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Abstract: We formulate an iterative approach employing the inertial technique to approximate
the anticipated solution for a generalized mixed variational-like inequality, as well as variational
inequality and fixed point problems associated with a relatively nonexpansive multivalued mapping
within the context of a real Banach space. Additionally, we delve into the robust convergence of
our suggested algorithm. Furthermore, we highlight certain implications and present numerical
observations to underscore the significance of our findings. The proposed theorem extends and
consolidates several previously published works.
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1. Introduction

Throughout the entire article, unless explicitly stated otherwise, we assume that Y
is a two-uniformly convex and uniformly smooth Banach space, with Y∗ denoting its
dual. Let X represent a nonempty closed convex subset of Y. The fixed point problem
(FPP) associated with a mapping T : X → X is defined as the set {s ∈ X : Ts = s}. The
normalized duality mapping, denoted as J : Y → 2Y∗

, is defined by J(u) = {u0 ∈ E∗ :
⟨u0, u⟩ = ∥u∥2 = ∥u0∥2}, for all u ∈ Y. This mapping assigns to each vector u a set of linear
functionals in the dual space Y∗ that satisfies specific orthogonality conditions.

The Lyapunov function, denoted as ϕ : Y × Y → R, is defined as follows:

ϕ(u1, u2) = ∥u1∥2 − 2⟨u1, Ju2⟩+ ∥u2∥2, ∀u1, u2 ∈ X. (1)

This Lyapunov function quantifies the distance between two vectors in the space Y through
their norms and the action of the normalized duality mapping J.

It is essential to note that the characterization of the metric projection on a subset of a
Hilbert space as nonexpansive is specific to Hilbert spaces, and is not readily applicable to
more general Banach spaces. To address this limitation, Alber [1] introduced an operator
in Banach space known as the generalized projection, as further discussed in [2]. The
generalized projection extends the notion of projection to Banach spaces, providing a useful
tool for solving optimization problems in more general functional settings.
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We provide a concise overview of our proposed problem and its specific cases. We
introduce the generalized mixed variational-like inequality problem (GMVLIP) as follows:
Seek s0 ∈ X satisfying

h(s, s0; s0) + b(s0, s)− b(s0, s0) ≥ 0, ∀s ∈ X, (2)

where h : X × X × X → R and b : X × X → R. The solution to (2) is denoted as
Sol(GMVLIP (2)). When b ≡ 0, GMVLIP (2) simplifies to

h(s, s0; s0) ≥ 0, ∀s ∈ X, (3)

which represents the general variational-like inequality problem (GVLIP), as seen in [3,4].
Additionally, if h(s, s0; s0) = ⟨Ds0 + As0, η(s, s0)⟩, where D, A : X → Y and η : X × X → Y,
then (2) transforms into the mixed variational-like inequality problem (MVLIP) initiated by
Noor [5]. Furthermore, by setting A ≡ 0 and b ≡ 0, GMVLIP (2) becomes the variational-
like inequality problem (VLIP), expressed as

⟨Ds0, η(s, s0)⟩ ≥ 0, ∀s ∈ X,

as illustrated by Parida et al. [6]. This holds significant importance in mathematical
programming. If we set η(s, s0) = s− s0 for all s, so ∈ X, then the VLIP transforms into the
classical variational inequality problem (abbreviated as VIP) [7], expressed as

⟨Ds0, s− s0⟩ ≥ 0, ∀s ∈ X. (4)

Its solution is denoted as Sol(VIP (4)). If we set h(s, s0; s0) ≡ f(s0, s), where f : X × X → R
and D ≡ 0, then GMVLIP (2) transforms into the equilibrium problem (abbreviated as
EP) as

f(s0, s) ≥ 0, ∀s ∈ X, (5)

which was initiated by Blum et al. [8] in 1994. Its solution is described as Sol(EP (5)).
The generalized mixed variational-like inequality problem is recognized as a trifunc-

tion equilibrium problem. Consequently, the equilibrium problem can be viewed as a
special case within the broader context of the trifunction equilibrium problem. The equilib-
rium problem is widely acknowledged for its substantial impact on the advancement of
various scientific and engineering domains. Remarkably, it has become evident that many
well-known problems can be conceptualized within the framework of the equilibrium prob-
lem, providing a natural, innovative, and unified approach to addressing issues in nonlinear
analysis, optimization, economics, finance, game theory, physics, and engineering.

The theories developed for the equilibrium problem have demonstrated their appli-
cability to numerous problems. Notably, this theoretical framework serves as a unifying
structure for diverse problems encountered in mathematical programming, variational
inclusion, variational inequality, complementary problems, saddle point problems, Nash
equilibrium problems in noncooperative games, minimax inequality problems, minimiza-
tion problems, and fixed point problems, as highlighted in [8–12].

In 1953, Mann [13] introduced an iterative algorithm for nonexpansive single-valued
mappings and investigated weak convergence. Building upon Mann’s work, Haugazeau [14]
introduced a hybrid projection iterative algorithm (HPIA) as an advancement. Subse-
quently, in 2003, Nakajo et al. [15] presented an HPIA that incorporates metric projection
for a nonexpansive single-valued mapping in a Hilbert space, demonstrating strong con-
vergence under specific parameter conditions.
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In 2005, Matsushita et al. [16] introduced a hybrid iterative algorithm involving
generalized projection, considering a more general space, namely, a Banach space. The
algorithm is described by the following steps:

w0 ∈ X,
un = J−1(βnwn + (1 − βn)wn),
Pn = {v ∈ X : ϕ(v, un) ≤ ϕ(v,wn)},
Qn = {v ∈ X : ⟨wn − v, Jw0 − Jwn⟩}
wn+1 = ΠPn∩Qn(w0).


For additional sources and in-depth exploration, see [15,17–20].

In 1973, Markin [21] introduced the fixed point problem (FPP) for multivalued nonex-
pansive mappings, with wide-ranging applications in fields such as convex optimization
and control theory, as demonstrated in [22–24]. In 2011, Homaeipour et al. [25] pro-
posed an iterative scheme featuring a relatively nonexpansive multivalued mapping T, as
outlined below: {

w0 ∈ X,
wn+1 = ΠX J−1(βn Jwn + (1 − βn)Jvn), vn ∈ Twn.

}
Homaeipour et al. observed convergence of the sequence {wn} under specific conditions
on the control sequence. In a more recent study, Zegeye et al. [26] delved into an iterative
approach aimed at approximating the common solution of the equilibrium problem (EP)
and the fixed point problem (FPP) for relatively nonexpansive multivalued mappings. Their
work includes a comprehensive convergence analysis under suitable parameter conditions.
Very recently, Taiwo et al. [27] introduced the following Halpern-S-iteration method:

w,w1,∈ X,
un ∈ X such that f(un, u) + 1

rn
⟨u− un, Jun − Jwn⟩ ≥ 0, for all u ∈ X,

zn = ΠX J−1((1 − βn)Jwn + βn Jvn), vn ∈ Twn,
wn+1 = J−1(βn Jw+ γn Jvn + ηn Jtn), tn ∈ Tzn.


Their objective was to approximate the common solution of the equilibrium problem
(EP) and the fixed point problem (FPP) for relatively nonexpansive multivalued mappings
within uniformly convex and uniformly smooth Banach spaces. Furthermore, they success-
fully established strong convergence under appropriate conditions on the parameters.
A potent approach for enhancing the convergence rate of iterative algorithms involves
incorporating an inertial term into the iterative scheme. Represented by γn(sn − sn−1),
this term proves to be a valuable tool for boosting algorithmic performance, manifesting
favorable convergence characteristics. The notion of the inertial extrapolation method was
first introduced by Polyak [28], drawing inspiration from an implicit discretization of a
second-order-in-time dissipative dynamical system known as the “Heavy Ball with Friction”.

In 2008, Mainge [29] introduced an inertial Krasnosel’skiı̌–Mann algorithm, which
integrates the Krasnosel’skiı̌–Mann algorithm with inertial extrapolation{

zn = sn + θn(sn − sn−1),
sn+1 = (1 − ςn)zn + ςnTzn.

}
for each n ≥ 1. Mainge demonstrated that the sequence sn generated by the algorithm
converges weakly to a fixed point of T under certain conditions on parameters. This
development has ignited growing interest among researchers in this field, as evident in
works such as [30–35].

Question: Could we apply the inertial technique involving the projection method for
solving GMVLIP, VIP, and FPP for relatively nonexpansive multivalued mapping in the
setting of two-uniformly convex and uniformly smooth Banach space?
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Explanations: Exploring the synergy of the inertial technique with a projection method
holds promise in addressing the challenges posed by the generalized mixed variational-like
inequality problem (GMVLIP), variational inequality problem (VIP), and fixed point prob-
lem (FPP) associated with relatively nonexpansive multivalued mappings. This approach,
especially when implemented in the realm of a two-uniformly convex and uniformly
smooth Banach space, capitalizes on the inherent geometric and analytical advantages
of such spaces. The inertial term, designed to expedite convergence through judicious
extrapolation, combines seamlessly with the projection method, forming a robust strategy
to tackle these intricate problems. Leveraging the unique properties of the Banach space,
this combined methodology exhibits the potential for enhanced computational efficiency
and convergence rates. This avenue of research opens doors to innovative solutions for a
broad spectrum of applications in mathematical analysis and optimization.

Building upon the pioneering work of Taiwo et al. [27], Zegeye et al. [26], Mainge [29],
and Farid et al. [9], we introduce a novel iterative algorithm incorporating the inertial
technique. This algorithm is designed to ascertain the common solution of the generalized
mixed variational-like inequality problem (GMVLIP), variational inequality problem (VIP),
and fixed point problem (FPP) for relatively nonexpansive multivalued mappings. Our
investigation into the strong convergence properties of this proposed method unveils
specific aspects of our theorem, emphasizing its robustness. Furthermore, we conduct a
computational analysis to underscore the significance of our findings and draw meaningful
comparisons. The results presented in this paper contribute to the extension and unification
of numerous previously established outcomes in this specific research domain.

The iterative model for variational-like inequality problems and related problems has
several uses and applications, including

(1) Numerical Solutions: Iterative models provide numerical solutions to variational-
like inequality problems, offering a computational approach to finding approximate
solutions when analytical solutions are challenging or not feasible.

(2) Versatility Across Problem Classes: Iterative models can be adapted to solve various
problem classes, such as variational inequalities, fixed point problems, and generalized
mixed variational-like inequalities. This versatility makes them valuable tools for
addressing a wide range of mathematical and optimization challenges.

(3) Convergence Analysis: The iterative nature of these models allows for the study of
convergence properties. Convergence analysis helps understand the behavior of the
iterative process and establishes conditions under which the algorithm converges to
a solution.

(4) Image Reconstruction in Medical Imaging: In medical imaging, iterative models are
used for image reconstruction problems formulated as variational inequalities. They
provide a framework for obtaining high-quality images from noisy or incomplete data.

In essence, iterative models for variational-like inequality problems provide powerful
computational tools with broad applications across mathematics, optimization, and various
applied sciences. Their adaptability, versatility, and ability to handle complex, real-world
problems make them valuable in both theoretical analysis and practical problem solving.

In summary, the study’s limitations include potential applicability restrictions to
certain Banach spaces, algorithm complexity for practical implementation, sensitivity to
parameter choices, possible slow convergence rates, lack of real-world validation, and
limited generalization to other problem classes. Additionally, the algorithm’s sensitivity to
initial guesses poses a consideration for its robustness. These factors highlight areas for
further investigation and refinement in future research.

Our paper is organized as follows: In Section 2, we provide a comprehensive expla-
nation of fundamental concepts and conduct a review of established results. Section 3
encapsulates our primary contributions, featuring the main theoretical developments, nu-
merical analyses, and graphical presentations. The interpretation and implications of our
work are thoroughly discussed in Section 4.
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2. Preliminaries

In this section, we lay the groundwork for our study by presenting key preliminaries
and fundamental concepts essential to understanding the subsequent theoretical develop-
ments. We delve into the background literature, outlining established results and theoretical
frameworks that form the basis of our research. This foundation serves as a crucial stepping
stone for the detailed exposition of our main contributions in the subsequent sections.
In the context of a Banach space Y, the space is deemed strictly convex if the following
condition holds: ∥u1+u2∥

2 < 1 for all distinct u1, u2 ∈ U, where U = {u ∈ Y : ∥u∥ = 1}. This
strict convexity criterion ensures a distinct separation between vectors in the unit sphere.

The modulus of smoothness on Y is a mathematical operator denoted by
ϱY : [0, ∞) → [0, ∞) and defined as follows:

ϱY(τ) = sup
{

1 − |u1 + u2|+ |u1 − u2|
2

− 1 : ∥u1∥ = 1, ∥u2∥ = τ

}
.

If ϱY(τ) > 0 for all τ > 0, then Y is termed a smooth space, and it is considered uniformly
smooth if the limit lims→0+

ϱY(s)
s = 0 holds.

Furthermore, the modulus of convexity on X is represented by δY : (0, 2] → [0, 1] and
defined as follows:

δY(ϵ) = inf
{

1 − |u1 + u2|
2

: ∥u1∥ = ∥u2∥ = 1, ∥u1 − u2∥ = ϵ

}
.

A space Y is termed uniformly convex if δY(ϵ) > 0 for all ϵ ∈ (0, 2]. In the broader
context, a space Y is considered p-uniformly convex if there exists a constant cp > 0 such
that δY(ϵ) ≥ cp for all ϵ ∈ (0, 2], as detailed in [36]. For further elucidation, please refer
to the cited source. Let us consider the space Y = l2, the space of square-summable
sequences equipped with the standard l2 norm. This space is both two-uniformly convex
and uniformly smooth.

The function ϕ defined in (1), introduced by Alber [1], exhibits well-established prop-
erties for any u1, u2, u3 ∈ X, and α ∈ (0, 1). These fundamental properties, deeply rooted in
the theory of Banach spaces, serve as a cornerstone in various mathematical analyses and
optimization frameworks.

(L1) (∥u1 − u2∥)2 ≤ ϕ(u1, u2) ≤ (∥u1 + u2∥)2;
(L2) ϕ(u1, J−1(λJu2 + (1 − λ)Ju3) ≤ λϕ(u1, u2) + (1 − λ)ϕ(u1, u3);
(L3) ϕ(u1, u2) = ϕ(u1, u3) + ϕ(u3, u2) + 2⟨u3 − u1, Ju2 − Ju3⟩;
(L4) ϕ(u1, u2) ≤ 2⟨u2 − u1, Ju2 − Ju1⟩.
Moving forward, we introduce the functional Φ : Y × Y∗ → R, defined as

Φ(u, u∗) = ∥u∥2 − ⟨u, u∗⟩+ ∥u∗∥2, ∀u ∈ Y, u∗ ∈ Y∗. (6)

It is notable that Φ(u, u∗) = ϕ(u, J−1u∗), establishing a connection between Φ and the
previously defined Lyapunov function ϕ. Moreover, Φ demonstrates convexity in its
second argument. Furthermore,

Φ(u, u∗) + 2⟨J−1u∗ − u, v∗⟩ ≤ Φ(u, u∗ + v∗), (7)

where this convexity property holds for all u ∈ Y and u∗, v∗ ∈ Y∗, as established in [1].
These properties lay the groundwork for a deeper understanding of the behavior and
properties of the functional Φ in various mathematical and analytical contexts.

An element u0 ∈ X is considered an asymptotic fixed point of T : X → X if there
exists a sequence un ⊂ X with un ⇀ u0 such that limn→∞ ∥Tun − un∥ = 0. The set of
asymptotic fixed points is denoted as F̂(T). A map T is deemed relatively nonexpansive if
F̂(T) = F(T) ̸= ∅ and ϕ(u0, Tu) ≤ ϕ(u0, u), ∀u ∈ X, u0 ∈ F(T).
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Consider N(X) ̸= ∅ as a family of subsets of X, and CB(X) ̸= ∅ as a family of closed
bounded subsets of X. The Hausdorff metric, denoted as H(X1, X2), between X1 and X2,
where X1, X2 ∈ CB(X), is defined as

H(X1, X2) = max{ sup
u∈X1

d(u, X2), sup
v∈X2

d(v, X1)},

where d(u, X2) = inf{∥u− u0∥ : u0 ∈ X1}.
A map T : X → N(X) is nonexpansive if H(Tu1, Tu2) ≤ ∥u1 − u2∥. An element

u0 ∈ X is considered an asymptotic fixed point if there exists a sequence {un} ⊂ X such
that un ⇀ u0 and limn→∞ d(Tun, un) = 0.

A map T is said to be relatively nonexpansive if F̂ix(T) = Fix(T) ̸= ∅ and
ϕ(u0, s) ≤ ϕ(u0, v) for all v ∈ X, s ∈ Tv, and u0 ∈ F(T). It is worth noting that
Homaeipour et al. [25] provided a counterexample for a relatively nonexpansive multival-
ued mapping that is not nonexpansive. The concept of relative nonexpansiveness provides
a broader understanding of the behavior of multivalued mappings, encompassing cases
where traditional nonexpansiveness may not be applicable.

Relatively nonexpansive multivalued mappings in Banach spaces have applications in
various fields. Here are some examples:

(1) Fixed Point Theory: Relatively nonexpansive multivalued mappings are fundamental
in fixed point theory. They play a crucial role in proving the existence and uniqueness
of fixed points in Banach spaces.

(2) Projection Operators: Multivalued projection operators onto convex sets are examples
of relatively nonexpansive multivalued mappings. These operators find applications
in solving variational inequalities and convex optimization problems.

(3) Image Reconstruction: In medical imaging and signal processing, relatively nonex-
pansive multivalued mappings are applied to image reconstruction problems. They
help in preserving certain structures in the reconstructed images.

(4) Control Theory: In control theory, relatively nonexpansive multivalued mappings
are used to model and analyze the behavior of dynamic systems. They play a role in
stability analysis and controller design.

These applications highlight the versatility and importance of relatively nonexpansive
multivalued mappings in various mathematical and applied areas.

Definition 1. A map D : Y → Y∗ is characterized by the following properties:

(i) It is monotone if ⟨u1 − u2, Du1 − Du2⟩ ≥ 0, ∀u1, u2 ∈ Y;
(ii) It is σ-inverse strongly monotone (ism) if ∃ σ > 0, such that

⟨u1 − u2, Du1 − Du2⟩ ≥ σ∥Du1 − Du2∥2, ∀u1, u2 ∈ Y;

(iii) It is Lipschitz continuous if ∃ L > 0, such that ∥Du1 − Du2∥ ≤ L∥u1 − u2∥.

Lemma 1 ([36]). In a two-uniformly convex Banach space Y, for any x, y ∈ Y, the following
inequality is satisfied:

∥u − v∥ ≤ 2
c
∥Ju − Jv∥,

where 0 < c ≤ 1, and c is referred to as the two-uniformly convex constant of Y.

Lemma 2 ([37]). In a smooth and uniformly convex Banach space Y, consider two sequences
{un} and {vn} in Y, such that either {un} or {vn} is bounded. If lim

n→∞
ϕ(un, vn) = 0 then

lim
n→∞

∥un − vn∥ = 0.

Remark 1 ([37]). Certainly, when both sequences {un} and {vn} are bounded, the converse of
Lemma 2 holds as well.
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Lemma 3 ([18]). Consider a nonempty closed convex subset X of Y, a real Banach space, and D be
a monotone and hemicontinuous mapping from X into Y∗. Then, the solution set of the variational
inequality problem, denoted as VIP(X, D) or Sol(VIP(4)), is closed and convex.

Lemma 4 ([25]). Consider a strictly convex and smooth Banach space Y with a nonempty closed
convex subset X. Let T : X → CB(X) be a relatively nonexpansive multivalued mapping. Then,
the fixed point set Fix(T) is closed and convex.

Lemma 5 ([1]). In a reflexive, strictly convex, and smooth Banach space Y, consider a nonempty
closed convex subset X. Then, ∀u ∈ X and v ∈ Y, the inequality

ϕ(u, ΠXv) + ϕ(ΠXv, v) ≤ ϕ(u, v),

holds, where ΠX denotes the generalized projection onto X.

Lemma 6 ([1]). In a reflexive, strictly convex Banach space Y, with X being a nonempty closed con-
vex subset of a smooth Banach space Y, for any u ∈ Y and w ∈ X, the following equivalence holds:

w = ΠXu ⇐⇒ ⟨w − v, Ju − Jw⟩ ≥ 0, ∀v ∈ X.

Lemma 7 ([38]). For a nondecreasing sequence {cn} of real numbers that increases at infinity,
there exists a subsequence {cni} such that cni < cni+1 for all i ∈ N. Moreover, for a nondecreas-
ing sequence {mk} ⊂ N with mk → ∞ and mk = max{j ≤ k : cj ≤ cj+1}, the following
inequalities hold:

cmk ≤ cmk+1 , ck ≤ cmk+1 .

Lemma 8 ([20]). Let BR(0) be a closed ball of Y, a uniformly convex Banach space. Then,
∃ g : [0, ∞) → [0, ∞), a continuous strictly increasing convex function with g(0) = 0 such that

∥λ1u1 + λ2u2 + . . . + λN xN∥2 ≤
N

∑
i=1

λi∥ui∥2 − λiλjg(∥ui − uj∥), i, j = 0, 1, 2, . . . ,N,

where λi ∈ (0, 1) with
N
∑

i=1
λi = 1 and ui ∈ Br(0) = {u ∈ Y : ∥u∥ ≤ r}.

Lemma 9 ([39]). In the context of a p-uniformly convex Banach space E, the relationship between
metric and Bregman distance is characterized by the following inequalities:

πp|w− v|p ≤ Dp(w, v) ≤ ⟨w− v, Jp
E(w)− Jq

E(v)⟩, (8)

where πp is a fixed positive number. Additionally, using Young’s inequality for any q > 1 and
1
p + 1

q = 1, we can further establish

⟨Jp
E(w), v⟩ ≤ |Jp

E(w)||v| ≤ 1
q
|Jp

E(w)|q + 1
p
|v|p =

1
q
(|w|p−1)q +

1
p
|v|p =

1
q
|w|p + 1

p
|v|p. (9)

These relationships highlight the interplay between the metric and Bregman distance in the
specific setting of p-uniformly convex Banach spaces, providing valuable insights into the geometric
properties of these spaces.

Lemma 10 ([40]). Given a sequence of nonnegative real numbers {cn} satisfying the condition

cn+1 ≤ (1 − αn)cn + αnξn, n ≥ m, for some m ∈ N,

where αn ∈ (0, 1), ξn ∈ R, limn→∞ αn = 0, ∑∞
n=1 αn = ∞, and lim supn→∞ ξn ≤ 0, it follows

that limn→∞ cn = 0. This result is established under the specified conditions on the sequence and
provides insight into the convergence behavior of {cn}.
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Assumption 1 ([9]). The given assumptions on the function b : X × X → R are as follows:

(i) b is skew-symmetric, i.e., b(x, x)− b(x, z)− b(z, x) + b(z, z) ≥ 0, ∀ x, z ∈ X;
(ii) b is convex in the second argument;
(iii) b is continuous.

These conditions characterize the behavior of the function b with respect to skew
symmetry, convexity in the second argument, and continuity. The auxiliary problems
associated with the generalized mixed variational-like inequality problem (GMVLIP) (2)
are formulated as follows: find x ∈ X such that

h(z, x; x) +
1
τ
⟨z− x, Jx − Jz⟩+ b(x, z)− b(x, x) ≥ 0 ∀ z ∈ X, τ > 0. (10)

These auxiliary problems involve the function h(z, x; x), and they play a role in finding a
solution x that satisfies the conditions specified in the inequality (10).

The paragraph describes the assumptions and conditions for the auxiliary problems,
denoted as AP (10), associated with the generalized mixed variational-like inequality
problem (GMVLIP). The conditions for the existence of a solution to AP (10) are outlined
as follows:

Lemma 11 ([41]). Let X be a nonempty closed, convex, and bounded subset of a smooth strictly
convex and reflexive Banach space Y. The function b : X × X → R satisfies Assumption 1 (ii)–(iii)
and α : X × X → R is a bifunction. Additionally, h : X × X × X → R, w ∈ X, and τ > 0. The
following conditions are assumed:

(i) h(z, x; ·) is hemicontinuous;
(ii) h(·, x;w) is convex and lower semicontinuous;
(iii) h(x, z;w) + h(z, x;w) = 0;
(iv) h is generalized relaxed α-monotone, satisfying the inequality

h(z, x; z)− h(z, x; x) ≥ α(x, z),

where α : Y × Y → R such that

lim
t→0

α(x, tz+ (1 − t)x)
t

= 0;

(v) α(·, z) is lower semicontinuous.

Under these conditions, it is asserted that AP (10) has a solution.

The paragraph introduces a mapping Υr defined for a given x ∈ Y and τ > 0. The
mapping is defined as follows:

Υrx =
{
w ∈ X : h(z,w;w) +

1
τ
⟨z−w, Jw− Jx⟩+ b(w, z)− b(w,w) ≥ 0, ∀z ∈ X

}
. (11)

The paragraph indicates that the subsequent discussion will focus on examining certain
properties of the mapping Υr.

Lemma 12 ([41]). Consider a nonempty, closed, convex, and bounded subset X of a smooth, strictly
convex, and reflexive Banach space Y. Let h : X × X × X → R satisfy all the conditions outlined
in Lemma 11, and let b : X × X → R adhere to the assumptions of 1. Assume the mapping
Υτ : Y → X is defined as in (11). The ensuing properties can be established:

(i) Υτx is single-valued;
(ii) ⟨Υτx − Υτz, JΥτx − Jx⟩ ≤ ⟨Υτx − Υτz, JΥτz− Jz⟩;
(iii) Fix(Υτ) = Sol(GMVLIP(2)) is closed and convex;
(iv) ϕ(w, Υτx) + ϕ(Υτx, x) ≤ ϕ(w, x) for all w ∈ Fix(Υτ), x ∈ Y.
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3. Main Result

Theorem 1. Let Y denote a two-uniformly convex and uniformly smooth real Banach space
with dual space Y∗ and X be a nonempty closed convex subset of Y. Consider a trifunction
h : X × X × X → R adhering to the conditions of Lemma 11, featuring continuous h(z, .; z), and
a bifunction b : X × X → R satisfying Assumption 1. Let D : Y → Y∗ be a σ-ism mapping,
with σ ∈ (0, 1). Additionally, let Ti : X → CB(X), where i = 1, 2, 3, . . . ,N, form a finite
family of relatively nonexpansive multivalued mappings. Assume Λ := Sol(GMVLIP(2)) ∩
(∩N

i=1F(Ti)) ∩ Sol(VIP(4)) ̸= ∅ . Let the sequence {pn} be generated by following iterative

p0, p1 ∈ X,
tn = J−1(Jpn + αn(Jpn − Jpn−1)),
qn = ΠX J−1(Jtn − δnDtn),
sn = ΠX J−1(ζn Jtn + (1 − ζn)Jqn),
h(z, zn; zn) +

1
τn
⟨z− zn, Jzn − Jsn⟩+ b(zn, z)− b(zn, zn) ≥ 0, ∀z ∈ X,

pn+1 = J−1(µn,0 Jzn +
N
∑

i=1
µn,i Jvn,i), vn,i ∈ Tisn, n ≥ 1.


(12)

In the given conditions, where δn, αn ∈ (0, 1), τn ∈ (0, ∞), {ζn} ⊂ (0, 1) with lim
n→∞

ζn = 0,
∞
∑

n=1
ζn = ∞, and µn,i ∈ (0, 1) for i = 1, 2, 3, . . . ,N with

N
∑

j=0
µn,j = 1, along with ρn ∈ (0, 1)

satisfying ρn
2 < ζn. For any 0 < ρ, the following assumption is made:

αn =

{
min{ ρn

∥pn−pn−1∥
, ρ}, if pn ̸= pn−1,

ρ, else

}
.

Under these conditions, it can be concluded that the sequence {pn} converges strongly to x̂ ∈ Λ,
where x̂ = ΠΛp0.

Proof. Firstly, we demonstrate that the sequence {pn} is bounded. To establish this, we
take an arbitrary κ ∈ Λ. Then, we estimate, as follows, using Lemmas 5 and 6:

ϕ(κ, qn) = ϕ(κ, ΠX J−1(Jtn − δnDtn)

≤ ϕ(κ, J−1(Jtn − δnDtn)

= Φ(κ, Jtn − δnDtn)

≤ Φ(κ, Jtn)− 2δn⟨(Jtn − δnDtn)− κ, Dtn⟩
= ϕ(κ, tn)− 2δn⟨tn − q, Dtn⟩ − 2δn⟨J−1(Jtn − δnDtn)− tn, Dtn⟩
= ϕ(κ, tn)− 2δn⟨tn − q, Dtn − Dκ⟩ − 2δn⟨J−1(Jtn − δnDtn)− tn, Dtn⟩
≤ ϕ(κ, tn)− 2δnσ∥Dtn∥2 + 2δn∥J−1(Jtn − δnDtn)− J−1 Jtn∥∥Dtn∥

≤ ϕ(κ, tn)− 2δnσ∥Dtn∥2 + 4
δ2

n
c2 ∥Dtn∥2

= ϕ(κ, tn)− 2δn(σ − 2ηn

c2 )∥Dtn∥2. (13)

Since ηn < c2σ
2 , therefore

ϕ(κ, qn) ≤ ϕ(κ, tn). (14)
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By applying Lemma 12, we compute

ϕ(κ, pn) = ϕ(κ, ΠX J−1(ζn Jtn + (1 − ζn)Jqn))

≤ ϕ(κ, J−1(ζn Jtn + (1 − ζn)Jqn))

= ∥κ∥2 − 2⟨κ, ζn Jtn + (1 − ζn)Jqn⟩+ ∥ζn Jtn + (1 − ζn)Jqn∥2

≤ ∥κ∥2 − 2ζn⟨κ, Jtn⟩ − 2(1 − ζn)⟨κ, Jqn⟩+ ζn∥tn∥2 + (1 − ζn)∥qn∥2

≤ ζnϕ(κ, tn) + (1 − ζn)ϕ(κ, qn). (15)

By applying (14) and (15), we get

ϕ(κ, sn) ≤ ζnϕ(κ, tn) + (1 − ζn)ϕ(κ, tn) = ϕ(κ, tn). (16)

Next, we estimate

ϕ(κ, pn+1) = ϕ(κ, J−1(µn,0 Jzn +
N

∑
i=1

µn,i Jvn,i)

≤ µn,0ϕ(κ, zn) +
N

∑
i=1

µn,iϕ(κ, vn,i)

≤ µn,0ϕ(κ, Υτnsn) +
N

∑
i=1

µn,iϕ(κ, vn,i)

≤ µn,0ϕ(κ, sn) + (1 − µn,0)ϕ(κ, sn)

≤ ϕ(κ, sn). (17)

Given that tn = J−1(Jpn + αn(Jpn − Jpn − 1)), we proceed to estimate this expression by
employing Lemma 9, as follows:

⟨tn − κ, Jtn − Jpn⟩ ≤ ∥tn − κ∥∥Jtn − Jpn∥
= αn∥Jpn − Jpn−1∥∥tn − pn∥

≤ αn∥Jpn − Jpn−1∥[
1
2
∥zn − pn∥2 +

1
2
]

≤ αn

2
∥Jpn − Jpn−1∥[2(∥pn − tn∥2 + ∥pn − κ∥2)] +

αn

2
∥Jpn − Jpn−1∥

≤ αn

2
∥Jpn − Jpn−1∥(ϕ(pn, tn) + ϕ(pn, q)) +

αn

2
∥Jpn − Jpn−1∥

≤ ρn

2
(ϕ(pn, tn) + ϕ(pn, κ)) +

ρn

2
, where ρn = αn∥Jpn − Jpn−1∥. (18)

Using the property (L3) of ϕ, we get

ϕ(κ, tn) = ϕ(κ, pn)− ϕ(tn, pn) + ⟨κ − tn, Jtn − Jpn⟩. (19)

Combining (18) and (19), we get

ϕ(κ, tn) ≤ (1 +
λn

2
)ϕ(κ, pn)− (1 − ρn

2
)ϕ(pn, tn) +

ρn

2

≤ (1 + ζn)ϕ(κ, pn)− (1 − ζn)ϕ(pn, tn) + ζn, take
æn

2
< ın

≤ (1 + ζn)ϕ(κ, pn) + ζn. (20)

By implementing (14), (17), (20), and applying induction, we obtain

ϕ(κ, pn+1) ≤ (1 + ζn)ϕ(κ, pn) + ζn

≤ . . .

≤ max{ϕ(κ, pN)}, ∀n ≥ N.
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Indeed, this implies that {pn} is bounded. Consequently, {tn}, {qn}, {sn}, and {zn} are
also bounded.

Next, we demonstrate that κ ∈ Λ and pn → κ. Let ϱn = J−1(ζn Jtn + (1 − ζn)Jqn). For
any κ ∈ Λ and using (7), we compute

ϕ(κ, sn) ≤ ϕ(κ, ϱn) = Φ(κ, Jϱn)

≤ Φ(κ, Jϱn − ζn(Jtn − Jκ))− 2⟨ϱn − κ,−ζn(Jtn − Jκ)⟩
= ϕ(κ, J−1(ζn Jκ + (1 − ζn)Jqn)) + 2ζn⟨ϱn − κ, Jtn − Jκ⟩
≤ (1 − ζn)ϕ(κ, qn) + 2ζn⟨ϱn − κ, Jtn − Jκ⟩
≤ (1 − ζn)ϕ(κ, tn) + 2ζn⟨ϱn − κ, Jtn − Jκ⟩. (21)

By utilizing Lemmas 8 and 12, the fact that Ti is relatively nonexpansive, and (21), we obtain

ϕ(κ, pn+1) = ϕ(κ, J−1(µn,0 Jzn +
N
∑
i=1

µn,i Jvn,i))

≤ µn,0ϕ(κ, zn) +
N
∑
i=1

µn,iϕ(κ, vn,i)− µn,0µn,ig(∥Jzn − Jvn,i∥)

= µn,0ϕ(κ, Ψrnsn) +
N
∑
i=1

µn,iϕ(κ, vn,i)− µn,0µn,ig(∥Jzn − Jvn,i∥)

≤ µn,0(ϕ(κ, sn)− ϕ(sn, vn)) + (1 − µn,0)ϕ(κ, sn)− µn,0µn,ig(∥Jzn − Jvn,i∥)
≤ (1 − ζn)ϕ(κ, tn) + 2ζn⟨ϱn − κ, Jtn − Jκ⟩ − µn,0ϕ(sn, zn)

−µn,0µn,ig(∥Jzn − Jvn,i∥)
≤ (1 − ζ2

n)ϕ(κ, pn)− (1 − ζn)
2ϕ(sn, tn) + ζn(1 − ζn) + 2ζn⟨ϱn − κ, Jtn − Jκ⟩

−µn,0ϕ(sn, zn)− µn,0µn,ig(∥Jzn − Jvn,i∥), (22)

and thus,

ϕ(κ, pn+1) ≤ (1 − ζ2
n)ϕ(κ, tn) + 2ζn⟨ϱn − κ, Jtn − Jκ⟩+ ζn(1 − ζn). (23)

Now, we consider two cases:
Case 1. Assume that for some m0 ∈ N, ϕ(κ, pn) is monotonically nonincreasing for all

n ≥ m0, and since ϕ(κ, pn) is bounded, it must be convergent. Therefore, by utilizing (22), it
follows that ϕ(pn, tn) → 0 and ϕ(sn, zn) → 0 as n → ∞. Additionally, employing Lemma 2,
we can further deduce

lim
n→∞

∥pn − tn∥ = 0 and lim
n→∞

∥sn − zn∥ = 0. (24)

Also, by implementing (22), µn,0µn,ig(∥Jzn − Jvn,i∥) → 0 as n → ∞, which yields that
∥Jzn − Jvn,i∥ → 0, and thus, by using uniform continuity of J−1, we have

lim
n→∞

∥zn − vn,i∥ = 0, for each i = 1, 2, . . . ,N. (25)

Using (15) and (13), we get

ϕ(κ, sn) ≤ ζnϕ(κ, tn) + (1 − ζn)ϕ(κ, qn)

≤ ϕ(κ, tn)− 2δn(σ − 2δn

c2 )∥Dtn∥2,

which yields that

2δn(σ − 2δn

c2 )∥Dtn∥2 ≤ ϕ(κ, tn)− ϕ(κ, sn). (26)
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Since lim inf
n→∞

(1 − ζn) > 0, δn(σ − 2δn
c2 ) > 0, therefore

lim
n→∞

∥Dtn∥ = 0. (27)

Using (7) and Lemma 1, we get

ϕ(tn, qn) = ϕ(tn, ΠX J−1(Jtn − δnDtn))

≤ ϕ(tn, J−1(Jtn − δnDtn))

≤ Φ(tn, (Jtn − δnDtn))

≤ Φ(tn, (Jtn − δnDtn) + δnDtn)− 2⟨J−1(Jtn − δnDtn)− tn, δnDtn⟩
= ϕ(tn, tn) + 2⟨J−1(Jtn − δnDtn)− tn,−δnDtn⟩
= 2δn⟨J−1(Jtn − δnDtn)− tn,−Dtn⟩
≤ ∥J−1(Jtn − δnDtn)− J−1 Jtn∥

≤ 4
c2 δ2

n∥Dtn∥2, (28)

and by applying (27), we get
lim

n→∞
ϕ(tn, qn) = 0. (29)

According to Lemma 2,
tn − qn → 0 as n → ∞. (30)

Applying Lemmas 5 and 6, we compute

ϕ(tn, sn) = ϕ(tn, ΠXϱn) ≤ ϕ(tn, ϱn)

= ϕ(tn, J−1(ζn Jtn + (1 − ζn)Jqn))

≤ ζnϕ(tn, tn) + (1 − ζn)ϕ(tn, qn) → 0 as n → ∞, (31)

which implies that
tn − sn → 0, tn − ϱn → 0, as n → ∞. (32)

Thus, for each i = 1, 2, . . . ,N, we have

d(sn − Tisn) ≤ ∥sn − vn,i∥ ≤ ∥sn − zn∥+ ∥zn − vn,i∥ → 0, as n → ∞. (33)

Assume {ϱni} is a subsequence of {ϱn} with ϱni ⇀ ϱ and sup
n→∞

⟨ϱn − κ, Jtn − Jκ⟩ = lim
i→∞

⟨ϱni −

κ, Jtni − Jκ⟩. Thus, by applying (30), (32), and the concept of J, we get

sni , zni ⇀ ϱ, Jsn − Jzn → 0, as n → ∞. (34)

Next, we show that κ ∈ Sol(VIP(4)). Applying the concept of σ-ism mapping of D,
and by implementing (27) and (24), we obtain lim

n→∞
pn = κ and κ ∈ D−1(0). Hence,

κ ∈ Sol(VIP(4)).
Further, we show that κ ∈ Sol(GMVLIP(2)), as zn = Υτnsn. Therefore,

h(y, zni ; zni ) + b(y, zni )− b(zni , zni ) +
1

τni

⟨y− zni , Jzni − Jsni ⟩ ≥ 0, ∀y ∈ X. (35)

Using (34) and lim infn→∞ τni > 0, we have

lim
n→∞

∥Jsni − Jzni∥
τni

= 0. (36)



Symmetry 2024, 16, 139 13 of 19

By the concept of generalized relaxed α-monotonicity of h and (35), we have

∥y− zni∥
∥Jzni − Jsni∥

τni

≥ 1
τni

⟨y− zni , Jzni − Jsni ⟩

≥ −h(y, zni ; zni ) + b(zni , zni )− b(zni , y)

≥ α(zni , y)− h(y, zni ; y)

+ b(zni , zni )− b(zni , y).

Through the lower semicontinuity of α in the first argument, continuity of h in the second
argument, continuity of b, τn ≥ ϵ, and (36), we obtain

α(κ, y)− h(y, κ; y) + b(κ, κ)− b(κ, y) ≤ 0 ∀ y ∈ X.

Let ys = (1 − s)κ + sy, ∀s ∈ (0, 1]. Since y, κ ∈ X, we get ys ∈ X, and hence,

αi(κ, ys)− h(ys, κ; ys) + b(κ, κ)− b(κ, ys) ≤ 0,

which implies that

α(κ, ys) ≤ h(ys, κ; ys)− b(κ, κ) + b(κ, ys)

≤ sh(y, κ; y) + (1 − s)h(κ, κ; ys)− b(κ, κ) + sb(κ, y) + (1 − s)b(κ, κ)

≤ s[h(y, κ; ys) + b(κ, y)− b(κ, κ)].

Since h(y, κ; ·) is hemicontinuous, we have

lim
s→0

{h(y, κ; ys) + b(κ, y)− b(κ, κ)} ≥ lim
s→0

α(κ, ys)

s
,

which implies
h(y, κ; κ) + b(κ, y)− b(κ, κ) ≥ 0.

Hence, κ ∈ Sol(GMVLIP(2)). Thus, κ ∈ Γ.
Further, we show that κ ∈ ∩N

i=1F(Ti). Using (32), (34), and the concept of T, we get
κ ∈ F(Ti), which yields that κ ∈ ∩N

i=1F(Ti), ∀i = 1, 2, 3, . . . ,N. Hence, κ ∈ Λ. By applying
Lemma 6, we get sup

n→∞
⟨ϱn − x̂, Jtn − Jx̂⟩ = lim

i→∞
⟨ϱni − x̂, Jtni − Jx̂⟩ ≤ 0. Thus, according to

Lemma 10 and (23), ϕ(pn, x̂) → 0 as n → ∞. Further, using Lemma 2, we observe that
x̂ = ΠΛp0.

Case 2. Assume {ϕ(κ, pn)} is not monotonically decreasing. Then, there exists a
subsequence {pni} of {pn} with ϕ(κ, pni ) < ϕ(κ, pni+1), for each i = 1, 2, . . . ,N. By applying
Lemma 7, there exists a nondecreasing sequence {mj} ⊂ N with mj → ∞, ϕ(κ, pmj) ≤
ϕ(κ, pmj+1) and ϕ(κ, pj) ≤ ϕ(κ, pmj+1), for j ∈ N. Using (22), we get

(1 − ζmj)
2ϕ(pmj , tmj) + µmj ,0ϕ(smj , zmj) + µmj ,0µmj ,ig(∥Jzmj − Jvmj ,i∥)

≤ (1 − ζ2
mj
)ϕ(x̂, pmj)− ϕ(x̂, pmj+1) + ζmj(1 − ζmj)

+2ζmj⟨ϱmj − x̂, Jtmj − Jx̂⟩.

Using similar arguments to those of case 1, we have for each i = 1, 2, . . . ,N, pmj − tmj → 0,
zmj − vmj ,i → 0 and zmj − vmj ,i → 0 as j → ∞.

Thus,
lim sup

j→∞
⟨ϱmj − x̂, Jtmj − Jx̂⟩ ≤ 0. (37)

Using (23), we obtain

ϕ(x̂, pmj+1) ≤ (1 − ζ2
n)ϕ(x̂, pmj) + 2ζmj⟨ϱmj − x̂, Jtmj − Jx̂⟩+ ςmj(1 − ζmj). (38)
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Since ϕ(x̂, pmj) ≤ ϕ(x̂, pmj+1), for each j ∈ N; therefore, from (37) and (38), we have
ϕ(x̂, pmj) → 0 and ϕ(x̂, pmj+1) → 0 as j → ∞. Also, ϕ(x̂, pj) ≤ ϕ(x̂, pmj+1), for each j ∈ N;
therefore, pj → x̂ as j → ∞. Thus, based on the above two cases, we observe that the
sequence {pn} converges strongly to x̂ = ΠΛp0.

Building upon the results established in Theorem 1, we derive several corollaries that
extend the applicability and significance of the proposed iterative approach. These corol-
laries encapsulate key insights obtained from the main theorem, providing a structured
overview of its broader implications. Moreover, they pave the way for the exploration and
application of the presented iterative scheme across various mathematical and computa-
tional domains.

If we specialize Theorem 1 by considering the case where N = 1, a pertinent corollary
unfolds. This focused examination serves to enhance our understanding of the iterative
process and its relevance in singular cases.

Corollary 1. In a real Banach space Y, assumed to be two-uniformly convex and uniformly
smooth with the dual space Y, consider a trifunction h : X × X × X → R adhering to the
conditions of Lemma 11, featuring continuous h(z, .; z), and a bifunction b : X × X → R satisfying
Assumption 1. Let D : Y → Y∗ be a σ-ism mapping, with σ ∈ (0, 1). Additionally, let T : X →
CB(X) be a relatively nonexpansive multivalued mapping. Assume the nonempty intersection
Λ := Sol(GMVLIP(2)) ∩ F(T) ∩ Sol(VIP(4)) is not empty. Then, the sequence {pn} generated
by (12) converges strongly to x̂ ∈ Λ, where x̂ = ΠΛp0.

Continuing in the same vein, we delve into additional implications and consequences
stemming from the conditions outlined in Theorem 1, particularly when h and b are
explicitly assumed to be zero.

Corollary 2. In a real Banach space Y, assumed to be two-uniformly convex and uniformly smooth
with the dual space Y∗. Let D : Y → Y∗ be a σ-ism mapping, with σ ∈ (0, 1). Additionally,
let Ti : X → CB(X), where i = 1, 2, 3, . . . ,N, form a finite family of relatively nonexpansive
multivalued mappings. Assume the nonempty intersection Λ := (∩N

i=1F(Ti)) ∩ Sol(VIP(4))
is not empty. Then, the sequence {pn} generated by (12) converges strongly to x̂ ∈ Λ, where
x̂ = ΠΛp0.

Remark 2. If Y is a Hilbert space denoted as H, then the dual space Y∗ coincides with H, and the
mapping J becomes the identity operator I. The function ϕ(u, v) can be expressed as ∥u − v∥2 for
all u, v ∈ Y, with c representing the two-uniformly convex constant of Y. Additionally, the operator
ΠX corresponds to the metric projection PX onto the convex set X. Notably, in the context of
Hilbert spaces, the concept of a relatively nonexpansive mapping aligns with that of a nonexpansive
mapping. These simplifications emerge from the inherent properties and structures of Hilbert spaces,
facilitating a more straightforward interpretation of various operations and concepts.

Verification: Let us consider the Hilbert space R2 with the standard Euclidean inner
product. The Riesz representation theorem tells us that the dual space of R2 is isomorphic
to R2 itself.

Now, let us take a specific vector in R2, say v = (3, 4). According to the Riesz
representation theorem, the corresponding linear functional in the dual space is given by
Lv(u) = ⟨v, u⟩, where u is any vector in R2.

Now, let us normalize Lv by dividing it by its norm. The norm of Lv is ∥Lv∥ = ∥v∥ = 5
(the Euclidean norm of v). So, the normalized dual functional is 1

5 Lv.
For any vector u = (a, b) in R2, the normalized dual functional evaluates to

1
5

Lv(u) =
1
5
⟨v, u⟩ = 1

5
(3a + 4b)

.
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Now, let us consider this normalized dual functional in the context of the Hilbert space.
If we take a vector u′ =

(
3
5 , 4

5

)
, the inner product ⟨v, u′⟩ is equal to 3 · 3

5 + 4 · 4
5 = 25

5 = 5.

This value is exactly the same as the evaluation of the normalized dual functional on u′.
So, in this numerical example, normalizing the dual functional Lv yields a correspond-

ing vector in the Hilbert space, illustrating the concept of the normalized duality mapping
as an identity mapping in this context.

4. Numerical Example

Example 1. Consider the real space Y = R and the closed convex subset X = [0, 5]. For any
p, t ∈ R, define the functions h(p, t; t) = (p − t)(p + 2t), α(t, p) = (p − t)2, and b(p, t) = pt.
Let D be a 1

2 -ism mapping, specifically D(p) = 2p, and T(p) = [0, p
7 ]. It is evident that h and b

satisfy Assumption 1. Moreover, F(T) = 0, and for any t ∈ Tp, it holds that ϕ(0, t) = ∥0 − t∥2 ≤
∥0 − p∥2 = ϕ(0, p).

Let q ∈ F̂(T). Then, there exists a sequence {pn} with pn ⇀ κ and d(pn, Tpn) =
6
7∥pn∥ →

0 as n → ∞. This implies that pn → 0, and consequently, κ = 0. Therefore, F̂(T) = F(T) = 0,
signifying that T is relatively nonexpansive. Since zn = Υτnsn, therefore, for any w ∈ X

h(w, zn; zn) +
1
τn

⟨w− zn, zn − sn⟩+ b(zn,w)− b(zn, zn) ≥ 0

(w− zn)(w+ 2zn) +
1
τn

(w− zn)(zn − sn) + znw− z2
n ≥ 0

τnw
2 + (2τnzn + zn − sn)w+ (−3τnz

2
n + znsn − z2

n) ≥ 0. (39)

Assume F(w) = τnw
2 + (2τnzn + zn − sn)w + (−3τnz

2
n + znsn − z2

n), which is a quadratic
relation in w and its discriminant is

d = (2τnzn + zn − sn)
2 − 4τn(−3τnz

2
n + znsn − z2

n)

= 16τ2
nz

2
n + 8τnz

2
n − 8τnsnzn + z2

n − 2snzn + s2
n

= (16τ2
n + 8τn + 1)z2

n − 2sn(4τn + 1)zn + s2
n

= ((4τn + 1)zn − sn)
2, (40)

which is a complete square. This means that Υτn(sn) = zn is single-valued. Thus, zn = sn
4τn+1 .

Note that in this scenario, the parameters are chosen as τn = { 1
4}, δn = { 9

10n}, ζn = { 2
5n},

ρn = { 1
5(n+1)} and µn,0 = { 1

2(n+1)}. For each i = 1, 2, 3, . . . ,N, vn,i ∈ [0, sn
7i ]. Choose

αn =

{
min{ 1

5(n+1)∥pn−pn−1∥
, 0.1}, if pn ̸= pn−1,

0.1, else

}
.

Then, the sequence {pn}, originated by (12), converges to x̂ = {0} ∈ Θ.

To compute and compare the results, MATLAB R2015(a) was utilized. The same initial
points (p0, p1) were used for both the proposed algorithm and Mainge’s algorithm, while
for Homaeipur et al., only p1 was employed. The stopping criterion for the computation
was set as |pn+1 − pn| < 10−10. The computed and compared results are presented in
Tables 1 and 2 and Figures 1 and 2, respectively.

Table 1. Numerical observations corresponding to the initial point (p0, p1) = (0.01, 0.17).

No. of Iterations Proposed Alg. Mainge [29] Alg. Homaeipur et al. [25] Alg.
Values Values Values

1 0.0147709091 0.0856800000 0.0728571429

2 0.0007829978 0.0433112323 0.0353877551

3 0.0000349538 0.0226280674 0.0180549771

4 0.0000012800 0.0120395998 0.0094573690
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Table 1. Cont.

No. of Iterations Proposed Alg. Mainge [29] Alg. Homaeipur et al. [25] Alg.
Values Values Values

5 0.0000000395 0.0064811845 0.0050357419

6 0.0000000011 0.0035180150 0.0027115533

7 0.0000000000 0.0019215299 0.0014719861

8 0.0000000000 0.0010546570 0.0008040260

9 0.0000000000 0.0005811334 0.0004413075

10 0.0000000000 0.0003212466 0.0002431694
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Figure 1. Producing a plot to visually depict the numerical insights outlined in Table 1 [25,29].

Table 2. Numerical observations corresponding to the initial point (p0, p1) = (1, 1.49).

No. of Iterations Proposed Alg. Mainge [29] Alg. Homaeipur et al. [25] Alg.
Values Values Values

1 0.1574807792 0.7475142857 0.6385714286

2 0.0027451052 0.3501328535 0.3101632653

3 0.0000725096 0.1782331851 0.1582465639

4 0.0000026469 0.0942740184 0.0828910573

5 0.0000000816 0.0506574971 0.0441367967

6 0.0000000022 0.0274787080 0.0237659675

7 0.0000000001 0.0150047930 0.0129015252

8 0.0000000000 0.0082346591 0.0070470516

9 0.0000000000 0.0045372127 0.0038679306

10 0.0000000000 0.0025080862 0.0021313087
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Figure 2. Producing a plot to visually depict the numerical insights outlined in Table 2 [25,29].

5. Conclusions

In summary, our investigation has led to several notable discoveries. The algorithm
proposed in this study demonstrates robust convergence within the context of a two-
uniformly convex and uniformly smooth real Banach space, featuring a relatively nonex-
pansive multivalued mapping. The theoretical results find support in numerical experi-
ments conducted using Matlab R2015(a). Comparative analyses with existing algorithms,
including those by Homaeipour et al. and Mainge, were performed under consistent
conditions. The results, detailed in Tables 1 and 2 and Figures 1 and 2, underscore the
effectiveness of our approach in terms of convergence behavior. These findings contribute
valuable insights to ongoing research in optimization algorithms, highlighting the potential
applicability of the proposed method in diverse contexts.
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