie Algebras Parabolically Related to Conformal Lie Algebras.
J. High Energy Phys. 2013, 2, 15. [CrossRef]

Fioresi, R.; Varadarajan, V.S. Harish-Chandra Highest Weight Representations of Semisimple Lie Algebras and Lie Groups.
J. Lie Theory 2023, 33, 217-252.

Fioresi, R.; Zanchetta, F. Deep Learning and Geometric Deep Learning: An introduction for mathematicians and physicists.
Int. J. Geom. Methods Mod. Phys. 2023, 20, 2330006. [CrossRef]

Juhl, A. Extrinsic Paneitz operators and Q-curvatures for hypersurfaces. Differ. Geom. Appl. 2023, 89, 102027. [CrossRef]

Disch, J. Generic Gelfand-Tsetlin modules of quantized and classical orthogonal algebras. J. Algebra 2023, 620, 157-193. [CrossRef]
Acosta-Humdnez, P.; Barkatou, M.; Sdnchez-Cauce, R.; Weil, J.A. Darboux Transformations for Orthogonal Differential Systems
and Differential Galois Theory. SIGMA 2023, 19, 016. [CrossRef]

Raza, N.; Salman, F.; Butt, A.R.; Gandarias, M.L. Lie symmetry analysis, soliton solutions and qualitative analysis concerning to
the generalized g-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106824. [CrossRef]

Isaev, A.P; Krivonos, S.O.; Provorov, A.A. Split Casimir operator for simple Lie algebras in the cube of ad-representation and
Vogel parameters. Int. |. Mod. Phys. A 2023, 38, 2350037. [CrossRef]

Isaev, R.A.P; Provorov, A.A. Split Casimir operator and solutions of the Yang-Baxter equation for the osp(M|N) and s¢(M|N)
Lie superalgebras, higher Casimir operators, and the Vogel parameters. Teor. Mat. Fiz. 2022, 210, 259-301. [CrossRef]

Isaev, A.P; Provorov, A.A. Projectors on invariant subspaces of representations ad“? of Lie algebras so(N) and sp(2r) and Vogel
parameterization. Teor. Mat. Fiz. 2021, 206, 3-22. [CrossRef]

Sasso, E.; Umanita, V. On the relationships between covariance and the decoherence-free subalgebra of a quantum Markov
semigroup. Inf. Dim. Anal. Quant. Probab. Rel. Top. 2023, 26, 2250022. [CrossRef]

Aschieri, P,; Fioresi, R.; Latini, E.; Weber, T. Quantum principal bundles and noncommutative differential calculus. Proc. Sci. 2022,
406, 280.

Chuah, M.; Fioresi, R. Levi Factors and Admissible Automorphisms. Algebr. Represent. Theory 2022, 25, 341-358. [CrossRef]

Xie, W.; Li, W. Entanglement properties of random invariant quantum states. Quant. Inf. Comput. 2022, 22, 901-923. [CrossRef]
Eremko, A.; Brizhik, L.; Loktev, V. Algebra of the spinor invariants and the relativistic hydrogen atom. Ann. Phys. 2023,
451, 169266. [CrossRef]

Zhao, Q.; Wang, H.; Li, X.; Li, C. Lie Symmetry Analysis and Conservation Laws for the (2 + 1)-Dimensional Dispersionless
B-Type Kadomtsev-Petviashvili Equation. J. Nonlin. Math. Phys. 2023, 30, 92-113. [CrossRef]

Artawan, IN.; Purwanto, A.; Yuwana, L., Invariants for determining entanglements pattern. Phys. Scr. 2022, 97, 075106.
[CrossRef]

Hu, S.; Yeats, K. Completing the ¢, completion conjecture for p = 2. Commun. Num. Theor. Phys. 2023, 17, 343-384. [CrossRef]
Bautista, A.; Ibort, A.; Lafuente, J. The sky invariant: A new conformal invariant for Schwarzschild spacetime. Int. J. Geom. Meth.
Mod. Phys. 2022, 19, 2250168. [CrossRef]

Khantoul, B.; Bounames, A. Exact solutions for time-dependent complex symmetric potential well. Acta Polytech. 2023, 63, 132-139.
[CrossRef]

Weng, Z.H. Two incompatible types of invariants in the octonion spaces. Int. |. Geom. Meth. Mod. Phys. 2022, 19, 2250161.
[CrossRef]

Jalalzadeh, S.; Rasouli, 5$.M.M.; Moniz, P. Shape Invariant Potentials in Supersymmetric Quantum Cosmology. Universe 2022,
8, 316. [CrossRef]

Val'kov, V.V; Shustin, M.S.; Aksenov, S.V.; Zlotnikov, A.O.; Fedoseev, A.D.; Mitskan, V.A.; Kagan, M.Y. Topological superconduc-
tivity and Majorana states in low-dimensional systems. Phys. Usp. 2022, 65, 2-39. [CrossRef]

Jafari, M.; Zaeim, A.; Tanhaeivash, A. Symmetry group analysis and conservation laws of the potential modified KdV equation
using the scaling method. Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250098. [CrossRef]

Marquette, I.; Zelaya, K. On the general family of third-order shape-invariant Hamiltonians related to generalized Hermite
polynomials. Phys. D Nonlinear Phenom. 2022, 442, 133529. [CrossRef]


http://dx.doi.org/10.1007/BF00402831
http://dx.doi.org/10.1007/BF00397755
http://dx.doi.org/10.1088/0305-4470/28/24/014
http://dx.doi.org/10.1007/JHEP02(2013)015
http://dx.doi.org/10.1142/S0219887823300064
http://dx.doi.org/10.1016/j.difgeo.2023.102027
http://dx.doi.org/10.1016/j.jalgebra.2022.12.019
http://dx.doi.org/10.3842/SIGMA.2023.016
http://dx.doi.org/10.1016/j.cnsns.2022.106824
http://dx.doi.org/10.1142/S0217751X23500379
http://dx.doi.org/10.4213/tmf10172
http://dx.doi.org/10.4213/tmf9984
http://dx.doi.org/10.1142/S0219025722500229
http://dx.doi.org/10.1007/s10468-020-10024-8
http://dx.doi.org/10.26421/QIC22.11-12-1
http://dx.doi.org/10.1016/j.aop.2023.169266
http://dx.doi.org/10.1007/s44198-022-00073-6
http://dx.doi.org/10.1088/1402-4896/ac790f
http://dx.doi.org/10.4310/CNTP.2023.v17.n2.a4
http://dx.doi.org/10.1142/S0219887822501687
http://dx.doi.org/10.14311/AP.2023.63.0132
http://dx.doi.org/10.1142/S0219887822501614
http://dx.doi.org/10.3390/universe8060316
http://dx.doi.org/10.3367/UFNe.2021.03.038950
http://dx.doi.org/10.1142/S0219887822500980
http://dx.doi.org/10.1016/j.physd.2022.133529

Symmetry 2024, 16, 151 40 of 42

147.

148.
149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.
162.

163.
164.

165.
166.

167.
168.
169.
170.
171.

172.
173.

174.
175.
176.
177.
178.
179.
180.

181.
182.

Wang, YK.; Ge, L.Z,; Fei, S.M.; Wang, Z.X. A Note on Holevo Quantity of SU(2)-invariant States. Int. J. Theor. Phys. 2022, 61, 7.
[CrossRef]

Lavrov, PM. On gauge-invariant deformation of reducible gauge theories. Eur. Phys. J. C 2022, 82, 429. [CrossRef]

Adeyemo, O.D.; Khalique, C.M. Lie Group Classification of Generalized Variable Coefficient Korteweg-de Vries Equation with
Dual Power-Law Nonlinearities with Linear Damping and Dispersion in Quantum Field Theory. Symmetry 2022, 14, 83. [CrossRef]
Liu, W.; Fang, X; Jing, ].; Wang, A. Gauge invariant perturbations of general spherically symmetric spacetimes. Sci. China Phys.
Mech. Astron. 2023, 66, 210411. [CrossRef]

Latorre, A.; Ugarte, L. Abelian J-Invariant Ideals on Nilpotent Lie Algebras. In Proceedings of the International Workshop on
Lie Theory and Its Applications in Physics, Sofia, Bulgaria, 20-26 June 2021; Springer Proceedings in Mathematics & Statistics;
Springer: Singapore, 2022; Volume 396, pp. 509-514.

Vaneeva, O.; Magda, O.; Zhalij, A. Lie Reductions and Exact Solutions of Generalized Kawahara Equations. In Proceedings of the
International Workshop on Lie Theory and Its Applications in Physics, Sofia, Bulgaria, 20-26 June 2021; Springer Proceedings in
Mathematics & Statistics; Springer: Singapore, 2022; Volume 396, pp. 333-338.

Blitz, S. A sharp characterization of the Willmore invariant. Int. J. Math. 2023, 34, 2350054. [CrossRef]

Singh, S.; Nechita, I. Diagonal unitary and orthogonal symmetries in quantum theory: II. Evolution operators. J. Phys. A 2022,
55, 255302. [CrossRef]

Aizawa, N.; Dobrev, VK. Invariant differential operators for the Jacobi algebra G2. Mod. Phys. Lett. A 2022, 37,2250067. [CrossRef]
Schaposnik, L.P; Schulz, S. Triality for Homogeneous Polynomials. SIGMA 2021, 17, 79. [CrossRef]

Bonora, L.; Malik, R.P. BRST and Superfield Formalism—A Review. Universe 2021, 7, 280. [CrossRef]

Watson, C.K.; Julius, W.; Gorban, M.; McNutt, D.D.; Davis, EEW.; Cleaver, G.B. An Invariant Characterization of the Levi-Civita
Spacetimes. Symmetry 2021, 13, 1469. [CrossRef]

Sen, I. Analysis of the superdeterministic Invariant-set theory in a hidden-variable setting. Proc. Roy. Soc. Lond. A 2022,
478, 20210667. [CrossRef]

Geloun, J.B.; Ramgoolam, S. All-orders asymptotics of tensor model observables from symmetries of restricted partitions.
J. Phys. A 2022, 55, 435203. [CrossRef]

Anijali, S.; Gupta, S. Symplectic gauge-invariant reformulation of a free-particle system on toric geometry. EPL 2021, 135, 11002.
Johansson, M. Low degree Lorentz invariant polynomials as potential entanglement invariants for multiple Dirac spinors.
Ann. Phys. 2023, 457, 169410. [CrossRef]

Haddadin, W.1]. Invariant polynomials and machine learning. arXiv 2021, arXiv:2104.12733.

Barnes, G.; Padellaro, A.; Ramgoolam, S. Permutation invariant Gaussian two-matrix models. ]. Phys. A 2022, 55, 145202.
[CrossRef]

Schnetz, O. Geometries in perturbative quantum field theory. Commun. Num. Theor. Phys. 2021, 15, 743-791. [CrossRef]
Ichikawa, T. Chern-Simons invariant and Deligne-Riemann-Roch isomorphism. Trans. Am. Math. Soc. 2021, 374, 2987-3005.
[CrossRef]

Varshovi, A.A. x-cohomology, third type Chern character and anomalies in general translation-invariant noncommutative
Yang-Mills. Int. |. Geom. Meth. Mod. Phys. 2021, 18, 2150089. [CrossRef]

Chae, J. A Cable Knot and BPS-Series. SIGMA 2023, 19, 002. [CrossRef]

Brandt, F. Properties of an alternative off-shell formulation of 4D supergravity. Symmetry 2021, 13, 620. [CrossRef]

Abramovich, D.; Chen, Q.; Gross, M.; Siebert, B. Decomposition of degenerate Gromov-Witten invariants. Compos. Math. 2020,
156, 2020-2075. [CrossRef]

Mattingly, B.; Kar, A.; Gorban, M.; Julius, W.; Watson, C.K.; Ali, M.; Baas, A.; Elmore, C.; Lee, ].S.; Shakerin, B.; et al. Curvature
Invariants for the Alcubierre and Natario Warp Drives. Universe 2021, 7, 21. [CrossRef]

Mashford, J. A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space. Symmetry 2020, 12, 1696. [CrossRef]
Kac, V.G,; Frajria, PM.; Papi, P. Invariant Hermitian forms on vertex algebras. Commun. Contemp. Math. 2022, 24, 2150059.
[CrossRef]

Thibes, R. BRST analysis and BFV quantization of the generalized quantum rigid rotor. Mod. Phys. Lett. A 2021, 36, 2150116.
[CrossRef]

Wang H., Weyl invariant Jacobi forms: A new approach. Adv. Math. 2021, 384 , 107752 [CrossRef]

épenko, S.; Bergh, M.V. Perverse schobers and GKZ systems. Adv. Math. 2022, 402, 108307. [CrossRef]

Yamani, H.A.; Mouayn, Z. Properties of Shape-Invariant Tridiagonal Hamiltonians. Theor. Math. Phys. 2020, 203, 380-400, 761-779.
[CrossRef]

Bahmandoust, P.; Latifi, D. Naturally reductive homogeneous («,8) spaces. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050117.
[CrossRef]

Geer, N.; Ha, N.P.;; Patureau-Mirand, B. Modified graded Hennings invariants from unrolled quantum groups and modified
integral. |. Pure Appl. Algebra 2022, 226, 106815. [CrossRef]

Berceanu, S. Invariant metric on the extended Siegel-Jacobi upper half space. . Geom. Phys. 2021, 162, 104049. [CrossRef]
Pappas, G. Volume and symplectic structure for ¢-adic local systems. Adv. Math. 2021, 387, 107836. [CrossRef]

Wang, C.; Wang, X.R.; Guo, C.X.; Kou, S.P. Defective edge states and anomalous bulk-boundary correspondence for topological
insulators under non-Hermitian similarity transformation. Int. J. Mod. Phys. B 2020, 34, 2050146. [CrossRef]


http://dx.doi.org/10.1007/s10773-022-04993-3
http://dx.doi.org/10.1140/epjc/s10052-022-10394-x
http://dx.doi.org/10.3390/sym14010083
http://dx.doi.org/10.1007/s11433-022-1956-4
http://dx.doi.org/10.1142/S0129167X23500544
http://dx.doi.org/10.1088/1751-8121/ac7017
http://dx.doi.org/10.1142/S0217732322500675
http://dx.doi.org/10.3842/SIGMA.2021.079
http://dx.doi.org/10.3390/universe7080280
http://dx.doi.org/10.3390/sym13081469
http://dx.doi.org/10.1098/rspa.2021.0667
http://dx.doi.org/10.1088/1751-8121/ac9b3b
http://dx.doi.org/10.1016/j.aop.2023.169410
http://dx.doi.org/10.1088/1751-8121/ac4de1
http://dx.doi.org/10.4310/CNTP.2021.v15.n4.a2
http://dx.doi.org/10.1090/tran/8320
http://dx.doi.org/10.1142/S0219887821500894
http://dx.doi.org/10.3842/SIGMA.2023.002
http://dx.doi.org/10.3390/sym13040620
http://dx.doi.org/10.1112/S0010437X20007393
http://dx.doi.org/10.3390/universe7020021
http://dx.doi.org/10.3390/sym12101696
http://dx.doi.org/10.1142/S0219199721500590
http://dx.doi.org/10.1142/S0217732321501169
http://dx.doi.org/10.1016/j.aim.2021.107752
http://dx.doi.org/10.1016/j.aim.2022.108307
http://dx.doi.org/10.1134/S0040577920060057
http://dx.doi.org/10.1142/S0219887820501170
http://dx.doi.org/10.1016/j.jpaa.2021.106815
http://dx.doi.org/10.1016/j.geomphys.2020.104049
http://dx.doi.org/10.1016/j.aim.2021.107836
http://dx.doi.org/10.1142/S0217979220501465

Symmetry 2024, 16, 151 41 of 42

183.
184.

185.

186.
187.

188.
189.

190.

191.

192.

193.
194.

195.

196.

197.

198.

199.

200.

201.

202.
203.

204.

205.

206.

207.
208.

209.
210.
211.
212.

213.
214.

215.
216.
217.
218.

219.

Ai, C,; Dong, C.; Lin, X. Some exceptional extensions of Virasoro vertex operator algebras. |. Algebra 2020, 546, 370-389. [CrossRef]
Kumar, S.; Chauhan, B.; Tripathi, A.; Malik, R.P. Massive 4D Abelian 2-form theory: Nilpotent symmetries from the (anti-)chiral
superfield approach. Int. J. Mod. Phys. A 2022, 37, 2250003. [CrossRef]

Zenad, M; Ighezou, EZ.; Cherbal, O.; Maamache, M. Ladder Invariants and Coherent States for Time-Dependent Non-Hermitian
Hamiltonians. Int. |. Theor. Phys. 2020, 59, 1214-1226. [CrossRef]

Ha, N.P. Anomaly-free TQFTs from the super Lie algebra sl(2 11). J. Knot Theor. Ramifications 2022, 31, 2250029. [CrossRef]
Allegretti, D.G.L. Stability conditions, cluster varieties, and Riemann-Hilbert problems from surfaces. Adv. Math. 2021, 380, 107610.
[CrossRef]

Baseilhac, S.; Roche, P. Unrestricted Quantum Moduli Algebras. I. The Case of Punctured Spheres. SIGMA 2022, 18, 25. [CrossRef]
Fioresi, R.; Latini, E.; Marrani, A. The g-linked complex Minkowski space, its real forms and deformed isometry groups.
Int. ]. Geom. Methods Mod. Phys. 2019, 16, 1950009. [CrossRef]

Liu, J.G.; Yang, X.J.; Feng, Y.Y. Characteristic of the algebraic traveling wave solutions for two extended (2 + 1)-dimensional
Kadomtsev—-Petviashvili equations. Mod. Phys. Lett. A 2019, 35, 2050028. [CrossRef]

Biswas, L; Rayan, S. Homogeneous Higgs and co-Higgs bundles on Hermitian symmetric spaces. Int. ]. Math. 2020, 31, 2050118.
[CrossRef]

Haouam, I. Analytical Solution of (2+1) Dimensional Dirac Equation in Time-Dependent Noncommutative Phase-Space.
Acta Polytech. 2020, 60, 111-121. [CrossRef]

Adler, D.; Gritsenko, V. The Dg-tower of weak Jacobi forms and applications. J. Geom. Phys. 2020, 150, 103616. [CrossRef]
Nigsch, E.A.; Vickers, ].A. A nonlinear theory of distributional geometry. Proc. Roy. Soc. Lond. A 2020, 476, 20200642. [CrossRef]
[PubMed]

Abe, S. Weak invariants in dissipative systems: Action principle and Noether charge for kinetictheory. Phil. Trans. Roy. Soc. Lond.
A 2020, 378, 20190196. [CrossRef] [PubMed]

Zhang, Y.; Wang, X.P. Mei Symmetry and Invariants of Quasi-Fractional Dynamical Systems with Non-Standard Lagrangians.
Symmetry 2019, 11, 1061. [CrossRef]

Gueorguiev, V.G.; Maeder, A. Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces.
Symmetry 2021, 13, 379. [CrossRef]

Bambozzi, F.; Murro, S. On the uniqueness of invariant states. Adv. Math. 2021, 376, 107445. [CrossRef]

Gonzélez-Prieto, A. Virtual classes of parabolic SL2(C) -character varieties. Adv. Math. 2020, 368, 107148. [CrossRef]
Krishnaswami, G.S.; Vishnu, T.R. Invariant tori, action-angle variables and phase space structure of the Rajeev-Ranken model.
J. Math. Phys. 2019, 60, 082902. [CrossRef]

Dabholkar, A.; Jain, D.; Rudra, A. APS g-invariant, path integrals, and mock modularity. J. High Energy Phys. 2019, 11, 80.
[CrossRef]

Lin, D. Seiberg-Witten equation on a manifold with rank-2 foliation. Proc. Am. Math. Soc. 2021, 149, 4411-4417. [CrossRef]
Nozawa, M.; Tomoda, K. Counting the number of Killing vectors in a 3D spacetime. Class. Quant. Gravity 2019, 36, 155005.
[CrossRef]

Chen, H. Cohomological invariants of representations of 3-manifold groups. J. Knot Theor. Ramifications 2020, 29, 2043003.
[CrossRef]

Xiao, Z.; Yang, Y.; Zhang, Y. The diagram category of framed tangles and invariants of quantized symplectic group.
Sci. China Math. 2019, 63, 689-700. [CrossRef]

Zubkov, M.A.; Wu, X. Topological invariant in terms of the Green functions for the Quantum Hall Effect in the presence of varying
magnetic field. Ann. Phys. 2020, 418, 168179; Erratum in Ann. Phys. 2021, 430, 168510. [CrossRef]

Garoufalidis, S.; Zagier, D. Asymptotics of Nahm sums at roots of unity. Ramanujan J. 2021, 55, 219-238. [CrossRef]

Slavnov, A.A. Renormalizability and Unitarity of the Englert-Broute-Higgs—Kibble Model. Theor. Math. Phys. 2018,
197,1611-1614. [CrossRef]

Halder, A K.; Paliathanasis, A.; Leach, P.G.L. Noether’s Theorem and Symmetry. Symmetry 2018, 10, 744. [CrossRef]

Yeats, K. A Special Case of Completion Invariance for the c2 Invariant of a Graph. Can. ]. Math. 2018, 70, 1416-1435. [CrossRef]
Suzuki, S. The universal quantum invariant and colored ideal triangulations. Algebr. Geom. Topol. 2018, 18, 3363-3402. [CrossRef]
Habibullin, L.T.; Khakimova, A.R. A Direct Algorithm for Constructing Recursion Operators and Lax Pairs for Integrable Models.
Theor. Math. Phys. 2018, 196, 1200-1216. [CrossRef]

Wheeler, ]J.T. General relativity as a biconformal gauge theory. Nucl. Phys. B 2019, 943, 114624. [CrossRef]

Helleland, C.; Hervik, S. Real GIT with applications to compatible representations and Wick-rotations. J. Geom. Phys. 2019,
142,92-110. [CrossRef]

Talamini, V. Canonical bases of invariant polynomials for the irreducible reflection groups of types Eg, E7, and Eg. J. Algebra 2018,
503, 590-603. [CrossRef]

Benkart, G.; Elduque, A. Cross products, invariants, and centralizers. ]. Algebra 2018, 500, 69-102. [CrossRef]

Wang, H. Weyl invariant Eg Jacobi forms. Commun. Num. Theor. Phys. 2021, 15, 517-573. [CrossRef]

Bunk, S.; Szabo, R.J. Topological insulators and the Kane-Mele invariant: Obstruction and localization theory. Rev. Math. Phys.
2019, 32, 2050017. [CrossRef]

Kauffman, L.H.; Lambropoulou, S. Skein Invariants of Links and Their State Sum Models. Symmetry 2017, 9, 226. [CrossRef]


http://dx.doi.org/10.1016/j.jalgebra.2019.10.053
http://dx.doi.org/10.1142/S0217751X22500038
http://dx.doi.org/10.1007/s10773-020-04401-8
http://dx.doi.org/10.1142/S0218216522500298
http://dx.doi.org/10.1016/j.aim.2021.107610
http://dx.doi.org/10.3842/SIGMA.2022.025
http://dx.doi.org/10.1142/S0219887819500099
http://dx.doi.org/10.1142/S0217732320500285
http://dx.doi.org/10.1142/S0129167X20501189
http://dx.doi.org/10.14311/AP.2020.60.0111
http://dx.doi.org/10.1016/j.geomphys.2020.103616
http://dx.doi.org/10.1098/rspa.2020.0642
http://www.ncbi.nlm.nih.gov/pubmed/33408565
http://dx.doi.org/10.1098/rsta.2019.0196
http://www.ncbi.nlm.nih.gov/pubmed/32223402
http://dx.doi.org/10.3390/sym11081061
http://dx.doi.org/10.3390/sym13030379
http://dx.doi.org/10.1016/j.aim.2020.107445
http://dx.doi.org/10.1016/j.aim.2020.107148
http://dx.doi.org/10.1063/1.5114668
http://dx.doi.org/10.1007/JHEP11(2019)080
http://dx.doi.org/10.1090/proc/15134
http://dx.doi.org/10.1088/1361-6382/ab2da7
http://dx.doi.org/10.1142/S0218216520430038
http://dx.doi.org/10.1007/s11425-017-9335-3
http://dx.doi.org/10.1016/j.aop.2020.168179
http://dx.doi.org/10.1007/s11139-020-00266-x
http://dx.doi.org/10.1134/S0040577918110041
http://dx.doi.org/10.3390/sym10120744
http://dx.doi.org/10.4153/CJM-2018-006-5
http://dx.doi.org/10.2140/agt.2018.18.3363
http://dx.doi.org/10.1134/S004057791808007X
http://dx.doi.org/10.1016/j.nuclphysb.2019.114624
http://dx.doi.org/10.1016/j.geomphys.2019.03.007
http://dx.doi.org/10.1016/j.jalgebra.2018.01.017
http://dx.doi.org/10.1016/j.jalgebra.2016.11.013
http://dx.doi.org/10.4310/CNTP.2021.v15.n3.a3
http://dx.doi.org/10.1142/S0129055X20500178
http://dx.doi.org/10.3390/sym9100226

Symmetry 2024, 16, 151 42 of 42

220.
221.

222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.

233.
234.

235.
236.
237.

238.

239.

240.

241.
242.

243.

Fernandez-Culma, E.A.; Godoy, Y. Anti-Kéhlerian Geometry on Lie Groups. Math. Phys. Anal. Geom. 2018, 21, 8. [CrossRef]
Wakamatsu, M.; Kitadono, Y.; Zhang, PM. The issue of gauge choice in the Landau problem and the physics of canonical and
mechanical orbital angular momenta. Ann. Phys. 2018, 392, 287-322. [CrossRef]

Khalfoun, H. aff(1 | 1)-Relative cohomology on R111. Int. . Geom. Meth. Mod. Phys. 2017, 14, 1750174. [CrossRef]

Takeuchi, Y. Ambient constructions for Sasakian #-Einstein manifolds. Adv. Math. 2018, 328, 82-111. [CrossRef]

Levchenko, E.A,; Trifonov, A.Y.; Shapovalov, A.V. Symmetries of the One-Dimensional Fokker-Planck-Kolmogorov Equation
with a Nonlocal Quadratic Nonlinearity. Russ. Phys. . 2017, 60, 284-291. [CrossRef]

Chen, J.; Han, M.; Li, Y,; Zeng, B.; Zhou, ]. Local density matrices of many-body states in the constant weight subspaces.
Rep. Math. Phys. 2019, 83, 273-292. [CrossRef]

Belgun, E; Cortés, V.; Haupt, A.S.; Lindemann, D. Left-invariant Einstein metrics on S3 x §3, J. Geom. Phys. 2018, 128, 128-139.
[CrossRef]

Kuessner, T. Fundamental classes of 3-manifold groups representations in SL(4,R). . Knot Theor. Ramifications 2017, 26, 1750036.
[CrossRef]

Weng, Z.H. Spin Angular Momentum of Proton Spin Puzzle in Complex Octonion Spaces. Int. J. Geom. Meth. Mod. Phys. 2017,
14,1750102. [CrossRef]

Jamal, S.; Paliathanasis, A. Group invariant transformations for the Klein-Gordon equation in three dimensional flat spaces.
J. Geom. Phys. 2017, 117, 50-59. [CrossRef]

Bruhat, F. Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France 1956, 84, 97-205. [CrossRef]

Chandra, H. 2.! semi-simple groups IV, V, VI Amer. Am. ]. Math. 1955, 77, 743-777.

Dobrev, V.K. Positive energy representations, holomorphic discrete series and finite-dimensional irreps. J. Phys. A 2008, 41, 425206.
[CrossRef]

Knapp, A.W,; Stein, E.M. Interwining operators for semisimple groups. Ann. Math. 1971, 93, 489-578. [CrossRef]
Harish-Chandra, Representations of Semisimple Lie Groups VI: Integrable and Square-Integrable Representations. Am. J. Math.
1956,78, 1-41.

Gelfand, I.M.; Naimark, M.A. Unitary Representations of the Lorentz Group. Acad. Sci. USSR ]. Phys. 1946, 10, 93-94.
Bargmann, V. Irreducible unitary representations of the Lorentz group. Ann. Math. 1947, 48, 568—-640. [CrossRef]

Dobrev, VK. Invariant differential operators for non-compact Lie groups: The main su(n, n) cases. Phys. At. Nucl. 2013,
76,983-990. [CrossRef]

Dobrev, VK. Invariant Differential Operators for Non-Compact Lie Groups: The Sp(n,R) Case Lie Theory and Its Applications in
Physics. In Proceedings of the 9th International Workshop, Varna, Bulgaria, 26 June 2011; Springer Proceedings in Mathematics
and Statistics; Springer: Tokyo, Japan; Berlin/Heidelberg, Germany, 2013; Volume 36, pp. 311-335.

Dobrev, V.K. Heisenberg parabolic subgroup of SO*(8) and invariant differential operators. In Proceedings of the Workshop on Quantum
Geometry, Field Theory and Gravity, Corfu, Greece, 2027 September 2021; Volume 406. Available online: https:/ /pos.sissa.it/406/303
(accessed on 23 November 2022 ).

Dobrev, V.K. Heisenberg Parabolic Subgroup of SO*(10) and Corresponding Invariant Differential Operators. Symmetry 2022,
14,1592. [CrossRef]

Satake, I. On Representations and Compactifications of Symmetric Riemannian Spaces. Ann. Math. 1960, 71, 77-110. [CrossRef]
Dobrev, V.K. The exceptional Lie algebra E;(_55): Multiplets and invariant differential operators. J. Phys. A 2009, 42, 285203.
[CrossRef]

Dobrev, VK. Invariant Differential Operators for Non-Compact Lie Groups: The Eg(14) case. In Proceedings of the 5th Mathe-
matical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, Belgrade, Serbia, 6-17 July 2008;
Dragovich, B., Rakic, Z., Eds.; Institute of Physics: Belgrade, Serbia, 2009; pp. 95-124.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1007/s11040-018-9266-4
http://dx.doi.org/10.1016/j.aop.2018.03.019
http://dx.doi.org/10.1142/S0219887817501742
http://dx.doi.org/10.1016/j.aim.2018.01.007
http://dx.doi.org/10.1007/s11182-017-1073-z
http://dx.doi.org/10.1016/S0034-4877(19)30049-7
http://dx.doi.org/10.1016/j.geomphys.2018.02.015
http://dx.doi.org/10.1142/S0218216517500365
http://dx.doi.org/10.1142/S021988781750102X
http://dx.doi.org/10.1016/j.geomphys.2017.03.003
http://dx.doi.org/10.24033/bsmf.1469
http://dx.doi.org/10.1088/1751-8113/41/42/425206
http://dx.doi.org/10.2307/1970887
http://dx.doi.org/10.2307/1969129
http://dx.doi.org/10.1134/S1063778813080073
https://pos.sissa.it/406/303
http://dx.doi.org/10.3390/sym14081592
http://dx.doi.org/10.2307/1969880
http://dx.doi.org/10.1088/1751-8113/42/28/285203

	Introduction and Preliminaries
	Conformal Algebras so(n,2) and Parabolically Related Algebras
	The Lie Algebra su(n,n) and Parabolically Related Algebras
	The Lie Algebras sp(n,R) and sp(n2,n2) (n-even) 
	The Lie Algebra so*(2n)
	Case of so*(12)
	Case of so*(8)
	Case of so*(10)

	The Lie Algebras E7(-25) and E7(7)
	The Lie Algebras E6(-14), E6(6) and E6(2)
	 The Lie Algebra F4
	The Case of Lie Algebra G2(2)
	Induction from Minimal Parabolic
	Induction from Maximal Parabolics
	Main Multiplets When Inducing from P1
	Main Multiplets When Induction from P2


	References 

