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Abstract: Neutrino flavor oscillations and conversion in an interacting background (MSW effects)
may reveal the charge-parity violation in the next generation of neutrino experiments. The usual
approach for studying these effects is to numerically integrate the Schrödinger equation, recovering
the neutrino mixing matrix and its parameters from the solution. This work suggests using the
classical Jacobi’s diagonalization in combination with a reordering procedure to produce a new
algorithm, the Sequential Jacobi Diagonalization. This strategy separates linear algebra operations
from numerical integration, allowing physicists to study how the oscillation parameters are affected
by adiabatic MSW effects in a more efficient way. The mixing matrices at every point of a given
parameter space can be stored for speeding up other calculations such as model fitting and Monte
Carlo productions. This approach has two major computation advantages, namely, being trivially
parallelizable, making it a suitable choice for concurrent computation, and allowing for quasi-model-
independent solutions which simplify Beyond Standard Model searches.

Keywords: numerical methods; Jacobi diagonalization; neutrino oscillations; MSW effect;
BSM searches

1. Introduction

Neutrino flavor oscillations in the presence of matter are described by a continuously
varying, finite-dimension set of Schrödinger equations along a propagation path, in what is
known as the Mikheyev–Smirnov–Wolfenstein (MSW) effect [1,2]. The varying nature of
such backgrounds prevents any practical case from being solved analytically, with numeri-
cal methods being the only option. Although these computations by themselves are not
intensive, the problem scales in complexity when dealing with any sort of model fitting
or any situation requiring the system to be solved for a large number of configurations.
Moreover, knowing the values of the oscillation parameters, mixing angles and mass dif-
ferences as a function of a model’s parameter space gives valuable insights into neutrino
physics itself. In order to map the oscillation parameters, the solutions are used to find the
eigenvalues and eigenvectors of the mixing matrix, which adds a second numerical task
to the computational load. This second step has an inherent complication: by definition,
linear algebra algorithms are agnostic to eigenvalues and eigenvector ordering. In fact,
the output of a numerical diagonalization algorithm has unpredictable ordering, form-
ing what is known as Newton’s Fractal [3]. However, this ordering has implications for
neutrino physics. The Pontecorvo—Maki—Nakagawa—Sakata (PMNS) parametrization
assumes a mass/flavor ordering when defining the mixing matrix in vacuum, and this
ordering has to be known when matter effects are present in order to properly recover the
oscillation parameters. This work makes the case for the use of Jacobi’s diagonalization
algorithm [4–6], which finds both the set of eigenvalues and eigenvectors at the same time.
This is accomplished by swapping the diagonalizing with the integration steps, finding the
eigenvectors before solving the Schrödinger equation. This allows us to find the correct
ordering of its eigenvalues by a simple comparison to neighbors, maintaining the PMNS
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parametrization which connects the matter-affected oscillation parameters to their vacuum
counterparts. By storing the eigenvectors in a look-up table (LUT), the strategies proposed
here can trivially offload the computation of fitting and mapping tasks. This procedure is
particularly advantageous for exploring exotic matter backgrounds and flavor-changing
Beyond Standard Model (BSM) interactions, which are common avenues of study in the
neutrino research field. Since future experiments such as the Deep Underground Neutrino
Experiment (DUNE) [7] will be able to explore BSM physics, new algorithms with better
computational complexity are required.

The modern version of the Jacobi method for the diagonalization of Hermitian matrices
is reviewed, followed up by the addition of extra steps with the goal of preserving any
pre-existing parametrization. This is the Sequential Diagonalization Strategy (SDS), which
is accomplished by successively comparing the eigenvalues over an arbitrary smooth path
in small, discrete steps, transporting the ordering of the eigenvector across the parameter
space. This algorithm offers advantages to neutrino physicists, mainly when studying
adiabatic evolution in active interacting media. See Refs. [8–10] for excellent reviews.
Although analytical solutions do exist for the most common scenarios [11,12], these are
Standard Model (SM)-dependent and cannot be easily expanded for more general models,
such as the study of Non-Standard Neutrino Interactions (NSNIs) and sterile neutrinos. It
has been shown that sequential diagonalizations can replace first- and second-order terms
when perturbatively calculating the oscillation parameters [13], though this is limited to
uniform backgrounds. The methods discussed here are not limited by the model being
considered, nor by the medium’s uniformity.

Although the methods described here are aimed at neutrino physicists, this paper
is organized in such a way that the methodology can be appreciated by a more general
reader. Section 2 defines the ordering problem and its implications; Section 3 reviews the
original Jacobi algorithm for a Hermitian matrix; Section 4 outlines the SDS, which ensures
parametrization over a continuous path and; Finally, Section 5 illustrates an example
application in neutrino physics using an example which can also be compared with an
analytical solution, followed by Section 6 with the conclusions. After this, two appendices
showcase discussions and details that might not be of interest for the general reader:
Appendix B performs a benchmark test by solving a random case and comparing it with
its analytical solution and; finally, Appendix A contains an analysis of the convergence,
precision and stability of the algorithm.

2. Parametrized Hermitian Matrices

Consider a Hermitian matrix A of order n, with n(n − 1)/2 independent elements
Ajk ∈ C. While developing a physical model, one may want to describe each element
as a continuous function over a p-dimensional parameter space, i.e., Ajk ≡ Ajk (⃗q), with
{⃗q = (q1, . . . , qp) | qi ∈ R}. In this situation, its real eigenvalues λk and corresponding eigen-
vectors Vk are also functions of q⃗. By the spectral theorem, all Hermitian matrices are normal
matrices and, as such, can be written as A = U D U†, where D = diag(λ1, λ2, . . . , λn) and

U =




...
V1
...




...
V2
...

 · · ·


...

Vn
...


 (1)

where U is a unitary transformation, i.e., U U† = 1. The ordering of the λk in D might be
arbitrary but is assumed to have physical meaning, and so it has to be preserved. Note
that, by choosing to represent the eigenvalues as the elements of D and the eigenvector as a
column of U, their ordering is preserved in these matrices by definition, and the relation
A Vk = λk A becomes equivalent to A U = U D. For the sake of brevity, the pair {D, U}
will be referred to as the eigensystem of A.

We are interested in describing the eigensystem of Hermitian matrices as a function
of the original parametrization q⃗, i.e, since A ≡ A(⃗q), so it must be that D ≡ D(⃗q) and
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U ≡ U(⃗q). The Jacobi diagonalization method is well suited for this goal since it results in
the complete eigensystem, already in the form {D, U}. However, the resulting ordering of
their columns is never guaranteed since this information is arbitrary and not related to the
method’s input, A. In fact, the resulting ordering is unpredictable, and its dependence on
the elements Ak is fractal-like, presenting self-similarity and recursive characteristics [3].
In practice, this means that by defining the first element of D(⃗q) as λ1 (⃗q), one should not
assume that the first element of D(⃗q + ∆q⃗) is still λ1 (⃗q + ∆q⃗), even after an arbitrarily small
step ∆q⃗. This implication prevents us from reconstructing the functions λk (⃗q) and Vk (⃗q),
unless we transport the ordering information along, with every step. This strategy will be
addressed in Section 4, after the following review of the Jacobi method.

3. Jacobi’s Algorithm

The original algorithm proposed by Carl G. J. Jacobi in 1845 [4] established a numerical
procedure to calculate eigenvalues of a real, symmetric matrix. Since then, several variations
have been developed in the literature, including an extension to a general complex matrix [5,6].
The focus of this work is the diagonalization of Hermitian matrices, which is reviewed in this
section for completion’s sake, using notation and steps mainly based on ref. [14]. For a more
comprehensive review, see ref. [15].

Let us start by defining a way to measure the magnitude of a matrix’s off-diagonal
elements, d2 given by

d2 =
2

n(n − 1)

n

∑
i>j

Aij Aji , (2)

Jacobi proved that for all Hermitian matrices A, there is an infinite sequence A0, A1,
· · · Ak, Ak+1 · · · , with off-diagonal magnitudes d2

k+1 < d2
k for any k, meaning that Ak

converges to a diagonal matrix as k → 0. The sequence in Equation (2) has a general term
given by

Ak+1 = S†
k Ak Sk , or (3)

= S†
k S†

k−1 · · · S†
0 A0 S0 · · · Sk−1Sk ,

with each matrix Sk being a unitary transformation that has to be constructed. The strategies
for constructing Sk will be discussed in a moment. From the definitions in Section 2, A can
be factored as a diagonal matrix D and a unitary transformation U, as A = U D U†. This
relation can be inverted in order to express D as a function of A and U,

D = U† A U (4)

which is recognizable as the limit of Equation (3) when A = A0, with Ak → D and
S0 · · · Sk → U. From the perspective of a numerical approximation, one may stop the
sequence {Ak} when the condition d2

k ≤ ε2 is met, for an arbitrary precision ε. In this case,
Equation (3) can be read as

D ≈ Ak = S† A0 S , for large enough k, (5)

and

U ≈ S , with S ≡ S0 S1 . . . Sk , (6)

with a global truncation error E ≤ ε.
Several strategies are available for constructing the sequence of rotations that satisfies

these definitions. The total computational complexity depends on the number of steps in
the sequence and which decisions are considered between each one. In particular, the Sk can
be organized in groups called sweeps where all the off-diagonal elements are systematically
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rotated, one by one, in what is known as the Cyclic Jacobi Method (CJM) [6,16,17]. This
strategy requires no decision making regarding the elements themselves, thus employing
the least amount of time per step. Another known strategy is to eliminate the largest
remaining off-diagonal element with each rotation, which is Jacobi’s original strategy [4].
This strategy is proven to have quadratic convergence [15], at the cost of a search for the
largest element, between rotations. This is the implementation chosen for this work, which
was confirmed to achieve quadratic convergence, with the test and its results presented in
the Appendix A. For a modern review and variations on the implementation presented
here, please refer to refs. [14,15] and references therein.

A Jacobi rotation Sk represents a single step in the process of diagonalizing the target
matrix A, and according to the chosen strategy, it is applied to the largest off-diagonal
element, Arc, with r ̸= c. Each Sk can be decomposed into two consecutive rotations,
Sk = K[rc] G[rc], which was first introduced by W. Givens [14], with K and G known as
Givens rotations [14]. Each of these independent rotations, K and G, is responsible for
rotating away one of the two degrees of freedom of this element, since Arc is a complex
number. In other words, the first rotation A′ = K†[rc]AK[rc] makes the resulting element
A′

rc real, while the second one A′′ = G†[rc]A′G[rc] is responsible for vanishing with A′′
rc.

Under these requirements, K[rc] may be written as

K[rc] =
1√
2


1

eiθ1 · · · e−iθ1

... 1
...

−eiθ1 · · · e−iθ1

1

, (7)

with the main elements given by K[rc]
rr = e+iθ1 /

√
2 = K⋆[rc]

cc , K[rc]
rc = eiθ1 /

√
2 = −K⋆[rc]

cr ,
and K[rc]

jj = 1 for the diagonal elements, except at rr and cc. All other elements are zero.
By imposing that Im{A′

rc} = 0, the rotation angle θ1 becomes

tan 2θ1 =
Im{Arc}
Re{Arc}

. (8)

One can verify that, in the case where the target matrix A is already real, θ1 = 0 and K[rc]

becomes the identity 1. The second transformation G[rc] must be a real rotation,

G[rc] =


1

cos θ2 · · · sin θ2
... 1

...
− sin θ2 · · · cos θ2

1

, (9)

with notation analogous to the one used in Equation (7), G[rc]
rr = cos θ2 = K[rc]

cc ,
K[rc]

rc = sin θ2 = −K[rc]
cr , with K[rc]

jj = 1 for the diagonal elements, except at rr and cc,
with all others being zero. The rotation angle θ2 responsible for vanishing with the element
in position rc is given by

tan 2θ2 =
2 A′

rc
A′

cc − A′
rr

. (10)

Extra care should be taken when calculating the angles θ1 and θ2 since Equations (8) and (10)
are prone to overflow when numerically evaluating tan−1. The final implementation was
tested with random 3 × 3 matrices, so that the numerical results could be compared to
the analytical ones (see Appendix B). In the next section, the discussion returns to how
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to preserve the eigenvalues ordering, making the Jacobi’s algorithm suitable for studying
adiabatic matter effects in neutrino physics.

4. Sequential Diagonalization Strategy

As previously discussed in Section 2, once the parametrization of a Hermitian matrix
is defined, the objective is to obtain its eigensystem as a function of a given model’s param-
eters, correcting for the randomness in the eigensystem ordering. The solution proposed
here was loosely inspired by the parallel transport of the tangent vector, in Riemannian
geometry. Since the change in both eigenvalues and eigenvectors is continuous, it should
be possible to detect any unwanted reordering by a simple comparison of neighboring
results. This requires connecting the point of study in the parameter space with another
where the ordering is known, diagonalizing and correcting the ordering along the way,
transporting the eigensystem from one point to the other. This method will be referred to
as the Sequential Diagonalization Strategy (SDS) which can be summarized as follows:

• Starting from a point in the parameter space where the eigensystem is known (includ-
ing ordering), a small step is taken to a new position;

• The eigensystem is obtained in this new position, and a comparison is drawn between
the original set of eigenvalues and the new ones;

• Assuming that the step is short enough, it is always possible to arrive at a one-to-one
match between the two sets, which allows the post-step eigensystem to be reordered
following their pre-step counterparts;

• This is now regarded as a new reference value, and the process is repeated over a
predefined path, transporting the known ordering along it.

Figure 1 illustrates this strategy with a graphical example. In what follows, a formal
definition of SDS is presented.

Figure 1. Graphical summary of the Sequential Diagonalization Strategy (SDS). Each block shows
the resulting diagonalizing transformation U, where each column represents an eigenvector, with its
corresponding eigenvalue marked below it. The background arrow show the sequence of diago-
nalizations, with the top row following the Jacobi diagonalization while the bottom row shows the
reordered matrices. (A) is the starting point, representing the ordering to be preserved. It is stored as
the first reference, shown in (B); after a small step d⃗q, a new eigensystem is obtained with the Jacobi
method, shown as (C). This is compared with the previous reference, using Equation (15), in order
to know the correct way to reorder (C) to match (B); (C) is stored as a new reference, and the cycle
repeats for the next step (E). In summary, while (A,C,E) result from the diagonalization, with random
ordering, (B,D,F) are the values actually stored.
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From Section 2, the relation A = U D U† defines the eigensystem of A as {D, U},
where its eigenvalues are represented as the matrix D(⃗q) ≡ diag(λ1 · · · λn), with λk (⃗q),
while its collection of eigenvectors Vk (⃗q) is organized as the columns of U(⃗q) as defined in
Equation (1). In order to obtain {D, U} at a given point q⃗⋆ ̸= q⃗0, a path between the two
points is drawn, q⃗(t), as a function of a single parameter t. This new parametrization has
no physical meaning, and it is unrelated to how A is parametrized over q⃗. This relation
is introduced to reduce the number of degrees of freedom (d.o.f.) from p parameters to
a single one, t. The path is then divided into smaller steps δt ≪ 1 in a total of N = 1/δt.
Without any loss of generality, one might consider a straight line,

q⃗(t) = q⃗0 +

(
t − ti
t f − ti

)
(q⃗⋆ − q⃗0) (11)

as long as q⃗(t) never leaves the domain of A(⃗q). When this is not feasible, Equation (11)
can be generalized by a series of line segments or a curve of any kind. Nevertheless,
the reader should keep in mind that the resulting {D, U} are independent of the taken path,
so the curve q⃗(t) should be as simple as possible. From this point forward, consider that
Equation (11) is enough to define q⃗(t). In this case, a short step δt leads to a step δ⃗q, with

δ⃗q = (q⃗⋆ − q⃗0)δt (12)

with

q⃗i+1 = q⃗i + δ⃗q (13)

being the discrete representation of the chosen path. At any given step i, the next step will
lead to Ai+1 = A(⃗qi+1) = A(⃗qi + δ⃗q). When diagonalized, the resulting eigenvalue set
{λ

(i+1)
k } should have the form

λ
(i+1)
k = λ

(i)
k + δλk . (14)

This relation can be used as a tool to correct for the ordering of {λ
(i+1)
k } by defining

the quantity

∆ =
n

∑
k=0

∣∣∣λ(i+1)
k − λ

(i)
k

∣∣∣ (15)

it is possible to search for the correct ordering of λ(i+1) among all possible permutations.
Given that δt is small enough, the relation ∆ < (n max{λk}) can only be true if the ordering
of {λ

(i+1)
k } matches the previous one for λ

(i)
k . This is performed by simple inspection,

placing all permutations of {λ
(i+1)
k } in the definition of ∆ and choosing the smallest one.

Once the correct permutation is known, both {λ
(i+1)
k } and {V(i+1)

k } can be reordered and
stored in {Di+1, Ui+1}. This procedure is repeated until the endpoint is reached, leading to
the desired {D⋆, U⋆}.

The combination of SDS and Jacobi’s diagonalization will be referred to as Sequential
Jacobi Diagonalization (SJD). Although the SDS can be used with any diagonalization
method, it is worth noting that Jacobi’s is the most suitable one for neutrino physics since
it offers the possibility of evaluating both D and U at the same time with precision ε,
predefined only by the stopping condition. In fact, since no other information is kept
from one point to the next, besides the ordering, there are no cumulative numerical errors
involved. In other words, the only errors affecting {D⋆, U⋆} are those coming from the last
diagonalization, at the point q⃗⋆ (see Appendix A for an in-depth discussion about precision).

A few remarks are in order. A major advantage of the SDS is that all the diagonaliza-
tions over a path can be computed concurrently, with the reordering performed afterwards,
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in a serialized fashion. Also, if the intention is to map the eigensystem over a volume of
parameter space, finding a way to run over such space in a continuous manner becomes a
trivial task. Yet, this method is not without its limitations. The SDS relies on the premise
that there is a reference order. As a consequence, the eigenvalues have to be non-degenerate
to begin with. Not only that, they also have to be different enough so Equation (15) is
applicable. It could be the case, however, that some particular parametrization causes two
or more eigenvalues to cross each other, becoming degenerate at that point. This kind of
ambiguity can be solved by adopting a higher order discriminant, such as comparing λi+1

k
with λi−1

k , which is equivalent to comparing the derivatives of dλk/dt.

5. Neutrino Physics Application

This section offers an example application of SJD in neutrino physics. The goal is to
obtain the mixing (oscillation) parameters, defined by the PMNS parametrization, as a
function of the matter background in the MSW effect. (see refs. [10,18] for a modern review).
In it, the presence of an interacting medium shifts the energy levels of the Hamiltonian,
which in turn leads to a new set of effective values for the neutrino mixing parameters,
either enhancing or suppressing the oscillation pattern, depending on the matter profile
along the propagation path. In what follows, the MSW effect is briefly reviewed, and the
usage of the SJD is illustrated for a 3-neutrino, SM case.

As the mass-flavor mixing model states [18], a three-neutrino system can be rep-
resented by a free Hamiltonian which is diagonal when expressed in the mass basis,
Hm = (∆m2

21/2p)× diag(0, 1, α), with α = ∆m2
31/∆m2

21 and the ∆m2
ij as the squared-mass

differences between the neutrino mass-states. The unitary mixing matrix U takes the
diagonal Hm to the flavor basis via a similarity transformation,

H f = U Hm U† , (16)

with U being the result of three real rotations (with Euler angles θ12, θ23 and θ13) and at
least one complex phase δCP. In the presence of an interacting background, represented by
a potential matrix V, the total Hamiltonian of the system becomes

H̃ f = U Hm U† + V , (17)

where the ∼ sign represents non-vacuum values, with V being a general real matrix,
encoding how each neutrino flavor interacts with the medium. The physical observables
are those related to the neutrino oscillation pattern, namely the oscillation length and
amplitudes, given by the eigenvalues and eigenvectors of H̃ f , respectively. Let Ũ be the
diagonalizing transformation that realizes the following,

H̃m = Ũ† H̃ f Ũ (18)

= Ũ†
(

U Hm U† + V
)

Ũ

where H̃m → Hm, and Ũ → U, when V → 0. Equation (18) is equivalent to Equation (4),
with A = H̃ f and D = H̃m. This single realization evokes the motivation behind this study,
since while Equation (4) is just the starting point of a diagonalization tool, Equation (18)
has actual meaning in neutrino physics.

Consider H̃m = (∆m2
21/2p)× diag(λ1, λ2, λ3) as the diagonal form of H̃ f , with λk as

the relevant factors of its eigenvalues. From the elements of the diagonalizing transforma-
tion of U (or Ũ), it is possible to define three Mixing Amplitudes,

sin2 2θ12 = 4
|Ue1|2 |Ue2|2(
1 − |Ue3|2

)2 , sin2 2θ23 = 4

∣∣Uµ1
∣∣2 |Uτ2|2(

1 − |Ue3|2
)2 ,
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and

sin2 2θ13 = 4|Ue3|2
(∣∣Uµ3

∣∣2 + |Uτ3|2
)

. (19)

representing how the mass-eigenstates are mixed into the flavor states. This notation
corresponds to the PMNS parametrization [10]. It is also possible to isolate the effects of
CP-violation, represented by the Jarlskog invariant,

JCP = Im
{

Uµ3 U⋆
µ2 Ue2 U⋆

e3

}
(20)

where JCP represents the difference between neutrino and antineutrino oscillation.
The angles in Equation (19) and the Jar Equation (20) will lead to different values,

depending on the elements of the potential V. As an example, in non-standard interac-
tion searches, the elements of V can be either independent of each other or given by an
underlying model. In the case of an ordinary-matter background, however, the potential
can be as simple as V = (∆m2

21)/2p × diag(a, 0, 0), with a = 2pVcc/∆m2
21 (more on Vcc in a

moment). Regardless of the model, be it SM or BSM, SJD can be used to obtain the behavior
of H̃ f ’s eigensystem as a function of a specific model parameter or even the complete set
of V elements, which would be model-independent. In the case of a constant and uniform
background, these definitions are enough to completely define the system. When this is not the
case, it becomes necessary to also know how Ũ varies along the neutrino’s trajectory x, i.e.,

dŨij

dx
= ∑

kℓ

dUij

dVkℓ

dVkℓ
dx

. (21)

This is the scenario where the SJD can provide a sizable improvement over other methods.
The values of dŨij/dx can be obtained prior to a full model analysis since they should be
recalculated less frequently, if ever conducted twice in a single study. Monte Carlo produc-
tions, as well as model fitting, can make use of a LUT instead of performing thousands of
diagonalizations at every step. The more demanding simulations for the next generation of
neutrino detectors, such as DUNE [7], should benefit from this approach.

To take a concrete example, we can appreciate an application using only Standard
Model physics, for which there are analytical solutions. In this case, the relevant matter
potential is V = diag(Vcc, 0, 0), with Vcc being the charged current potential between
electrons in the medium and the electron-(anti)neutrino. For neutral baryonic matter,
Vcc =

√
2GF ne, where ne is the background’s electron density, and GF is Fermi’s constant.

Since global phases do not influence the final oscillation probabilities, we can place ∆m2
21/2p

in evidence, writing V = diag(a, 0, 0), with a = 2pVcc/∆m2
21. The parameter a encodes all

the background description such as density, interaction strength and uniformity. By using
SJD, it is possible to obtain all the relevant observables and still be agnostic with respect to
the background properties, which can be added at a later point of the computation.

The total Hamiltonian to be diagonalized is H̃m(a), where a > 0 means that both the
neutrinos and the background are of the same nature, i.e., either both matter or both antimat-
ter, while a < 0 represents the matter/antimatter combination. Using the vacuum values
on Table 1, it is possible to obtain two distinct values for α, αNH = 32.4 and αIH = −31.9,
corresponding to Normal Hierarchy (NH) and Inverted Hierarchy (IH), respectively. All
results that follow will show four distinct cases: ±a and NH/IH.
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Table 1. Best fit values, 1σ and 3σ ranges for the global fit of all relevant neutrino oscillation data [19].
Here, the notation used by the original reference is changed in favor of one that best suits this work.

Parameter Best Fit 1σ Range 3σ Range

∆m2
21/10−5 7.37 7.21–7.54 6.93–7.97

sin2 θ12/10−1 2.97 2.81–3.14 2.50–3.54

Normal Hierarchy (NH)

+∆m2
31/10−3 2.39 2.35–2.43 2.27–2.51

sin2 θ13/10−2 2.14 2.05–2.25 1.85–2.46
sin2 θ23/10−1 4.37 4.17–4.70 3.79–6.16
δCP/π 1.35 1.13–1.64 0–2

Inverted Hierarchy (IH)

−∆m2
31/10−3 2.35 2.31–2.40 2.23–2.48

sin2 θ13/10−2 2.18 2.06–2.27 1.86–2.48
sin2 θ23/10−1 5.69 4.28–4.91 3.83–6.37
δCP/π 1.32 1.07–1.67 0–2

The analytical solutions for the Mixing Amplitudes [11,12] are compared to the SJD,
being in agreement up to the chosen precision (ε = 10−14). Figure 2a shows the mixing
amplitudes sin2 2θ12 and sin2 2θ13 as a function of |a| (sin2 2θ23 is not shown since it is
indistinguishable from 1 in this scale). It is possible to observe the resonant MSW effect,
related to the two mass-scales. The lower resonance ar affects sin2 2θ12, while the higher
one aR affects sin2 2θ13 and sin2 2θ23. The latter is not shown on the plots since it would be
indistinguishable from the unit due to its large vacuum value.

(a) Mixing Amplitudes, as a function of |a|. (b) Jarlskog Invariant, as a function of |a|.

Figure 2. (a) The matter-enhanced values of sin2 2θ12 and sin2 2θ13, with red and blue for a > 0 and
magenta and cyan for a < 0, respectively, with NH at the top plot and IH at the bottom. (b) The
matter enhanced values of JCP, as defined on Equation (20). At the top is the NH scenario, with blue
for a > 0 and red for a < 0, while at the bottom is the IH case, with magenta for a > 0 and orange for
a < 0.

In Figure 3, we observe the eigenvalues of Hm for NH and IH. The vacuum eigenvalues
are λ1 = 0, λ2 = 1 and λ3 = α, and it is possible to see that resonances ar and aR represent
the points where the eigenvalues change asymptotes.

Finally, Figure 2b shows how the Jarskog invariant is affected by the background.
Regardless of the hierarchy case, ar represents a resonant minimum for a > 0, and a > aR
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will always lead to JCP = 0, meaning that neutrinos and antineutrinos would behave the
same. It is worth noting that the existence of Charge-Parity (CP)-violation in neutrino
oscillations is not confirmed, and the results shown here only consider the best fit values
for δCP, which are still compatible with zero. No matter what the true δCP is, it affects JCP

with all the previous observables remaining unchanged.

(a) Eigenvalues of H̃m for NH. (b) Eigenvalues of H̃m for IH.

Figure 3. Eigenvalues of H̃m, in Equation (18), for NH (a) and IH (b). Each individual eigenvalue λi

is drawn as a function of the dimensionless background descriptor a, representing the MSW effect in
ordinary matter. The differences ∆λij are also shown, since they correlate to the oscillation length.
All vacuum values are taken from Table 1.

6. Conclusions

The Sequential Jacobi Diagonalization, or SJD, proposed in this work combines a
heuristic procedure with a well-established numerical method in order to satisfy the
computation requirements for neutrino physics application. In this field, computational
resources become a bottleneck whenever BSM hypotheses are being tested. In more general
terms, given the description of a Hermitian system, modeled over a particular set of
parameters, this method allows for the study of how the eigenvalues and eigenvectors are
related to these parameters.
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Abbreviations
The following abbreviations are used in this text:

BSM Beyond Standard Model
CJM Cyclic Jacobi Method
CP Charge-Parity
d.o.f. degrees of freedom
DUNE Deep Underground Neutrino Experiment
LUT look-up table
IH Inverted Hierarchy
MSW Mikheyev–Smirnov–Wolfenstein
NH Normal Hierarchy
NSNI Non-Standard Neutrino Interactions
PMNS Pontecorvo–Maki–Nakagawa–Sakata
SDS Sequential Diagonalization Strategy
SJD Sequential Jacobi Diagonalization
SM Standard Model

Appendix A. Precision and Efficiency

In order to evaluate stability, convergence and precision, I applied the Jacobi diagonal-
ization to a sample of 106 random Hermitian matrices, with the real and imaginary parts
of each element constrained to [−1,+1]. This sample is representative since any matrix
can be normalized by its largest element in order to fit in this range. After reaching the
stop condition d2 ≤ ε2, as defined on Equation (2), the resulting diagonal form is rotated
back with the obtained U = S† and compared component-wise with the original matrix.
The largest difference is found to be always smaller than the target precision ε, meaning that
− log10 ε is a good indicator of the number of significant figures achieved in the solutions.
For each sample, ε is varied from 10−2 to 10−16, where the average number of rotations Sk
is recorded. This virtual experiment is repeated from n = 3 to n = 10 matrices, and the
results are shown in Figure A1.

Figure A1. Average number of sweeps before converging to a diagonal, with given precision ε (shown
as − log ε). One sweep is defined as the application of one full complex rotation for each off-diagonal
element, n(n − 1)/2. Each line represents a dimensionality from n = 3 to 10. This average is obtained
from a random sample of 106 Hermitian matrices with real and imaginary parts limited to the interval
[−1,+1]. It is possible to obtain diagonalizations with the largest off-diagonal element bounded as
<10−14 by employing an average of 3 to 4 sweeps, for matrices up to 10 × 10.

Since the method targets the largest elements, not all in sequence (contrary to its
cyclic variant), the average “sweep” is defined as the ratio between the number of complex
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rotations (two real rotations from Equations (7) and (9) and the number of off-diagonal
elements n(n − 1)/2. This ratio is strictly larger than 1, regardless of the dimensionality,
since a general matrix requires at least one complex rotation for each off-diagonal element.
The actual number of rotations goes with O(n2). By establishing the d2 ≤ ε2 limit from
Equation (2) as stopping criterion, there is a possibility that some elements might underflow
if the required ε is too close to machine precision. Indeed, this is observed when requir-
ing ε ≤ 10−15, using 64-bit floating-point variables (which can represent a maximum of
15 significant figures). Stability and convergence are observed with ε ≥ 10−14, which is the
largest precision shown in Figure A1. In this limit, numerical diagonalization is achieved
with an average of between 3 and 4 sweeps. This average holds even for matrices as large
as 10 × 10. Most physical applications would realistically require far less precision than the
10−14 tested, which translates to a less demanding process. Table A1 shows the average
number of sweeps, the standard deviation and how many sweeps are needed to diagonalize
99% of each sample. Even in the most demanding case, with n = 30, five significant figures’
precision can be obtained with a maximum of 3.2 sweeps. Also, the standard deviation
around this average becomes narrower as n increases. Both Figure A1 and Table A1 show
evidence of a possible limit, or at least a log-like growth, in the number of sweeps as a
function of n. This cannot be verified by employing only numerical analysis, so no further
statements will be made on this observation. It can be said, however, that the expected
number of real rotations is 3n2, as a thumb rule. As a final remark, quadratic convergence
(precision = sweeps2) was observed for all tested dimensionalities, as suggested by the
literature [6].

Table A1. Average number of sweeps required for convergence a diagonal, with precision ε = 10−5,
from the a 106 random matrices sample. The first column (Avg. Sweeps) corresponds to a cut from
Figure A1 at − log ε = 5. The second one (Std. dev.) shows the standard deviation from each
sample. The rightmost column shows how many sweeps were needed for 99% of each sample to
reach the stopping condition. The two bottom rows show extra information not present in Figure A1,
for n = 20 and n = 30. Even with such large matrices, less than 1% of the matrices reacquired more
than 3.3 sweeps.

n Avg. Sweeps Std. Dev. 99% Less Than

3 2.30 0.19 2.7
4 2.51 0.19 3.0
5 2.66 0.13 3.1
6 2.74 0.10 3.1
7 2.81 0.10 3.1
8 2.85 0.09 3.2
9 2.88 0.08 3.2
10 2.92 0.08 3.2

20 3.07 0.05 3.2
30 3.15 0.04 3.3

Appendix B. Numerical vs. Analytical

In this section, a random example with an analytic solution is analyzed. The goal is
to validate the numerical methods proposed in this work. A particular n = 3 case with a
known analytic solution is used to exemplify the validity of the method. Starting with two
Hermitian matrices, A and B, given by

A =

 3 i 0
−i −2 i
0 −i 1

, (A1)
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and

B =

 1 0 0
0 2 0
0 0 3

, (A2)

a linear parametrization is defined as

H(x) = A x + B . (A3)

These were chosen among several tests for no particular reason other than to provide a
good example. The eigenvalues of B are not only explicit, since B is diagonal by definition,
but also, their ordering is well determined. The eigenvalues of A are obtained by solving
its order-3 characteristic polynomial, leading to

λA
1 =

1
3

[
2 − Re

{
σ (1 − i

√
3)
}]

, (A4)

λA
2 =

1
3
[2 + Re{σ}] , (A5)

and

λA
3 =

1
3

[
2 − Re

{
σ (1 + i

√
3)
}]

, (A6)

where σ = (−64 + 3i
√

1281)1/3 (the first complex root). Their numbering is reflecting their
relative positioning on the number line, λA

1 ≥ λA
2 ≥ λA

3 , not parametrization ordering.
For the sake of this analysis, all numerical values are quoted with 10−5 precision even
when using analytical formulas. The eigenvalues of A are λA

1 = −2.47090, λA
2 = 1.26071

and λA
3 = 3.21018, as defined by Equations (A4)–(A6).

One wishes to study the parametrized eigensystem of H, represented by {D, U}, as a
function of x. By the definition in Equation (A3), D(x = 0) = B; therefore, U(x = 0) = 1.
In other words, at x = 0, the eigenvalues of H are not only the same as those of B, but they
follow the same order. It is also possible to infer just from Equation (A3) the behavior of H
when x → ±∞, since A x becomes the dominant term, and the eigenvalues of H assume
the form of x λA

k . This means that the eigensystem of H has an asymptotic behavior, and,
for instance, one might be tempted to write λH

1 (x) = x λA
1 + λB

1 in order to describe λH
1 (x)

asymptote. However, there is no explicit information stating which x λA
k corresponds to

which λB
j . Unless H is diagonalized, the true correspondence between the eigenvalues

near zero and its value elsewhere is not clear yet, being implicitly determined by the
parametrization. Additionally, the same λH can have different asymptotes for each limit.

By applying the Sequential Jacobi Diagonalization, described in Sections 3 and 4, a
numerical representation of D(x) and U(x) can be calculated for a range of x around the
origin. Figure A2a shows the functions λH

j (x) for a |x| ≥ 3, which contain all of this
system’s features. Their behavior is analogous to that of trains changing tracks. There are
three asymptotes, of the form

fk = x λA
k + ak, k = 1, 2, 3 , (A7)

where k indicates a particular eigenvalue of A, as defined in Equations (A4)–(A6), and
a1 = 2.04297, a2 = 2.89648 and a3 = 1.05859 are constants, numerically obtained by
the method. Each λH

j (x) follows these asymptotes, changing allegiance every time they
intersect. There are also three intersection points, in increasing order of x⋆12 ≥ x⋆13 ≥ x⋆23,
with numerical values shown in Table A2. The intersections are obtained by considering
the λk curves as hyperbolas, where their point of closest approach is where their derivatives
are equal, which can be seen on Figure A2b. Finally, it is possible to examine the three
eigenvectors by taking their real spherical representation, i.e.,
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θk = cos−1(U⋆
3k U3k) and ϕk = tan−1(U⋆

2k U2k) , (A8)

where it is implicit that ∑jk U⋆
jk Ujk = 1. Although this projection is a limited representation,

where Vk = (θk, ϕk), with θ/(π/2) ∈ [0, 1] and ϕ/(π/4) ∈ [0, 1], it is enough to observe
their limiting behavior, as shown on Figure A3.

(a) eigenvalues of H(x). (b) Derivative of the eigenvalues of H(x).

Figure A2. (a) Eigenvalues of H(x), as defined by Equations (A1)–(A3). The continuous lines shows
λH

1 (yellow), λH
2 (green) and λH

3 (blue), as a function of the free parameter x. The dashed lines
indicate the asymptotes Equation (A7) and their intersections (Table A2). (b) Derivative of the
Eigenvalues of H(x) with respect to x, as defined by Equations (A1)–(A3). The continuous lines
shows dλH

1 /dx (yellow), dλH
2 /dx (green) and dλH

3 /dx (blue), as a function of the free parameter x.
The dashed lines indicate the asymptotes (Equation (A7)), which correspond to the eigenvalues of A
listed in Equations (A4)–(A6). Their intersections correspond to those of the asymptotes defined by
Equation (A7) and their numerical values displayed on Table A2.

Table A2. Intersections between asymptotes. These are the values of x where each eigenvalue changes
allegiance to one of the system’s asymptotes.

Intersection Between x⋆jk y⋆
jk

f1 and f2 −0.22873 2.60814
f1 and f3 0.17327 1.61484
f2 and f3 0.94276 4.08503

The initial position of each vector is V1 = (0, 1), V2 = (1, 1) and V3 = (0, 0), when
x = 0, revolving around the unit sphere for other values of x. When we compare each
eigenvector with its corresponding eigenvalue on Figure A2a, it is possible to correlate
their behavior, for instance, how V1 → V3 as x → ±∞ or how although V2 crosses the other
eigenvectors several times, the eigenvalues are never degenerate.

In conclusion, all the values and functions obtained in this example match their
analytical counterparts up to 10−14, which is the precision set for the method’s precision
ε, while the expected precision for evaluating the analytical solutions is 10−15 (using
64-bit floats).
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Figure A3. Spherical representation of H(x)’s eigenvectors. The eigenvectors V1 (yellow), V2 (green)
and V3 (blue). The starting point for each vector is V1 = (0, 1), V2 = (1, 1) and V3 = (0, 0). The dots
represent equal steps in x and help demonstrate the asymptotic behavior, when the density of points
increases (meaning x → ∞ (denoted by the three stars). The point A = (0.25721, 0.94092) corresponds
to either V1 when x → −∞ or V3 when x → +∞. Similarly, B = (0.96496, 0.82418) is the limit of V1

when x → +∞ or V3 when x → −∞. And finally, C = (0.31152, 0.18597) is the convergence of V2 for
both x → ±∞.
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