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Abstract: Through the discussion of three physical processes, we show that the Klein–Gordon equa-
tions with a negative mass term describe special dynamics. In the case of two classical disciplines—
mechanics and thermodynamics—the Lagrangian-based mathematical description is the same, even
though the nature of the investigated processes seems completely different. The unique feature of
this type of equation is that it contains wave propagation and dissipative behavior in one framework.
The dissipative behavior appears through a repulsive potential. The transition between the two types
of dynamics can be specified precisely, and its physical meaning is clear. The success of the two
descriptions inspires extension to the case of electrodynamics. We reverse the suggestion here. We
create a Klein–Gordon equation with a negative mass term, but first, we modify Maxwell’s equa-
tions. The repulsive interaction that appears here results in a charge spike. However, the Coulomb
interaction limits this. The charge separation is also associated with the high-speed movement of
the charged particle localized in a small space domain. As a result, we arrive at a picture of a fast
vibrating phenomenon with an electromagnetism-related Klein–Gordon equation with a negative
mass term. The calculated maximal frequency value ω = 1.74 × 1021 1/s.

Keywords: Lagrangian; generator potentials; Klein–Gordon equation with a negative mass term;
Lorentz invariant behavior; repulsive interaction; dynamic transition; tachyon solution; dissipation;
symmetry breaking

1. Introducion

Differential equations of the same form often appear in the case of different natural
processes in fields of science that are quite far apart. Mathematical identity means we
experience the same type of motion in the phenomena. Klein–Gordon (K-G) equations with
a negative mass term appear naturally in some movements in some physical disciplines. Is
there any reason to doubt that they can exist in all the others? Can we find the mathematical
construction? Do they perhaps have a realistic physical meaning? We can think that nature
has such a symmetry that stretches across physics systems with different axiom systems
and belongs to a unified framework in the deep background.

Generalization of the K-G equations began somewhere in the study of super-
dimensional spaces by Wess and Zumino [1,2]. Bollini and Giambiagi extended the Wess–
Zumino model in a higher dimension, which explicitly involves the generalized K-G
equations [3]. In the solution of the equations, the tachyon solution (a hypothetical particle
that moves faster than light) [4], already proposed in special relativity, appears. Historically,
Sommerfeld was the first, even before the theory of special relativity, to suggest the concept
of faster-than-light particles [5]. After that, the problem of faster-than-light particles became
a topic only much later, now on the basis of relativity [6,7]. The particle hypothesized in this
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way was then associated with the Čerenkov radiation of an accelerating electric charge [8].
They can play a crucial role in the interaction of spaces [9,10]. Today, we view tachyons as
non-freely moving particles which are the mediators of the repulsive effect. In the current
work, the important matter for us is that the K-G equations with a negative mass term have
relevance. The starting idea is that there are processes in nature in which these occur.

In the fields of mechanics [11] and thermodynamics [12], we pointed out that the
existence of K-G equations with a negative mass term is relevant. We arrived at equations
of similar forms from two completely different directions. Yet, we can recognize similar
movements. The related change in dynamics appeared in both cases. We can interpret this
dynamic change as a wave (non-wave) or non-dissipative (dissipative) phase transition [13].
The latter is a crucial moment because the dissipative behavior could appear organically in
the field theories.

Encouraged by these two successful examples, the question arises of whether such a
K-G equation can exist in the case of electrodynamics. What conditions must exist to reach
the desired equation? Since there is no experimental motivation or verification, we can
limit ourselves to the mathematical construction [14]. We have shown what change must
be made in one of Maxwell’s equations to achieve this goal [15].

In the current article, we deal with the appearance and consequences of repulsive
interaction operating in three K-G equations. This article is structured as follows to discuss
the issues raised. Section 2 deals with the case appearing in mechanics. We see that the
appearance of a K-G equation with a negative mass term is not related to special relativity
but rather just simple classical systems. We can see that the negative mass term expresses a
repulsive effect. We show how the dynamics change at the critical point. In Section 3, we
deal with a thermal case. Here, we proceed from the Lorentz-invariant Lagrange function
and field equation to the classical equation. Similar to the mechanical example, the dynamic
change appears here as well. The critical value plays the same role. The dynamic transition
in the direction of Fourier heat conduction gives a good impression of dissipation and
irreversibility. We can identify this as a consequence of the repulsive effect. We can draw
interesting conclusions through the discussion of experimental data. In Section 4, we show
how the K-G equation with a negative mass term can appear. We assume that it must exist.
Thus, according to this, we modify Maxwell’s equation by adding a term. The consequence
of the new term is the repulsive effect, which generates a charge peak from the initially
homogeneous electric charge density. Thus far, there is no experimental experience with
this phenomenon, but we may think that a high-intensity light effect can trigger the process.
The explanation for this is that the repulsive effect at a certain distance scale (∼10−13 m) is
natural. The attractive Coulomb potential compensates for the repulsion. The combination
of the two effects creates a high-frequency vibration, as shown in Section 5. Section 6
summarizes the main claims of this article.

2. The Negative Mass Term Mechanical Klein–Gordon Equation

In mechanics, the K-G equation has been known for a long time [16]. The stretched
string, which is also acted upon by a linear field perpendicular to it, is described by this
equation. In the present chapter, we show how to derive the equation with a negative
mass term.

2.1. Klein–Gordon-Type Equations of Motions

The kinetic energy of the stretched string is

T =
1
2

ρA
∫ (

∂y
∂t

)2
dx, (1)
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where y(x, t) is the perpendicular deviation from the equilibrium position at a given place
and time, ρ is the mass density, and A is the cross-section of the string. The potential energy
appearing due to the tension (elongation) of the string is

V =
1
2

F
∫ (

∂y
∂x

)2
dx, (2)

where F is the magnitude of the tension (stretching) force. The potential energy appearing
due to the linear force field (formed along the longitudinal axis) is

Vs =
1
2

ka

∫
y2dx. (3)

The blue line demonstrates the stretched string, and the red lines illustrate the attractive
elastic interaction in Figure 1.
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Figure 1. Mechanical Klein–Gordon wave propagation, with a string of density ρ stretched by a force
F. The red lines demonstrate the attractive linear force field. This force field is proportional to the
vertical displacement −kay. This is the “extra” interaction compared with the usual transverse wave.

By knowing these, we can specify the Lagrange function:

L =
∫ [

1
2

ρA
(

∂y
∂t

)2
− 1

2
F
(

∂y
∂x

)2
− 1

2
kay2

]
dx. (4)

By applying Hamilton’s principle and performing variation along the fixed boundaries
(such that only the “volume term” remains), we obtain the following Euler–Lagrange
differential equation:

∂2y
∂t2 − F

ρA
∂2y
∂x2 +

ka

ρA
y = 0. (5)

This equation is the well-known Klein–Gordon equation. By introducing the free
propagation speed (without springs)

c =

√
F

ρA
(6)

and the angular frequency

ω0 =

√
ka

ρA
, (7)

we can write the above equation in the following form:

1
c2

∂2y
∂t2 − ∂2y

∂x2 +
ω2

0
c2 y = 0. (8)
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Now, we consider an arrangement where the tiny springs pull the string points further
away from the equilibrium position. This effect is equivalent to a repulsive interaction. In
this case, the potential energy associated with the repulsive force field is

Vrep
s = −1

2
ka

∫
y2dx. (9)

The blue line demonstrates the stretched string, and the red lines illustrate the repulsive
elastic interaction in Figure 2.

Then, the Euler–Lagrange equation becomes the following:

∂2y
∂t2 − F

ρA
∂2y
∂x2 − ka

ρA
y = 0. (10)
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. u
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Figure 2. Mechanical Klein–Gordon wave propagation, with a string of a density ρ stretched by a
force F. The red lines demonstrate the repulsive linear force field. This force is proportional to the
vertical displacement kay.

This repulsive interaction (by the ka springs) cannot be realized technically. However,
we can achieve an equivalent effect by imagining the traveling wave on a circular surface.
If the angular velocity of the rotating disc is ω0, then the potential energy associated with
the centrifugal force is a good approximation:

Vc f = −1
2

∫
ρAω2

0y2dx. (11)

By applying this potential, the form of the Lagrange function is

L =
∫ [

1
2

ρA
(

∂y
∂t

)2
− 1

2
F
(

∂y
∂x

)2
+

1
2

ρAω2
0y2

]
dx. (12)

Finally, we can derive the equation of motion as a Euler–Lagrange equation:

1
c2

∂2y
∂t2 − ∂2y

∂x2 −
ω2

0
c2 y = 0, (13)

which is a “tachyon” Klein–Gordon equation controlled by the introduced repulsive inter-
action [11]. The quotation marks indicate that this is not the case for a particle exceeding
the speed of light. We apply the “tachyon” name due to the similarity of the mathematical
equations and the structure of the related solutions.
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2.2. Dynamic Transition

We focus on the dynamic consequences of the equation, including the repulsive effect.
For this, by applying the canonical calculus [17], we can express the momentum of the
wave as

p =
∂L

∂(∂y/∂t)
=

∫
ρA

∂y
∂t

dx, (14)

through which the Hamilton function is

H = p
∂y
∂t

− L =
∫ [

1
2

ρA
(

∂y
∂t

)2
+

1
2

F
(

∂y
∂x

)2
− 1

2
ρAω2

0y2

]
dx. (15)

The Hamiltonian is conserved. If we consider a part of a harmonic wave

y(x, t) = A0 sin(kx − ωt) (16)

with a finite length of L (A0 is the amplitude, k is the wave number, and ω is the angular
frequency), then we can calculate the Hamiltonian (entire energy) of a wave packet:

H =
1
4

ρALA2
0ω2 +

1
4

FLA2
0k2 − 1

4
ρALω2

0 A2
0. (17)

From here, the amplitude of A0 can be expressed:

A0 =

√
4H

ρAL

(
ω2 +

F
ρA

k2 − ω2
0

)−1
. (18)

When the angular velocity of the rotation reaches the value

ω0 =

√
ω2 +

F
ρA

k2, (19)

then the amplitude will be unlimited:

A0 −→ ∞. (20)

The repulsive effect overcomes the attraction associated with the tension force.
If the angular velocity of ω0 is small enough, then the string vibrates around its

equilibrium position. However, above a certain threshold angular velocity, the string
stretches to an increasingly large extension without oscillation due to the centrifugal force.
This is the point when the dynamics alter. We can therefore find a critical angular velocity
value below which all points of the string oscillate as a mode of wave propagation and
above which the points of the string do not vibrate. This is a transition between the
vibrational and the dissipative state (i.e., a dynamic phase transition). We can examine the
above statement in detail with the help of dispersion relations:

ω(k, ω0) =

√
F

ρA
k2 − ω2

0. (21)

ω(λ, ω0) =

√
F

ρA
4π2

λ2 − ω2
0. (22)

We can express the phase velocity of the wave formed on a string with the formula

wph =
ω

k
=

√
F

ρA
−

ω2
0

k2 =

√
F

ρA
−

λ2ω2
0

4π2 . (23)
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The wavelength does not alter. The angular frequency of ω and the phase velocity of
wph decrease and tend toward zero with the increase in the angular velocity of ω0. The
amplitude of Aamp of the initial wave changes to A′

amp during the transition. This is due to
the conservation of mechanical energy.

1
2

Aamp ω2(λ, ω0 = 0) =
1
2

A′
amp ω2(λ, ω0) (24)

Figures 3–5 clearly show that, in contrast to the angular frequency and amplitude,
the wavelength did not change. A change in the angular frequency led to a decrease in
the wave propagation speed near the critical point. This is the phenomenon of the critical
value slowing down [18] in the dynamic transitions. With the present parameterization,
the dynamics change ω0 = π (in natural units) occurred at this value. At that time, and for
the subsequent ω0 > π values, the deflection in the y direction in the repulsive potential
space followed the exponentially increasing function sequence

y(t) ∼ exp

√
λ2ω2

0
4π2 − F

ρA
t

. (25)

The complex solution of ω displays this. There was no wave propagation in the x
direction and only exponential decay in the y direction. This resulted from a change in
the symmetry of the system. A crucial consequence was that the ordered wave propa-
gation passed into an irreversible spreading motion in the y direction. This dispersion
was related to the dissipation and had an immediate connection with the concept of irre-
versibility. The repulsive potential embodying a negative mass term was the source of the
symmetry violation.
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Figure 3. Wave transition between force-free and repulsive potential field. The latter is implemented
with a rotating disk with an angular velocity of ω0 = 2 in natural units.
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Figure 4. Wave transition between force-free and repulsive potential field. The latter is implemented
with a rotating disk with an angular velocity of ω0 = 2.5 in natural units.
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Figure 5. Wave transition between force-free and repulsive potential field. The latter is implemented
with a rotating disk with an angular velocity of ω0 = 3 in natural units.

The authors currently do not know any mechanical experiments confirming the results
of the presented calculations, but their reality is acceptable. It is easy to achieve a high
angular velocity in small (microscopic) systems. However, wave propagation measurement
can be problematic. In large-scale (m- or km-scale) systems, detecting wave propagation is
not a problem, but a high angular velocity is.

3. The Negative Mass Term Thermal Klein–Gordon Equation

The second example of the Klein–Gordon equation with a negative mass term can
be found in the thermal propagation [12]. Here, we assume that the classical Fourier
equation is the limiting case of a Lorentz invariant equation. Therefore, we formulate such
an equation, which includes the repulsive effect condition. However, with this step, we
shift directly to the K-G equation with a negative mass term.

3.1. Equations of Motion

To study thermal phenomena, let us start from the classical Fourier heat conduc-
tion equation:

∂T
∂t

− κ

cv

∂2T
∂x2 = 0. (26)

This is such slow energy transport that we do not require the finite propagation speed
of the physical action. This means that the propagation speed of the physical action (the
action) is infinite. This should not be confused with the fact that heat propagation itself
is a slow process. Here, T (x, t) is the classical (local equilibrium) temperature, κ is the
heat conductivity coefficient, and cv is the specific heat. It is known that if the equation of
motion contains a first derivative, then the Lagrange function cannot be specified directly
using the given variable [16]. For this reason, we introduce a suitable potential function of
φ capable of generating the temperature field:

T = −∂φ

∂t
− κ

cv

∂2 φ

∂x2 . (27)

With the help of this, the expression of the Lagrange function can already be obtained:

L =
1
2

(
∂φ

∂t

)2
+

1
2

κ2

c2
v

(
∂2 φ

∂x2

)2

. (28)

After substituting the definition in Equation (28) into the Euler–Lagrange equation
calculated for φ, we arrive at the Fourier heat propagation in Equation (26).

If we want to describe fast energy transport, then we cannot ignore the limitation
that at most, the effect can spread with the propagation speed of light of c according to
the theory of special relativity. In the case of such processes, we must interpret a so-called
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dynamic temperature of T(x, t), which is also defined by φ(x, t), a Lorentz-invariant scalar
field, and which also produces a Lorentz-invariant thermal field:

T =
1
c2

∂2 φ

∂t2 − ∂2 φ

∂x2 +
c2c2

v
4κ2 φ. (29)

The equation describing such a fast process must be relativistically invariant. In this
case, let the following be the Lagrangian density function:

L =
1
2

(
∂2 φ

∂x2

)2

+
1

2c4

(
∂2 φ

∂t2

)2

− 1
c2

∂2 φ

∂t2
∂2 φ

∂x2 − 1
2

c4c4
v

16κ4 φ2. (30)

Considering the above relationship between the potential and temperature, we obtain
the equation describing the thermal field:

1
c2

∂2T
∂t2 − ∂2T

∂x2 − c2c2
v

4κ2 T = 0. (31)

By substituting

ω0T =

√
c4c2

v
4κ2 , (32)

this expression is the exact equivalent of Equation (13):

1
c2

∂2T
∂t2 − ∂2T

∂x2 −
ω2

0T
c2 T = 0. (33)

Of course, here, c denotes the speed of light. Since this is a relativistically invariant
equation, it does indeed have a tachyon solution.

3.2. Dispersion Relations, Symmetry Breaking, Dynamic Transition, and Classical Limits

The Lorentz-invariant equation must include the Fourier solution as a classical limiting
case. However, we cannot drive this limit from a simple comparison of these equations.
Differential equations cannot be reduced by omitting or reinterpreting individual terms.
We can make the comparison at the level of dispersion relations. This is why we need to
examine them.

The dispersion relations are obtained through a Fourier transformation of Equations (26)
and (31) in order:

ω(k) = −i
κ

cv
k2, (34)

and

ω(k) =

√
c2k2 − c4c2

v
4κ2 . (35)

Here, ω is the angular frequency, while k is the wave number. By introducing the
diffusivity parameter D = κcv, the group velocity corresponding to Equation (35) is

vcs =
dω

dk
=

c√
1 − c2

4D2k2

. (36)

If we move toward infinity with the speed of light, then the relation in Equation (36)
leads to −2iDk, which is the classical group velocity if we apply the dω/dk differentiation
for the expression in Equation (34). Therefore, the limiting case of the process (described by
Equation (31)) is the well-known Fourier thermal conduction. Furthermore, we know that
Equation (31) belongs to a non-dissipative process, and it has a wave solution. Now that
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we see the relationship between the two thermal propagations, for deeper insight, let us
calculate the phase velocity from Equation (35):

w f =
ω

k
= c

√
1 − c2

4D2k2 < c. (37)

Let us introduce the k0 = c/2D notation. We can see in Figure 6 that if k > k0, then
dω/dk is real and a wave solution. If k < k0, then dω/d k is imaginary and a non-wave
solution. This is the breaking point of symmetry in the thermal process. We plotted w f
and Imw f as a function of Dk, and we can see that the critical slowdown [18] occurred
in the vicinity of the value of Dk0. This change in dynamics fully corresponds to what
we experienced in the case of the presented mechanical wave. Thus, we can say that the
appearance of motion equations with a negative mass term is natural in two major physical
disciplines.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Dk (108 m/s); D=1; k0=
c

2D

Im
w
f
a
n
d
w
f
(1
0
8
m
/s
)

Non-Wave / Dissipative

Wave / Non-Dissipative

Speed of light

Figure 6. Dynamic transition between non-wave (dissipative) and wave-like (non-dissipative) propa-
gation. The critical transition point is at Dk0 = c/2. The diffusivity parameter is D = 1. The phase
velocity of w f of the wave-like propagation is always less than the speed of light.

Let us return to Equation (35) for a brief quantitative discussion. If

ck ≥ c2cv

2κ
, (38)

then non-dissipative wave propagation takes place. This means that the wavelength modes

λ ≤ 4πκ

ccv
(39)

propagate reversibly. The equality belongs to the symmetry breaking of the dynamics.
Since the heat conduction coefficient is 2–3 orders of magnitude smaller for most mate-
rials, thermal conduction is always irreversible, according to past experience. Carbon
nanotubes [19,20] can be said to be exceptional, for which κ = 6000 W/m·K (this may be
an underestimated value) and cv = 700 J/kg·K, with which λ ∼ 360 nm (i.e., these are
phonons in the UV range). For larger κ values [21], λ can reach up to 1000 nm. From a
technical point of view, this can have many possibilities.

We see that the fit of the K-G equation with a negative mass term to the classical limit
case (Fourier heat conduction) works well. However, using a Lorentz invariant thermal
equation may be more likely to be relevant in field theories. One example is the coupling of
the Friedmann equation and this space [22].

3.3. Lagrangian Reloaded

The Lorentz invariant thermal Klein–Gordon equation formulated in Equation (31)
involves only self-adjoint operators (simply, there are no odd-order derivatives in the
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equation of motion), and thus we can express the Lagrange function using the physical
variable temperature of T(x, t) directly:

L′ =
1
2

1
c2

(
∂T
∂t

)2
− 1

2

(
∂T
∂x

)2
+

1
2

ω2
0T

c2 T2 (40)

We do not forget here that the temperature T is for a more abstract physical field.

4. The Negative Mass Term Electrodynamic Klein–Gordon Equation

In the previous sections, we showed in the case of two classical physical fields that
we naturally found a Klein–Gordon equation with a negative mass term. Now, we turn
the thought process around a bit. We start from the assumption that there is also a K-G
equation with a negative mass term in electrodynamics. The question is what we should
change in Maxwell’s equations to achieve this goal. This concern raises whether such a step
is possible at all. We conduct a calculation experiment for now, and we can say more once
we know the final result.

4.1. Introducing a Repulsive Interaction in the Electromagnetism

Inspired by the previous two examples, the question arises of whether there is a Klein–
Gordon equation with a negative mass term in the case of electrodynamics. To answer this,
let us start from the well-known form of Maxwell’s equations [23]:

1
µ0

rotB = ε0
∂E
∂t

+ J, (41)

rotE = −∂B
∂t

, (42)

ε0divE = ϱ, (43)

divB = 0. (44)

By applying these relations, we can deduce the usual wave equations with the relevant
source terms on the right-hand side of the expressions:

1
c2

∂2E
∂t2 − ∆E = − 1

ε0
grad ϱ − µ0

∂J
∂t

, (45)

1
c2

∂2B
∂t2 − ∆B = µ0rot J. (46)

What effect do we assume exists to answer the above question? We add a term

α2
t∫

t0

B(r, t′)dt′ (47)

to the right side of Equation (42). Here, the parameter of α refers to the hypothesized
interaction. Then, the modified form of Maxwell’s equation is

rotE = −∂B
∂t

+ α2
t∫

t0

B(r, t′)dt′. (48)
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To solve the equations, we introduce the vector potential of A with the usual relation
B = rotA and the scalar potential of φ, which take into account the modified form in the
electric field:

E = −∂A
∂t

− grad φ + α2
t∫

t0

A(r, t′)dt′. (49)

By considering the Lorenz condition ∂φ/∂t + divA = 0 and applying the relation
ε0µ0 = 1/c2, we arrive at the equation

1
c2

∂2 φ

∂t2 − ∆φ − α2

c2 φ =
ϱ

ε0
. (50)

Learning from Equations (13) and (33), we can identify α = ω0e. With the third
(negative) term, the K-G equation in Equation (50) involves a repulsive potential. The
structure of the equation is similar to that of the equations discussed in the previous
chapters, and thus it contains a dynamic phase transition depending on the parameter of α.
An equation with a similar structure can be derived for the vector potential of A as well as
for the fields of E and B [15]:

1
c2

∂2A
∂t2 − ∆A − α2

c2 A = µ0J. (51)

In this way, the desired equations appear for the potential fields of φ and A. At the
same time, we also obtain equations that are similar in structure to measurable physi-
cal fields:

1
c2

∂2E
∂t2 − ∆E − α2

c2 E = − 1
ε0

grad ϱ − µ0
∂J
∂t

+ µ0α2
t∫

t0

J(r, t′)dt′, (52)

1
c2

∂2B
∂t2 − ∆B − α2

c2 B = µ0rot J. (53)

4.2. Spontaneous Peak Effect

The subject of our further investigation is what kind of physical dynamics the obtained
equations describe. Let us start with the following assumption. Initially, we imagined
an electrically conductive field with zero for the charge density. This means the electric
charges can move freely if even a weak disturbance affects the considered medium. We
assumed a small perturbation of a Gaussian charge distribution. Now, we can examine the
appearing electrical field dynamics given by Equation (52). Here, we can eliminate the last
two terms of this equation to simplify the problem to

∂2E
∂t2 − ∆E − α2E = − 1

ε0
grad ϱ. (54)

We remark that it has been shown that the contribution of the current and its time
derivative result in a value of zero [15]. We can solve this equation by applying the Green
function method, and thus the evolution of the electric field of E can be expressed from an
initial charge distribution of ϱ(x′):

E(r, t) =
∫

− 1
ε0

gradϱ(x′)

[
1

(2π)4

∫
d4k

eik(x−x′)

k2 − α2 .

]
︸ ︷︷ ︸

G(x,x′)

dx′, (55)

The expression in [. . .] is the Green function G(x, x′). (The integration runs in the four-
dimensional spacetime.) The calculated Green function for the present physical dynamics
is called the Wheeler propagator W(x, x′) [24,25]. The effect of the Wheeler propagator is
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generation of the electric state E at a later time t from the initial charge density at time t′.
Figures 7–9 show the distribution of the charge density peaks at different moments in time.

Figure 7. A 2D plot of the charge density as a function of the radius over time, where t = 0.3. Red
color means zero charge density. The colors red, yellow, green, blue, and magenta, in that order, show
the increasing charge density. The charge density and radius are understood in natural units.

Figure 8. A 2D plot of the charge density as a function of the radius over time, where t = 0.7. Red
color means zero charge density. The colors red, yellow, green, blue, and magenta, in that order, show
the increasing charge density. The charge density and radius are understood in natural units.

Figure 9. A 2D plot of the charge density as a function of the radius over time, where t = 1.0. Red
color means zero charge density. The colors red, yellow, green, blue, and magenta, in that order, show
the increasing charge density. The charge density and radius are understood in natural units.

4.3. Simplified Electric Potential (Charge and Electric Current Density) Vector Potential Relations

We can find the relationship between the spontaneous charge density and the electric
potential, and similarly the relationship between the associated current density and the
vector potential from Equations (50) and (51), in two simple equations:

ϱ ∼ − ε0α2

c2 φ = −
ε0ω2

0e
c2 φ, (56)



Symmetry 2024, 16, 144 13 of 16

and

J ∼ − α2

µ0c2 A = −
ω2

0e
µ0c2 A. (57)

The meaning of the equations can be considered trivial in a physical sense. In the
next section, we primarily need the relationship between the charge density and the
electric potential.

5. Charge Density Oscillations

The previous three examples discussed cases of repulsive interaction. The amplitude
of the oscillation increased in the mechanical example in Section 2, the temperature spread
in the thermal case in Section 3, and a charge peak formed in the electromagnetism in
Section 4. However, the electromagnetic charge density peak, being the charge separation
caused by the repulsive electromagnetic effect, cannot be unlimited. The Coulomb attractive
effect plays an essential role in this.

We can define a characteristic wavelength of λ for the movement of charged particles from
the vibration of ω0e under the influence of electromagnetic repulsion in Equations (56) and (57):

2π

λ
=

ω0e

c
. (58)

The movement of charged particles depends on their mass. We may assume that the
mass m consists of N electrons expressed by m = Nme. Then, we can derive the charge
density in Equation (56) for this set of particles:

ϱ = −4π2N2ε0

λ2 φ. (59)

The resulting vibration indicates the separation of N positively and N negatively
charged particles. The Coulomb potential perceptible to electrons from a set of positively
charged particles Ne is

φ(r) = − 1
4πε0

Ne
r

, (60)

where r is the distance between the charged entities and e is the elementary charge. One
packet of the particles (e.g., the positive charges) has the charge density ϱ. We may assume
a sphere-like symmetric distribution, and thus the integral can be applied for the potential-
charge density relation in Equation (59):∫ a

0
4r2πϱ(r)dr = Ne, (61)

where a is the maximal extension of the charged packet. By substituting the right-hand side
of Equation (59), we obtain

∫ a

0

πN2

λ2 4r2π
Ne
r

dr =
2π2N3ea2

λ2 , (62)

We compare Equations (61) and (62), from which we obtain a relation for the maximal
displacement of a as a function of the charged particles:

a =
λ√

2Nπ
. (63)

The maximal distance of the spontaneous charge distinction may be in the case
of N = 1. If the characteristic wavelength of λ we introduced is identified with the
Compton wavelength of 2.42 × 10−12 m as a typical value on this scale, then we obtain
a = 5.5 × 10−13 m. The minimal time period is tmin = 2a/c = 3.6 × 10−21 s. The related
(maximal) angular frequency is ω = 1.74 × 1021 1/s, which almost equals the angular



Symmetry 2024, 16, 144 14 of 16

frequency of the Zitterbewegung ω = 1.6 × 1021 1/s [26–28]. The Zitterbewegung effect
has been experimentally verified [29–31]. It can also be seen that the chance of creating a
large number of particle groups decreases with the reciprocal of N.

This phenomenon perhaps justifies the term added to Maxwell’s equation, which
creates the repulsive effect. We are sure that the K-G equation with a negative mass term is
part of all three classical disciplines, and we can assign an acceptable physical meaning to
all three. At the same time, a similar change in dynamics and a breaking of the internal
symmetry appear in all three. This may not be just a coincidence after all.

6. Conclusions

In the present article, we dealt with the appearance of Klein–Gordon equations with
a negative mass term in different physical problems. In all three classical disciplines, we
showed how it appears, what kind of interpretation pertains to the equations, and what
dynamic changes and symmetry violations hide in the background. In the different sections,
we discussed the phenomena one by one. In mechanics, the K-G equation with a positive
mass term is well known concerning wave propagation. Here, in addition to the force
stretching the string, one only has to imagine the existence of a transverse force field in
an elastic medium. Our idea is to replace the attractive, flexible space with a repulsive
one. The experimental proof is not easy in an elastic environment. However, if we imagine
that the elastic wave travels on a rotating disc, the centrifugal potential corresponds to a
repulsive effect. At the level of the equations, only one sign change takes place, but the
effect is undoubtedly significant. For the dynamics of wave propagation change, instead of
vibration modes, in the vertical (y) direction, an exponentially time-dependent movement
appears. At the same time, the velocity of the wave in the horizontal (x) direction tends
toward zero. These new results were plotted on graphs, and the phenomenon of critical
slowdown was visible. This is one of the most characteristic features of critical dynamic
phenomena. The description of thermal propagation is the second major topic of the
present paper. Against the previous mechanical phenomenon, the “slowed down” process
is known as Fourier heat conduction. The task was to show the equation from which we
could derive it, taking into account the finite propagation speed of the effect. To fulfill these
requirements, we created a Lorentz-invariant Lagrange function, which led to a similarly
Lorentz-invariant equation of motion. This equation is a K-G equation with a negative
mass term. After that, we showed through the dispersion relations that the description
given in this way led to classical heat conduction in the limiting case c → ∞. The change in
dynamics can be followed in the wave vs. non-wave transition consistently at the level of
the parameters. We could identify the phenomenon of critical slowdown. Thermal wave
propagation may exist under certain conditions, and the possibility of reversible behavior
of nanoscale thermal processes also arises. We feel a sense of loss, wondering what the
situation is in electrodynamics. The examples of mechanics and thermodynamics inspired
us to believe that in this case too, there must be a K-G equation with a negative mass term.
Although there is no experimental proof of this motion, it is still worth trying to find the
related mathematical construction. For this purpose, we added a term to the equation
involving Faraday’s law of induction. We emphasize that this is only a mathematical
assumption. The equations derived for the quantities describing the electromagnetic fields
in this way are all K-G equations with a negative mass term. The effect of this term in the
theory is that it causes a spontaneous charge peak in the initially homogeneous zero charge
density distribution. The Coulomb interaction is against the charge separation. The two
physical effects may cause a high-frequency vibration that may appear as a combination of
the two effects.

To summarize, we can say that those phenomena governed by K-G equations with
negative mass terms involve repulsive interactions. Consequently, these interactions change
the dynamics of the physical processes, which in this nature are not unusual. The similarity
of the equations suggests that on the one hand, the coupling of the phenomena is possible
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at this mathematical level, and on the other hand, the phenomenon of dissipation may be
an integral part of the theory.
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