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Abstract: In recent years, many new metrics highly correlated with the Mean Opinion Score (MOS)
have been proposed for assessing image quality through Full-Reference Image Quality Assessment
(FR-IQA) methods, such as MDSI, HPSI, and GMSD. Eight of these selected metrics, which compare
reference and distorted images in a symmetrical manner, are briefly described in this article, and their
performance is evaluated using correlation criteria (PLCC, SROCC, and KROCC), as well as RMSE.
The aim of this paper is to develop a new, efficient quality index based on a combination of several
high-performance metrics already utilized in the field of Image Quality Assessment (IQA). The study
was conducted on four benchmark image databases (TID2008, TID2013, KADID-10k, and PIPAL)
and identified the three best-performing metrics for each database. The paper introduces a New
Combined Metric (NCM), which is a weighted sum of three component metrics, and demonstrates its
superiority over each of its component metrics across all the examined databases. An optimization
method for determining the weights of the NCM is also presented. Additionally, an alternative
version of the combined metric, based on the fastest metrics and employing symmetric calculations
for pairs of compared images, is discussed. This version also demonstrates strong performance.

Keywords: image quality assessment; quality metrics; combined metrics; image databases; mean
opinion scores

1. Introduction

Every day, a huge number of digital cameras generate a vast stream of images. Due
to the multitude of applications of imaging devices in areas such as vision-based quality
control of components in manufacturing processes, security monitoring, object detection
systems in automotive applications, and analysis of diagnostic images in medicine, there
has been a strong increase in the demand for Image Quality Assessment (IQA) methods.

Image quality can be assessed either subjectively or objectively. Subjective methods
rely on the perceptual evaluation of image quality by human observers, which means that
conducting these assessments incurs significant financial costs and requires a large number
of participants. In contrast, objective methods utilize mathematical models to determine
the values of various metrics related to image quality. Among Image Quality Assessment
(IQA) methods, the most advanced are those that perform a symmetrical comparison
between distorted images and their originals, referred to as Full-Reference IQA (FR-IQA)
techniques. The scores generated by each IQA metric can be evaluated against subjective
assessments, such as the Mean Opinion Score (MOS) or the Difference Mean Opinion Score
(DMOS), derived from human viewers. For FR-IQA methods, the correlation coefficients
obtained from comparisons with MOS indicate the effectiveness of the metric: the higher
the coefficient, the more closely the metric aligns with human perception. For many years,
efforts have been made in the field of FR-IQA to improve and refine existing quality metrics.
Significant importance is attached to attempts to combine one metric with other quality
measures to increase the correlation of the resulting quality index with MOS. Meanwhile,
the rapid development of machine-learning and deep-learning techniques provides new
methods for image quality assessment. The FR-IQA problem can be understood as a
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challenge in developing mathematical models that can perceptually assess the image
quality in alignment with human judgment.

Over the years, numerous metrics for FR-IQA have been proposed that take various
aspects of the Human Visual System (HVS) into account. Recently, attempts have been
made to enhance the effectiveness of FR-IQA by combining existing metrics to create
a “super” index. Theoretical foundations for such metric fusion can be found in Liu’s
work [1], where it is applied to very old and classical metrics such as PSNR, VSNR, SSIM,
and VIF. In the paper by Okarma [2], the properties of three FR-IQA metrics (MS-SSIM,
VIF, and R-SVD) were analyzed, and a combined quality metric based on their product
was proposed. It is named the Combined Quality Metric (CQM), and its three correlation
coefficients increased in relation to the correlation coefficients with MOS of individual
product multipliers.

Later, this concept was further developed using optimization or regression tech-
niques to determine the optimal weights or exponents in the products of existing FR-IQA
indices [3,4]. The Combined Image Similarity Index (CISI) proposed by Okarma in [3]
employs metrics similar to those used in the CQM. However, instead of the R-SVD metric,
it utilizes the FSIMc metric. The CISI index demonstrates a higher correlation with Mean
Opinion Score (MOS) compared to the CQM index. In the 2013 article by Okarma [4], a new
EHIS metric is introduced, which is based on the product of four multipliers: two familiar
from CQM (MS-SSIM and VIF) and two new ones (WFSIMc and RFSIM). This approach
improves the correlation with MOS over the combined CISI metric.

Another metrics fusion strategy was proposed by the author of [5], who presented
several versions of a linear combination (weighted sum) based on metrics selected from a
dozen FR-IQA metrics. He referred to these new combined metrics as Linearly Combined
Similarity Measures (LCSIM). The use of linear combination metrics requires determining
the weighting factors for the FR-IQA metrics, which is achieved by solving the RMSE error
minimization task using a genetic algorithm.

Another line of work in creating methods based on the fusion of metrics utilizes
machine-learning techniques. One example can be seen in [6], where the results of six
traditional FR-IQA metrics (FSIMc, PSNR-HMA, PSNR-HVS, SFF, SR-SIM, and VIF) were
used as a feature vector for training and testing a four-layer neural network. The output
results produced by the neural network demonstrate a significant improvement over those
achieved by the input metrics. Currently, deep neural networks, particularly CNNs, can
learn the best combinations of metrics to optimize image quality assessment [7,8].

Combining metrics leads to increased computational complexity, which can be an
issue in the context of real-time applications. Nevertheless, the fusion of quality metrics for
FR-IQA is a promising research direction that could significantly improve the correlation of
objective quality assessments with MOS.

In this paper, we consider a new combined metric for FR-IQA, based on metrics that
are highly correlated with MOS and well-known from the literature. The structure of this
paper is as follows: following the introduction, Section 2 provides an overview of eight
relatively new and promising FR-IQA metrics. Section 3 presents their linear combination,
along with the experimental results. Finally, Section 4 concludes the paper.

2. Overview of Highly Correlated FR-IQA Metrics
2.1. Feature SIMilarity Index FSIMc (Color Version)

In [9], the Feature SIMilarity Index (FSIM) was introduced as a quality assessment
metric for grayscale images, along with its color version, FSIMc. The local quality of the
assessed image, f2, when symmetrically compared to the reference image, f1, is represented
by two low-level similarity maps derived from phase congruences (PC1, PC2) [10]:

SPCpx, yq “
2PC1px, yq ¨ PC2px, yq ` T1

PC2
1px, yq ` PC2

2px, yq ` T1
, (1)
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and gradient magnitudes (G1, G2):

SGpx, yq “
2G1px, yq ¨ G2px, yq ` T2

G2
1px, yq ` G2

2px, yq ` T2
, (2)

where G1 and G2 are Scharr gradient operators and T1 and T2 are positive constants
introduced to enhance the stability of the formulas. Phase Congruence (PC) quantifies the
presence and intensity of local features, including edges, corners, and textures. It is derived
from the analysis of phase information in the frequency domain of the image (specifically,
the phase of its Fourier transform). As an additional weighting factor for the similarity
maps, the following PCm is used:

PCmpx, yq “ maxpPC1px, yq, PC2px, yqq. (3)

The final expression for the proposed image quality index is given by:

FSIM “

ř

px,yqPΩ SPCpx, yq ¨ SGpx, yq ¨ PCmpx, yq
ř

px,yqPΩ PCmpx, yq
. (4)

FSIMc, the color extension of FSIM, incorporates the chrominance components I and
Q. The calculation of the index values starts by decomposing the compared images, f1 and
f2, into their YIQ color components, where Y represents luminance and I and Q represent
chrominance. Similar to the earlier defined similarity maps, additional similarity maps for
the I and Q components were introduced:

SIpx, yq “
2I1px, yq ¨ I2px, yq ` T3

I2
1 px, yq ` I2

2 px, yq ` T3
, (5)

SQpx, yq “
2Q1px, yq ¨ Q2px, yq ` T4

Q2
1px, yq ` Q2

2px, yq ` T4
, (6)

where T3 and T4 are positive constants. The overall chrominance similarity map is given by:

SCpx, yq “ SIpx, yq ¨ SQpx, yq. (7)

The inclusion of chromatic components in the FSIM index results in the following version
of the formula for color images:

FSIMc “

ř

px,yqPΩ SPCpx, yq ¨ SGpx, yq ¨ rSCpx, yqsλ ¨ PCmpx, yq
ř

px,yqPΩ PCmpx, yq
, (8)

where the positive value of the λ exponent highlights the significance of chrominance
in the color image quality assessment process. For subsequent studies utilizing FSIMc,
the following parameter values were employed, as specified in [9]: T1 “ 0.85, T2 “ 160,
T3 “ T4 “ 200, and λ “ 0.03.

2.2. Mean Deviation Similarity Index MDSI

Many IQA metrics work as follows: they determine local distortions in the images,
build similarity maps, and implement a pooling strategy based on the mean, weighted
mean, standard deviation, etc. An example of this approach to IQA index modeling
is the Mean Deviation Similarity Index (MDSI), described in [11]. The calculation of
MDSI starts with converting the RGB color space components of the input images to a
luminance component:

L “ 0.2989R ` 0.5870G ` 0.1140B (9)
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and two chromaticity components:

„

H
M

ȷ

“

„

0.30 0.04 ´0.35
0.34 ´0.6 0.17

ȷ

»

–

R
G
B

fi

fl. (10)

This index is derived from the calculation of gradient similarity (GS) for structural distor-
tions and chromaticity similarity (CS) for color distortions. The local structural similarity
map is typically computed using gradient values. Traditionally, structural similarity maps
are obtained by calculating the gradient values separately for the original and distorted
images. The traditional approach for the MDSI metric has been improved by integrating
the gradient value map, which combines the luminance channel values from both images:

f “ 0.5pLr ` Ldq, (11)

where f represents the fused luminance image, r is the reference image, and d refers to the
distorted image. The formulas for the proposed structural similarity are given below:

GSr f pxq “
2GrpxqG f pxq ` C2

G2
r pxq ` G2

f pxq ` C2
, (12)

GSd f pxq “
2GdpxqG f pxq ` C2

G2
dpxq ` G2

f pxq ` C2
, (13)

xGSpxq “ GSpxq ` rGSd f pxq ´ GSr f pxqs. (14)

The gradient magnitude is calculated using the simple Prewitt operator. Additionally,
the authors of the MDSI index have adjusted the method for evaluating local chromaticity
similarity. In contrast to the previously discussed IQA metrics, such as FSIM or VSI,
which assess chromaticity separately for the two chrominance components, this approach
combines them in a different way. In the case of MDSI, it was suggested to calculate the color
similarity for both chrominance components simultaneously, using the following formula:

xCSpxq “
2pHrpxqHdpxq ` MrpxqMdpxqq ` C3

H2
r pxq ` H2

dpxq ` Mrpxq2 ` Mdpxq2 ` C3
, (15)

where C3 is a constant introduced for numerical stability. The joint color similarity map,
xCSpxq, is then combined with the xGSpxq map using a weighted mean:

zGCSpxq “ α xGSpxq ` p1 ´ αq xCSpxq, (16)

where α determines the relative importance of the similarity maps xGSpxq and xCSpxq. The fi-
nal step involves converting the resulting zGCS map into an MDSI score through a pooling
strategy based on a specific deviation method:

MDSI “

«

1
N

N
ÿ

i“1

|zGCS
1{4
i ´ p

1
N

N
ÿ

i“1

|zGCS
1{4
i q|

ff1{4

. (17)

The original article [11] provides suggestions for selecting various parameters that influence
the performance of the MDSI index.

2.3. Haar Wavelet Perceptual Similarity Index HPSI

The Haar Wavelet-based Perceptual Similarity Index (HPSI) [12] is a relatively novel
and computationally efficient similarity metric for FR-IQA. HPSI uses coefficients obtained



Symmetry 2024, 16, 1622 5 of 21

from Haar wavelet decomposition for assessing local similarities between two images. The
one-dimensional Haar filters are given by:

h1D
1 “

1
?

2
¨ r1, 1s, (18)

g1D
1 “

1
?

2
¨ r´1, 1s, (19)

where h1D
1 represents the low-pass scaling filter and g1D

1 refers to the corresponding high-
pass wavelet filter. For any scale, j P N, two-dimensional Haar filters can be constructed
as follows:

gp1q

j “ g1D
1 b h1D

1 , (20)

gp2q

j “ h1D
1 b g1D

1 , (21)

where the symbol b denotes the outer product, and the one-dimensional filters h1D
j and

g1D
j for j ą 1 are defined as:

g1D
j “ h1D

1 ˚ pg1D
j´1qÒ2, (22)

h1D
j “ h1D

1 ˚ ph1D
j´1qÒ2, (23)

where Ò 2 is the dyadic upsampling operator and ˚ denotes the one-dimensional con-
volution operator. To effectively predict the perceptual similarity perceived by human
viewers, it may be beneficial to apply an additional nonlinear mapping to the local similari-
ties derived from the high-frequency Haar wavelet filter responses. This nonlinearity is
represented by a logistic function, defined with a parameter α ą 0, as follows:

lαpxq “
1

1 ` e´αx . (24)

For two grayscale images, f1 and f2, the local similarity measure employed to calculate
the HPSI is derived from the first two steps of the two-dimensional discrete Haar wavelet
transform, as expressed by the following formula:

HSpkq

f1, f2
rxs “ lαp

1
2

2
ÿ

j“1

Sp|pgpkq

j ˚ f1qrxs|, |pgpkq

j ˚ f2qrxs|, Cqq, (25)

where C ą 0, k P t1, 2u selects either horizontal or vertical Haar wavelet filters, S denotes
the similarity measure, and ˚ is the two-dimensional convolution operator. Similar to
FSIMc, HPSI also applies a specific weighting map, which is derived here from the response
of a single low-frequency Haar wavelet filter:

Wpkq

f rxs “ |pgpkq

3 ˚ f qrxs|, (26)

where k P t1, 2u again differentiates between horizontal and vertical filters. The final
expression for the HPSI for grayscale images f1 and f2 is provided as a weighted average
of the local similarity map, HSpkq

f1, f2
:

HPSI f1, f2 “ l´1
α

´

ř

x

2
ř

k“1
HSpkq

f1, f2
rxs ¨ Wpkq

f1, f2
rxs

ř

x

2
ř

k“1
Wpkq

f1, f2
rxs

¯2
, (27)

where:
Wpkq

f1, f2
rxs “ maxpWpkq

f1
rxs, Wpkq

f2
rxsq. (28)
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HPSI can be extended for color images in the YIQ color space using a third local similarity
map based on the chrominance components I and Q. This map, HSp3q

f1, f2
, is defined as:

HSp3q

f1, f2
rxs “ lαp

1
2

pSp|pm ˚ f I
1 qrxs|, |pm ˚ f I

2 qrxs|, Cq ` Sp|pm ˚ f Q
1 qrxs|, |pm ˚ f Q

2 qrxs|, Cqqq, (29)

where m is a 2 ˆ 2 mean filter and then:

Wp3q

f Y
1 , f Y

2
rxs “

1
2

pWp1q

f Y
1 , f Y

2
rxs ` Wp2q

f Y
1 , f Y

2
rxsq. (30)

The final form of the HPSI for color images is defined as follows:

HPSIc f1, f2 “ l´1
α

´

ř

x

3
ř

k“1
HSpkq

f1, f2
rxs ¨ Wpkq

f Y
1 , f Y

2
rxs

ř

x

3
ř

k“1
Wpkq

f Y
1 , f Y

2
rxs

¯2
. (31)

The fast computation time of the HPSI may explain its high usefulness in various tasks.

2.4. Visual Saliency with Color Appearance and Gradient Similarity Index VCGS

The VCGS index [13] uses color space CIELAB and combines three feature similarity
maps: visual salience with color appearance similarity map, SVC, gradient similarity map,
SG, and chrominance similarity map, SC. The first of these maps is calculated using a
formula based on visual saliency with color appearance (VC) for both images:

SVC “
2VC1 ¨ VC2 ` KVC

VC2
1 ` VC2

2 ` KVC
, (32)

where KVC is a small constant that controls the numerical stability of the formula. The
gradient similarity map using the Scharr operator applied to the L component is calculated
according to the formula:

SG “
2G1 ¨ G2 ` KG

G2
1 ` G2

2 ` KG
, (33)

where KG is a small constant that controls the numerical stability of the formula. The third
map measures the similarity of the a˚ and b˚ chrominance components in the CIELAB
color space and is given by the formula:

SC “
2a1 ¨ a2 ` KC

a2
1 ` a2

2 ` KC
¨

2b1 ¨ b2 ` KC

b2
1 ` b2

2 ` KC
, (34)

where KC is a small constant that controls the numerical stability of the formula. The final
form of the VCGS metric is given by the following formula:

VCGS “

ř

Ω
SVC ¨ pSGq

α
¨ pSCq

λ
¨ VCm

ř

Ω
VCm

, (35)

where Ω is the spatial domain, VCm “ maxpVC1, VC2q is used to weight the relevance
of two maps in overall similarity, and α and λ represent the relative importance of the
similarity maps depending on where they occur.

2.5. SuperPixel SIMilarity Index SPSIM

Superpixel-based SIMilarity (SPSIM) [14] utilizes superpixel segmentation for feature
extraction. Superpixels are clusters of neighboring pixels that share similar characteristics,
such as color, intensity, or structure. This pixel grouping results in a mosaic consisting of a
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significantly smaller number of superpixels, which facilitates faster subsequent processing.
A key advantage of using superpixel-based segmentation over other oversegmentation
algorithms is the ability to predefine the number of generated superpixels. Additionally,
superpixel segmentation improves the distinction of perceptually significant regions in
the image. Among the various superpixel generation algorithms, we can distinguish
between graph-based, gradient-based, clustering-based, and watershed-based methods,
among others [15]. The shape and size of superpixels depend on the applied algorithm,
with each pixel belonging to exactly one superpixel. These algorithms control the number
and properties of the superpixels, such as compactness and minimum size. One of the
most popular and efficient algorithms for superpixel segmentation is the k-means-based
Simple Linear Iterative Clustering (SLIC) algorithm [16]. This algorithm is notable for
producing superpixels with a consistent shape and size. A key benefit of SLIC is that
segmentation only requires specifying the desired number of superpixels in the output
image. Consequently, the SLIC algorithm is used in the SPSIM quality index discussed in
this paper. For each superpixel, the algorithm calculates the mean CIELAB color values and
the Local Binary Pattern (LBP) features. Superpixels are initially generated on the reference
image and then applied to both the reference and distorted images.

The SPSIM index calculation algorithm relies on pixel gradient similarity and luminance-
chrominance superpixel similarity. The YUV color space, rather than RGB, is utilized for
SPSIM computation, where Y represents luminance and U and V denote chrominance
components. If si is used to represent a superpixel containing pixel i, the following formulas
can be written for luminance Li and luminance similarity MLpiq:

Li “
1

|si|

ÿ

jPsi

Ypjq, MLpiq “
2LrpiqLdpiq ` T1

L2
r piq ` L2

dpiq ` T1
, (36)

where Ypjq represents the luminance of pixel j and Lrpiq and Ldpiq denote the average
luminance values for superpixel si in the reference and distorted images, respectively. T1 is
a positive constant introduced to prevent instability in the equation. Similar expressions
can be formulated for both the U and V chrominance components:

Ui “
1

|si|

ÿ

jPsi

Upjq, MUpiq “
2UrpiqUdpiq ` T1

U2
r piq ` U2

dpiq ` T1
, (37)

Vi “
1

|si|

ÿ

jPsi

Vpjq, MUpiq “
2VrpiqVdpiq ` T1

V2
r piq ` V2

d piq ` T1
. (38)

The chrominance similarity, MC, can then be calculated as shown below:

MCpiq “ MUpiqMVpiq. (39)

The gradient similarity, MG, is described by the following formula:

MGpiq “
2GrpiqGdpiq ` T2

G2
r piq ` G2

dpiq ` T2
, (40)

where the gradient magnitude, G, is composed of two components calculated using a simple
Prewitt operator, and T1 and T2 are constants selected by the authors of the algorithm to
account for contrast-related errors. Further information on the determination of T1 and
T2 can be found in [14]. The formula for calculating the similarity of superpixel i in both
images is as follows:

Mpiq “ MGpiqrMLpiqs
αeβpMCpiq´1q, (41)

where the parameters α and β represent the weights for the luminance and chrominance
components, respectively. Finally, the SPSIM index is calculated as a weighted sum of Mpiq
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and the corresponding weights, which are determined based on the texture complexity
(TC), described by the standard deviation (std) and kurtosis (Kurt) of the superpixels:

TCrpiq “
stdpSrpiqq

KurtrSrpiqs ` 3
, TCdpiq “

stdpSdpiqq

KurtrSdpiqs ` 3
, (42)

wpiq “ expp0.05 ¨ abspTCdpiq ´ TCrpiqqq, (43)

SPSIM “

řN
i“1 Mpiqwpiq
řN

i“1 wpiq
, (44)

where Srpiq and Sdpiq are, respectively, the superpixels in the reference and distorted images
that contain the i-th pixel.

2.6. Local Global Variation Index LGV and Saliency Weighted Local Global Variation Index SWLGV

Varga [17] introduced new quality indices that utilize both gradients in the image and
Grünwald–Letnikov fractional derivatives. While gradients capture local variations within
the image, fractional derivatives describe global variations, represented by the flowing
global similarity map:

SGpx, yq “
2 ¨ GLDαRpx, yq ¨ GLDαDpx, yq ` c1

`

GLDαRpx, yq
˘2

`
`

GLDαDpx, yq
˘2

` c1
, (45)

where Rpx, yq is the reference image, Dpx, yq is the distorted image, GLDα is the α-order
Grünwald–Letnikov fractional derivative, and c1 is a constant number that provides nu-
merical stability. The order of the fractional derivative was set to α “ 0.6. The 3 ˆ 3 Scharr
operator was used to compute the gradients for the local gradient map, SLpx, yq:

SLpx, yq “
2 ¨ GRpx, yq ¨ GDpx, yq ` c2

G2
Rpx, yq ` G2

Dpx, yq ` c2
, (46)

where c2 is a constant that ensures numerical stability. The similarity map between the two
compared images was calculated using the two previously defined gradient maps and the
exponential coefficient λ “ 0.7:

Spx, yq “ pSGpx, yqqλ ¨ pSLpx, yqq1´λ. (47)

Finally, the similarity map obtained is fused with the saliency map. This index is referred
to as the Local Global Variation (LGV):

LGV “
1

M ¨ N

M
ÿ

x“1

N
ÿ

y“1

Spx, yq, (48)

where M ¨ N is the resolution of images.
The SWLGV index, in contrast to LGV, also incorporates the mechanism of visual

saliency. It emphasizes the differences between the reference and distorted images in the
most distinctive regions. By labeling the maps of the distinguishing regions as SMRpx, yq

for the reference image and SMDpx, yq for the distorted image, we can create a formula for
the image pair:

SMpx, yq “ maxpSMRpx, yq, SMDpx, yqq, (49)

where SMRpx, yq and SMDpx, yq are visual saliency maps built as proposed in [18]. The
SWLGV index is defined as the weighted average of Spx, yq and SMpx, yq, where SMpx, yq

represents the weights:
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SWLGV “

M
ř

i“1

N
ř

j“1
SMpx, yq ¨ Spx, yq

M
ř

i“1

N
ř

j“1
SMpx, yq

. (50)

2.7. Gradient Magnitude Similarity Deviation Index GMSD

GMSD [19] is a relatively simple metric, which is based on a gradient similarity map
and uses a 3 ˆ 3 Prewitt filter. The magnitudes of the gradients of images r and d at position
i, denoted by mrpiq and mdpiq, are calculated as follows:

mrpiq “

b

pr b hxq2piq ` pr b hyq2piq, (51)

mdpiq “

b

pd b hxq2piq ` pd b hyq2piq, (52)

where b denotes a convolution operation. The magnitude gradient similarity map, GMSpiq,
is then calculated as follows:

GMSpiq “
2mrpiqmdpiq ` c

m2
r piq ` m2

dpiq ` c
, (53)

where c is a constant number that provides numerical stability. The formulas above
demonstrate a symmetrical approach to both referenced and distorted images. The average
gradient value from the GMSpiq map was then determined as:

GMSM “
1
N

N
ÿ

i“1

GMSpiq, (54)

where N is a number of pixels in image. Finally, the GMSD index is defined by the formula:

GMSD “

g

f

f

e

1
N

N
ÿ

i“1

pGMSpiq ´ GMSMq2. (55)

2.8. Evaluation Criteria for IQA

Individual IQA metrics are commonly compared with the subjective ratings of specific
images. To assess the linearity, monotonicity, and accuracy of these predictions, four
criteria are used: the Pearson Linear Correlation Coefficient (PLCC), the Spearman Rank
Order Correlation Coefficient (SROCC), the Kendall Rank Order Correlation Coefficient
(KROCC), and the Root Mean Squared Error (RMSE). The formulas for these comparisons
are provided below:

PLCC “

řN
i“1ppi ´ pqpsi ´ sq

b

řN
i“1ppi ´ pq2psi ´ sq2

, (56)

where pi and si represent the raw values of the subjective and objective measures, respec-
tively, and p and s are the mean values of the subjective and objective measures.

Spearman Rank Order Correlation Coefficient is given by the formula:

SROCC “ 1 ´
6

řN
i“1 d2

i
NpN2 ´ 1q

, (57)

where di represents the difference between the ranks of both measures for the i-th observa-
tion and N is the total number of observations.
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Kendall Rank Order Correlation Coefficient (KROCC) is provided by the formula:

KROCC “
Nc ´ Nd

0.5pN ´ 1qN
, (58)

where Nc and Nd denote the counts of concordant and discordant pairs.
Root Mean Squared Error (RMSE) is given by the following equation:

RMSE “

g

f

f

e

1
N

N
ÿ

i“1

ppi ´ siq
2 , (59)

where pi and si are defined as above.
The above correlation coefficients are useful tools for objectively assessing the agree-

ment between IQA computational models and subjective MOS assessments. However,
they capture specific aspects of this relationship, such as linearity in the case of PLCC
or monotonicity in the cases of SROCC and KROCC. SROCC and KROCC are suitable for
scenarios where the relationship between variables is nonlinear, with KROCC offering high
robustness to small changes in the data. RMSE, on the other hand, is a measure of error
primarily used to evaluate the accuracy of a model’s predictions. Unlike PLCC, SROCC,
and KROCC, it is not a measure of correlation, and its role is fundamentally different. RMSE
quantifies the average distance between predicted and actual values. It is sensitive to the
magnitude of errors because the differences are squared before averaging, meaning that larger
deviations have a disproportionate impact on the final value. High RMSE values indicate
poor agreement between predicted and actual values, but RMSE does not provide information
about the type of relationship (e.g., whether it is monotonic, linear, or otherwise).

As recommended in [20], a nonlinear mapping was applied to calculate PLCC and
RMSE. This process involves the use of a fitting function, usually a logistic function with
five beta parameters, β1, β2, β3, β4, β5, to better represent the relationship between predicted
performance, x, and MOS.

ppx, βq “ β1p
1
2

´
1

1 ` exppβ2px ´ β3qq
q ` β4x ` β5. (60)

3. The New Combined Metric (NCM) and Its Experimental Research

The New Combined Metric (NCM):

NCM “ α ¨ M1 ` β ¨ M2 ` γ ¨ M3, (61)

where M1, M2, and M3 are the selected FR-IQA metrics for given dataset and α, β, and γ
are the optimized weights.

3.1. Selected IQA Databases

Four benchmark databases, TID2008 [21], TID2013 [22], KADID-10k [23], and PI-
PAL [24], were chosen for the research. These databases are distinguished by a large set
of reference images, diverse distortion types, and varying levels of their presence in the
images. For each image in the databases, Mean Opinion Scores (MOSs) are experimentally
gathered by collecting assessments from multiple human observers.

The TID2008 image database consists of 1700 distorted images, generated using 17 dif-
ferent distortion types, each applied at four levels to 25 reference images (Figure 1). MOS
was provided based on the work of 838 human observers and 256,428 comparisons. All
images have a resolution of 512 ˆ 384 pixels.

The TID2013 image database is an updated and expanded version of TID2008. It
retains the same set of reference images (Figure 1), but the number of distortion types
has been increased to 24, and the distortion levels have been raised to five. The database
includes 3000 distorted digital images. Additionally, the size of the research group from
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which the average subjective ratings were derived has been enlarged. MOS ratings were
collected from 524,340 comparisons made by 971 observers. The image resolution re-
mains unchanged.

Figure 1. Reference images of the TID2008 and TID2013 databases [21].

Online crowdsourcing for image assessment has enabled the creation of larger databases.
One such large database, KADID-10k (Konstanz Artificially Distorted Image Quality
Database) [23], contains 10,125 digital images with subjective quality scores (MOSs). It
was developed and published by 2209 crowd workers. This database includes a limited
selection of reference images (81) (Figure 2), a restricted number of artificial distortion types
(25), and five levels for each distortion type. Recently, KADID-10k has become widely
used for deep-learning models for image quality assessment [25]. The artificial distortions
present in the KADID-10k database include spatial distortions, noise, blurs, and more.
The image resolution remains unchanged.

PIPAL is a large IQA dataset, first introduced in 2020 by [24], that increased the number
of reference images to 250. In fact, these are 288 ˆ 288 fragments from images in the DIV2K
and Flickr2K high-resolution image collections (Figure 3), with distortion types increased to
40 and distorted images increased to 29,000, and it contains 1,130,000 human ratings. In this
image database, the Elo rating system was used to assign the Mean Opinion Scores (MOSs).
Currently, the PIPAL dataset is used in many challenges as a benchmark for IQA algorithms.

The key information regarding the selected IQA benchmark databases is presented in
Table 1.

Table 1. Comparison of the selected IQA databases.

No. of No. of No. of Dist.
Database Year Ref. Dist. Environment Images

TID2008 2008 25 17 lab 1700
TID2013 2013 25 24 lab 3000
KADID-10k 2019 81 25 crowdsourcing 10,125
PIPAL 2020 250 40 crowdsourcing 29,000
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Figure 2. Reference images of the KADID-10k database [23].

Figure 3. Examples of reference images from the PIPAL database [24].
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3.2. Experimental Tests

The experimental study began with the determination of the PLCC, SROCC, and
KROCC correlation coefficients, and RMSE values for eight selected highly correlated
metrics. The results of these tests for the four study datasets are included in Table 2.
The three highest correlation coefficients and the three lowest RMSE values are shown in
different colors (the best results in red, the second results in green, and the third results
in blue).

The three correlation coefficients and the RMSE value were aggregated into one score.
A point scale with values from 1 to 8 was adopted, where the highest points were awarded
to the highest correlation coefficients and the lowest RMSE values. This ranking is shown
in Table 3, where the point values for each dataset are also summarized in the columns.
The number of points determined the three component metrics for each dataset. The three
highest scores are highlighted in bold.

The three metrics selected from the table served as the components M1, M2, and M3
for the linear combination that determines the New Combined Metric, as defined in
Formula (61).

Determining the NCM value requires calculating the α, β, and γ weights present in
this formula. These weights are optimized in the Matlab environment using the f mincon
function. In the optimization task, the PLCC linear correlation coefficient is maximized.
The obtained values of the weights for each dataset are given in Table 4. Based on these
weights and component metrics, the values of the combined NCM metric were determined.
The results are shown in Table 5. The results for the three component metrics are shown
in red, while green is used for the best score achieved by the combined NCM metric in
each case.

Table 2. Values of correlation coefficients and RMSE for FR-IQA metrics.

Database Metric FSIMc [9] MDSI [11] HPSI [12] VCGS [13] SPSIM [14] LGV [17] SWLGV [17] GMSD [19]

TID2008

PLCC 0.876 0.916 0.907 0.878 0.893 0.865 0.874 0.879
SROCC 0.884 0.921 0.910 0.897 0.910 0.881 0.889 0.891
KROCC 0.699 0.751 0.737 0.717 0.730 0.696 0.711 0.709
RMSE 0.647 0.538 0.566 0.643 0.605 0.674 0.652 0.640

TID2013

PLCC 0.877 0.909 0.893 0.900 0.909 0.778 0.797 0.855
SROCC 0.851 0.890 0.873 0.893 0.904 0.807 0.807 0.804
KROCC 0.667 0.712 0.692 0.717 0.725 0.638 0.641 0.634
RMSE 0.596 0.518 0.557 0.541 0.517 0.779 0.749 0.642

KADID-10k

PLCC 0.851 0.864 0.885 0.868 0.874 0.815 0.835 0.805
SROCC 0.854 0.885 0.885 0.871 0.874 0.820 0.840 0.847
KROCC 0.665 0.702 0.699 0.683 0.687 0.630 0.655 0.664
RMSE 0.568 0.544 0.505 0.538 0.525 0.627 0.595 0.643

PIPAL

PLCC 0.615 0.598 0.641 0.554 0.578 0.529 0.543 0.629
SROCC 0.589 0.585 0.589 0.534 0.562 0.519 0.536 0.583
KROCC 0.416 0.408 0.417 0.370 0.391 0.359 0.372 0.414
RMSE 0.104 0.106 0.101 0.110 0.108 0.112 0.111 0.103

In order to visualize the good quality of the proposed NCM index, scatter plots of the
proposed eight metrics and the NCM for the tested bases are shown in Figures 4–7. The
scatter plots and their fitted curves show that the proposed combined NCM metric closely
matches the MOS estimates for each of the databases.

A study of computation times for the considered FR-IQA metrics was also conducted.
The average computation times for each of the databases are shown in Table 6. The
three fastest metrics are highlighted in bold. The NCM computation time, which is not
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included in Table 6, is approximately equal to the sum of the computation times of its
component metrics.

Table 3. Ranking of FR-IQA metrics.

Database Metric FSIMc [9] MDSI [11] HPSI [12] VCGS [13] SPSIM [14] LGV [17] SWLGV [17] GMSD [19]

TID2008

PLCC 3 8 7 4 6 1 2 5
SROCC 2 8 6 5 7 1 3 4
KROCC 2 8 7 5 6 1 4 3
RMSE 3 8 7 4 6 1 2 5

TOTAL 10 32 27 18 25 4 11 17

TID2013

PLCC 4 7 5 6 8 1 2 3
SROCC 4 6 5 7 8 3 2 1
KROCC 4 6 5 7 8 2 3 1
RMSE 4 7 5 6 8 1 2 3

TOTAL 16 26 20 26 32 7 9 8

KADID-10k

PLCC 4 5 8 6 7 2 3 1
SROCC 4 8 7 5 6 1 2 3
KROCC 4 8 7 5 6 1 2 3
RMSE 4 5 8 6 7 2 3 1

TOTAL 16 26 30 22 26 6 10 8

PIPAL

PLCC 6 5 8 3 4 1 2 7
SROCC 8 6 7 2 4 1 3 5
KROCC 7 5 8 2 4 1 3 6
RMSE 6 5 8 3 4 1 2 7

TOTAL 27 21 31 10 16 4 10 25

Table 4. Optimized weight values for the NCM metric.

Criterion: Three Best Three Fast
Database Weight Value Metrics Value Metrics

TID2008
α 0.578 MDSI [11] 0.618 MDSI [11]
β 0.285 HPSI [12] 0.372 HPSI [12]
γ 0.136 SPSIM [14] 0.010 GMSD [19]

TID2013
α 0.459 MDSI [11] 0.680 MDSI [11]
β 0.086 VCGS [13] 0.310 HPSI [12]
γ 0.455 SPSIM [14] 0.010 GMSD [19]

KADID-10k
α 0.386 MDSI [11] 0.342 MDSI [11]
β 0.404 HPSI [12] 0.486 HPSI [12]
γ 0.210 SPSIM [14] 0.172 GMSD [19]

PIPAL
α 0.320 FSIMc [9] 0.317 MDSI [11]
β 0.507 HPSI [12] 0.584 HPSI [12]
γ 0.174 GMSD [19] 0.099 GMSD [19]
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Table 5. Results of NCM metric for the three best component metrics.

Db. Met. FSIMc [9] MDSI [11] HPSI [12] VCGS [13] SPSIM [14] LGV [17] SWLGV [17] GMSD [19] NCM M1, M2, M3

TID2008 PLCC 0.876 0.916 0.907 0.878 0.893 0.865 0.874 0.879 0.924 SPSIM [14]
SROCC 0.884 0.921 0.910 0.897 0.910 0.881 0.889 0.891 0.924 MDSI [11]
KROCC 0.699 0.751 0.737 0.717 0.730 0.696 0.711 0.709 0.759 HPSI [12]
RMSE 0.647 0.538 0.566 0.643 0.605 0.674 0.652 0.640 0.514

TID2013 PLCC 0.877 0.909 0.893 0.900 0.909 0.778 0.797 0.855 0.922 SPSIM [14]
SROCC 0.851 0.890 0.873 0.893 0.904 0.807 0.807 0.804 0.906 MDSI [11]
KROCC 0.667 0.712 0.692 0.717 0.725 0.638 0.641 0.634 0.732 VCGS [13]
RMSE 0.596 0.518 0.557 0.541 0.517 0.779 0.749 0.642 0.481

KADID-10k PLCC 0.851 0.864 0.885 0.868 0.874 0.815 0.835 0.805 0.896 SPSIM [14]
SROCC 0.854 0.885 0.885 0.871 0.874 0.820 0.840 0.847 0.897 MDSI [11]
KROCC 0.665 0.702 0.699 0.683 0.687 0.630 0.655 0.664 0.717 HPSI [12]
RMSE 0.568 0.544 0.505 0.538 0.525 0.627 0.595 0.643 0.480

PIPAL PLCC 0.615 0.598 0.641 0.554 0.577 0.529 0.543 0.629 0.653 GMSD [19]
SROCC 0.589 0.585 0.589 0.534 0.562 0.519 0.536 0.583 0.608 FSIMc [9]
KROCC 0.416 0.408 0.417 0.370 0.391 0.359 0.372 0.414 0.432 HPSI [12]
RMSE 0.104 0.106 0.101 0.110 0.108 0.112 0.111 0.103 0.100

Figure 4. Scatter plots of subjective MOS against IQA metrics obtained from the TID2008 database.
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Table 6. Computation times (s) for IQA metrics.

Database FSIMc [9] MDSI [11] HPSI [12] VCGS [13] SPSIM [14] LGV [17] SWLGV [17] GMSD [19]

TID2008 0.089 0.014 0.028 0.212 0.128 0.435 5.986 0.019
TID2013 0.104 0.016 0.037 0.214 0.113 0.339 6.130 0.019
KADID-10k 0.136 0.026 0.046 0.299 0.143 0.451 5.890 0.028
PIPAL 0.172 0.011 0.012 0.091 0.176 0.619 2.628 0.009

Figure 5. Scatter plots of subjective MOS against IQA metrics obtained from the TID2013 database.

For the three fastest FR-IQA metrics highlighted in red (see Table 7), a linear combi-
nation was formed by redetermining the optimal α, β, and γ weights (see Table 5) from
the perspective of PLCC maximization. The resulting NCM metric using the three fastest
metrics achieved the best performance, as marked in green in Table 7 .

The study was conducted in the MATLAB R2024a programming environment on a
computer with the specifications provided in Table 8.
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Figure 6. Scatter plots of subjective MOS against IQA metrics obtained from the KADID-10k database.

Table 7. Results of the NCM metric for the three fastest component metrics.

Db. Met. FSIMc [9] MDSI [11] HPSI [12] VCGS [13] SPSIM [14] LGV [17] SWLGV [17] GMSD [19] NCM M1, M2, M3

TID2008 PLCC 0.876 0.916 0.907 0.878 0.893 0.865 0.874 0.879 0.922 GMSD
SROCC 0.884 0.921 0.910 0.897 0.910 0.881 0.889 0.891 0.923 MDSI
KROCC 0.699 0.751 0.737 0.717 0.730 0.696 0.711 0.709 0.757 HPSI
RMSE 0.647 0.538 0.566 0.643 0.605 0.674 0.652 0.640 0.519

TID2013 PLCC 0.877 0.909 0.893 0.900 0.909 0.778 0.797 0.855 0.912 GMSD
SROCC 0.851 0.890 0.873 0.893 0.904 0.807 0.807 0.804 0.892 MDSI
KROCC 0.667 0.712 0.692 0.717 0.725 0.638 0.641 0.634 0.716 HPSI
RMSE 0.596 0.518 0.557 0.541 0.517 0.779 0.749 0.642 0.508

KADID-10k PLCC 0.851 0.864 0.885 0.868 0.874 0.815 0.835 0.805 0.897 GMSD
SROCC 0.854 0.885 0.885 0.871 0.874 0.820 0.840 0.847 0.897 MDSI
KROCC 0.665 0.702 0.699 0.683 0.687 0.630 0.655 0.664 0.719 HPSI
RMSE 0.568 0.544 0.505 0.538 0.525 0.627 0.595 0.643 0.479

PIPAL PLCC 0.615 0.598 0.641 0.554 0.577 0.529 0.543 0.629 0.655 GMSD
SROCC 0.589 0.585 0.589 0.534 0.562 0.519 0.536 0.583 0.608 MDSI
KROCC 0.416 0.408 0.417 0.370 0.391 0.359 0.372 0.414 0.432 HPSI
RMSE 0.104 0.106 0.101 0.110 0.108 0.112 0.111 0.103 0.100
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Table 8. Parameters of desktop computer used for experiments.

Processor Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz (4 cores)
RAM 32 GB
OS Windows 10
Env. Matlab 2024a

The best results obtained using the NCM were additionally compared with those of
other combined metrics presented in the literature [26,27]. The comparison is highlighted
in bold in Table 9. The authors of [26] used combined metrics (MFMOGP3, MFMOGP4)
based on the additive combination of component metrics, ranging from 8 to 10 metrics.
In [27], combined metrics (OFIQA) based on the product form, involving between 4 and
17 factor-metrics, were proposed. For Table 9, we selected the best results from both of the
above-mentioned works. For the TID2008 database, the results are comparable, while for
the TID2013 database the proposed NCM index achieves the highest correlation coefficients.
We conducted the comparison on the TID2008 and TID2013 databases, as both older works
on combined metrics did not consider newer databases (KADID-10k, PIPAL).

Figure 7. Scatter plots of subjective MOS against IQA metrics obtained from the PIPAL database.
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Table 9. Comparison of the proposed NCM metric with other combined metrics.

Database Metric MFMOGP3 [26] MFMOGP4 [26] OFIQA [27] NCM

TID2008 PLCC 0.925 0.902 0.910 0.922
SROCC 0.923 0.911 0.915 0.923
KROCC 0.757 0.727 0.738 0.757
RMSE 0.511 0.580 0.557 0.519

TID2013 PLCC 0.883 0.914 0.906 0.922
SROCC 0.868 0.902 0.890 0.923
KROCC 0.688 0.725 0.713 0.757
RMSE 0.581 0.503 0.526 0.519

4. Conclusions

From the existing literature on FR-IQA metrics, it is evident that there is no single
metric that significantly outperforms the others. Therefore, the idea of creating a linear or
nonlinear combination of several top metrics has emerged. The proposed approach opted
for an additive combination of the three metrics with the highest correlation coefficients
and the lowest RMSE. The resulting combined NCM metric was based on component
metrics that depended on the selected database. NCM achieved the best results among all
tested metrics across all tested databases. In addition, a case was examined where the three
fastest metrics, i.e., MDSI, HPSI, and GMSD, were selected as components. The combined
metric obtained in this case also achieved the best results compared to all the tested metrics.
Potential extensions of the proposed approach include replacing the linear combination
of metrics to their nonlinear combination, exploring alternative methods for optimizing
weight selection, and more.
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Abbreviations
The following abbreviations are used in this manuscript:

IQA Image Quality Assessment
FR-IQA Full-Reference Image Quality Assessment
MOS Mean Opinion Score
FSIMc Feature SIMilarity (color version)
MDSI Mean Deviation Similarity Index
HPSI Haar wavelet Perceptual Similarity Index
VCGS Visual saliency with Color appearance and Gradient Similarity
SPSIM SuperPixel SIMilarity
LGV Local Global Variation
SWLGV Saliency Weighted Local Global Variation
GMSD Gradient Magnitude Similarity Deviation
NCM New Combined Metric
PSNR Peak Signal-to-Noise Ratio
VSNR Visual Signal-to-Noise Ratio
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VIF Visual Information Fidelity index
MS-SSIM Multi Scale Structural SIMilarity index
PLCC Pearson Linear Correlation Coefficient
SROCC Spearman Rank Order Correlation Coefficient
KROCC Kendall Rank Order Correlation Coefficient
RMSE Root Mean Squared Error
SVD Singular Value Decomposition
HVS Human Visual System
DMOS Differential Mean Opinion Score
TID Tampere Image Database
KADID-10k Konstanz Artificially Distorted Image quality Database
PIPAL Perceptual Image Processing ALgorithms database
WFSIMc Weighted FSIM (color version) index
RFSIM Riesz-transform-based Feature SIMilarity index
CQM Combined Quality Metric
CISI Combined Image Similarity Index
LCSIM Linearly Combined Similarity Measures
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