symmetry

Article

Algorithmic Efficiency in Convex Hull Computation:
Insights from 2D and 3D Implementations

Hyun Kwon ¥, Sehong Oh ! and Jang-Woon Baek %*

check for
updates

Citation: Kwon, H.; Oh, S.; Baek, J.-W.
Algorithmic Efficiency in Convex Hull
Computation: Insights from 2D and
3D Implementations. Symmetry 2024,
16, 1590. https:/ /doi.org/10.3390/
sym16121590

Academic Editor: Jie Yang

Received: 25 October 2024
Revised: 17 November 2024
Accepted: 20 November 2024
Published: 28 November 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Artificial Intelligence and Data Science, Korea Military Academy,

Seoul 01815, Republic of Korea; hkwon@kma.ac.kr (H.K.)

Department of Architectural Engineering, Kyung Hee University, Gyeonggi 17104, Republic of Korea
* Correspondence: baekjw@khu.ac kr; Tel.: +82-10-5185-1101

Abstract: This study examines various algorithms for computing the convex hull of a set of n points
in a d-dimensional space. Convex hulls are fundamental in computational geometry and are applied
in computer graphics, pattern recognition, and computational biology. Such convex hulls can also
be useful in symmetry problems. For instance, when points are arranged symmetrically, the convex
hull is also likely to be symmetrically shaped, which can be useful for object recognition in computer
vision or pattern recognition. The focus is primarily on two-dimensional algorithms, including
well-known methods like Gift Wrapping, Graham Scan, Divide and Conquer, QuickHull, TORCH,
Kirkpatrick-Sediel, and Chan'’s algorithms. These algorithms vary in terms of time complexity and
scalability to higher dimensions. This study is extended to three-dimensional convex hull algorithms,
such as NAW, randomized insertion, and parallelized versions, such as CudaHull and CudaChain.
This study aimed to elucidate the operational principles, step-by-step procedures, and comparative
time complexities of each algorithm. The implementation in Python facilitates a detailed comparison
of the algorithmic performance through stepwise analysis and graphical outputs. The ultimate goal
is to provide insights into the strengths and weaknesses of each algorithm under various scenarios,
thereby offering a comprehensive guide for practical implementation.

Keywords: gift wrapping; Graham scan; divide and conquer; quickhull; TORCH; Kirkpatrick-Sediel;
Chan’s algorithm

1. Introduction

Given n points in dimension d, the smallest convex set containing n points is called a
convex hull. This convex hull [1-4] is composed of n points. To obtain it, various algorithms
have different time complexities depending on the dimensions the algorithm can process
and whether the algorithm is parallelized. Such convex hulls can also be useful in symmetry
problems [5-7]. For instance, when points are arranged symmetrically, the convex hull
is also likely to be symmetrically shaped, which can be useful for object recognition in
computer vision [8,9] or pattern recognition [10-12].

Convex hull algorithms operating in two dimensions have been extensively studied
since the 1970s; therefore, many algorithms are known. The Gift Wrapping algorithm is the
simplest. It selects a point that is included in the convex hull. It sequentially determines
the points following that point on the convex hull. This has the disadvantage of requiring
O(nh) time when the number of points on the convex hull is h; therefore, it takes a long time
if h is large, but it has the advantage of being simple to implement and scalable in multiple
dimensions. Graham Scan [13], Divide and Conquer [14], QuickHull [15], and TORCH
algorithms [16] take O(nlogn) time and either use the divide-and-conquer method or sort
the points in a way that can be processed sequentially and then processed. Each is imple-
mented using different methods, and the Divide and Conquer and QuickHull algorithms
have the advantage of being scalable in multiple dimensions. The Kirkpatrick-Sediel [17]

Symmetry 2024, 16, 1590. https:/ /doi.org/10.3390/sym16121590

https://www.mdpi.com/journal /symmetry

https://doi.org/10.3390/sym16121590
https://doi.org/10.3390/sym16121590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1169-9892
https://doi.org/10.3390/sym16121590
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16121590?type=check_update&version=1

Symmetry 2024, 16, 1590

2 of 20

and Chan’s algorithms [18] theoretically show the optimal time complexity of O(nlogh).
They commonly estimate h as small at first and then estimate h when it is judged to be
larger than the expected value. One can use the method of increasing values by squaring.

Several convex hull algorithms run in 3D. In most cases, they are extensions of the 2D
convex hull algorithm to 3D. In addition to the previously mentioned Gift Wrapping [19],
Divide and Conquer [20], and QuickHull algorithms [21], there is the Newton Apple
Wrapper (NAW) algorithm [22] and the randomized insertion algorithm [23]. The same
algorithms exist, and the theoretical optimal time complexity for a non-output-sensitive
algorithm is O(nlogn). These algorithms can also be parallelized, and in the case of Quick-
Hull, CudaHull [24], and Divide and Conquer [25], many parallelized versions exist. Also,
there are specialized algorithms [26] that are premised on running on parallel processors.

This study contributes to the field by implementing and analyzing multiple convex
hull algorithms to determine the most efficient approach. Additionally, the study provides a
detailed evaluation of computational efficiency through direct implementation and analysis.
It explores the components of various models and conducts a comparative analysis of
different algorithms on diversely shaped datasets. This analysis includes meaningful
insights into performance metrics, offering valuable information for understanding and
selecting the most suitable algorithm for specific applications. This study aims to explain
the operating principles of these algorithms, examine how they work step by step, compare
the time complexities of each algorithm, and determine which algorithm shows the best
performance in each situation. Each algorithm is implemented in Python to compare step-
by-step algorithm execution times, and a graphical output is provided so that anyone can
easily understand the operating principles of the algorithm.

The rest of the paper is organized as follows. Section 2 provides a detailed explanation
of the 2D convex hull, including the implementation and experimental analysis of various
methods. Section 3 focuses on the 3D convex hull, offering a detailed explanation, imple-
mentation, and experimental analysis of the methods. Section 4 presents a discussion of the
proposed approach. Finally, Section 5 concludes the paper.

2. Two-Dimensional Convex Hull
2.1. Two-Dimensional Convex Hull Algorithm
2.1.1. Jarvis’s March Algorithm

Jarvis’s March algorithm [27], also known as the Gift Wrapping algorithm, is a method
used to compute the convex hull of a set of points in a two-dimensional plane. The convex
hull is defined as the smallest convex polygon that encloses all the given points. This
algorithm follows a greedy approach, iteratively identifying the outermost points to form
the boundary of the convex hull.

In Algorithm 1, the algorithm begins by taking as input a set of n points, denoted as
P = {p1,p2, ..., pn}, which are scattered across the plane. The output of the algorithm is
the convex hull H, a sequence of points that represent the vertices of the convex polygon
enclosing all the input points, ordered counterclockwise.

Initially, the algorithm finds the leftmost point in the set P. This point is considered
the starting point of the convex hull, denoted as pje¢;. The algorithm then sets this leftmost
point as the current point, peurrent = Pleft, and initializes an empty list H to store the points
that form the convex hull.

For each iteration, the algorithm adds the current point peurrent to the list H since it
is part of the convex boundary. The next step is to determine the next point that will be
part of the hull. To perform this, the algorithm considers all points in the set P and checks
which point is the most counterclockwise relative to the current point peurrent. This check
is performed by comparing the orientation of the current point with respect to all other
points, selecting the point that is the most counterclockwise.

The comparison of orientations is conducted by calculating the cross product of vectors
formed by the current point and the candidate points. If a point is more counterclockwise
than the current candidate, it is selected as the next point. This ensures that the algorithm

Symmetry 2024, 16, 1590

30f20

moves along the boundary of the convex hull in a counterclockwise direction, progressively
wrapping around the points that form the convex boundary.

Once the next point is identified, it becomes the new current point, and the process
repeats. The algorithm continues to add points to the convex hull and selects the next most
counterclockwise point until it returns to the leftmost point pjef, at which point the convex
hull is complete. The final sequence of points stored in H represents the vertices of the
convex polygon that enclose all the input points.

In conclusion, the Jarvis’s March algorithm is a simple and intuitive approach to
constructing the convex hull. While its time complexity is O(nh), where n is the number of
input points and / is the number of points on the convex hull, it is particularly efficient for
smaller datasets or cases where the convex hull contains only a small number of points.
The algorithm’s simplicity makes it a valuable tool for solving the convex hull problem,
especially when the number of boundary points is relatively small. The above steps are
shown in Figure 1 below.

Algorithm 1 Jarvis’s March Algorithm.

Input: A set of n points in the plane, P = {p1,p2,...,Pn}
Output: The convex hull H, a sequence of points ordered counterclockwise
Initialize an empty list H to store the convex hull points
Find the leftmost point pjeq € P. Set peurrent = Pleft
while peurrent 7 Pleft dO
Add pcurrent to H
Set Pnext = Pcurrent
for each point p € P do
if p # Pcurrent and p is more counterclockwise than ppext with respect to peurrent
then
Set prext = p
end if
end for
Set peurrent = Prext
end while
Return H

Figure 1. Implementation of the Jarvis’s March algorithm.

When the number of points on the convex hull is h, it takes O(n) time to calculate
the angle formed by each point forming a convex hull with the remaining n — 1 points.
Because the /1 points that constitute the convex hull repeat the process, the time complexity
of Jarvis’s March algorithm is O(nh).

2.1.2. Graham Scan Algorithm

The Graham Scan algorithm [28] uses a geometric method called incremental construc-
tion in which the order of insertion is important. If points are inserted randomly, a separate
procedure is required to check whether the point is inside or outside the hull. Therefore,

Symmetry 2024, 16, 1590

4 0f 20

an insertion method is used to eliminate this procedure after sorting each point in order of
angle from largest to smallest, based on the point with the smallest y-axis.

In Algorithm 2, the algorithm starts by taking as input a set of n points, denoted as
P = {p1,p2,...,pn}, and the goal is to output the convex hull H, a sequence of points
ordered counterclockwise.

Initially, the algorithm finds the point with the smallest y coordinate, denoted as pmin,
and sets it as the starting point. The algorithm then sorts the remaining points based on
the angle they make with the point ppin, from smallest to largest. This sorting step takes
O(nlogn) time.

After sorting, the algorithm proceeds by iterating over the sorted points and main-
taining a stack. As each point is processed, the algorithm ensures that the turns made
between consecutive points are always left turns. If a right turn is detected, the previous
point is removed from the stack, ensuring that only left turns are kept, thus maintaining
the convex boundary.

Once all points have been processed, the points remaining in the stack form the vertices
of the convex hull. The final sequence of points is outputted as the convex hull, ordered
counterclockwise.

In conclusion, the Graham Scan algorithm is an efficient method for finding the convex
hull, with a time complexity of O(nlogn) due to the sorting step. It is particularly effective
for larger datasets, as it avoids the need for checking inside or outside the hull for each
point. The above steps are shown in Figure 2 below.

Algorithm 2 Graham Scan Algorithm.

Input: A set of n points in the plane, P = {p1,p2,...,Pn}
Output: The convex hull H, a sequence of points ordered counterclockwise
Find the point pyin with the smallest y-coordinate in P
Sort the remaining points in increasing order of the angle with respect to pmin
Initialize an empty stack S to store the points on the convex hull
for each point p € P, starting from the sorted list do

While the size of S is greater than 1 and the turn from the second-to-last point in S to
the last point in S and p is a right turn

pop the last point from S

Push p onto the stack S
end for
Return the points in S, which represent the convex hull H

Figure 2. Implementation of the Graham Scan algorithm.

Calculating the time complexity takes O(nlogn) time to sort the first point. It takes
O(1) time to perform an orientation test for each point after sorting. An origination test
is performed on n points, and once a point is deleted, it is not deleted again; therefore,
the maximum is O(n). Therefore, the time complexity of Graham'’s algorithm is O(nlogn) +
O(n) = O(nlogn).

Symmetry 2024, 16, 1590

50f 20

2.1.3. Divide and Conquer Algorithm

The Divide and Conquer algorithm [14] can be viewed as a generalization of the
MergeSort sorting algorithm. A rough method involves first aligning each point along the
x-axis. The left and right upper hulls are then calculated recursively after determining the
median value of x for each sorted point set. The two upper hulls are then merged into one
upper hull. The lower hull can be obtained using a similar method.

In Algorithm 3, the algorithm starts by taking as input a set of n points, denoted as
P = {p1,p2,...,pn}, and the goal is to output the convex hull H, a sequence of points
ordered counterclockwise.

The algorithm begins by sorting all the points based on their x coordinates. The sorted
points are then divided into two halves, and the convex hull is computed recursively for
each half. After computing the upper hulls for both halves, the two hulls are merged into
one upper hull. The lower hull is constructed similarly, and the final convex hull is obtained
by combining the upper and lower hulls.

The divide-and-conquer approach is efficient because it reduces the problem size
at each step and merges the solutions of smaller subproblems. The time complexity of
this algorithm is O(nlogn), which is the same as the time complexity of the MergeSort
algorithm. The above steps are shown in Figure 3 below.

Algorithm 3 Divide and Conquer Algorithm.

Input: A set of n points in the plane, P = {p1,p2,..., pn}
Output: The convex hull H, a sequence of points ordered counterclockwise
Sort the points in P based on their x-coordinates
Divide: Split the sorted points into two halves: Plefy and Pright
Conquer:
Recursively compute the upper hull of P and Pright
Merge the upper hulls from Pl and Pyigpt into one upper hull
Recursively compute the lower hull of Peg; and Pright
Merge the lower hulls from Py and Pright into one lower hull
Return the merged upper and lower hulls as the convex hull H

........

Figure 3. Implementation of the Divide and Conquer algorithm.

The Upper Tangent method is used for the merging procedure. In other words,
the rightmost vertex (p) is found in the left upper hull, and the leftmost vertex (q) is
found in the right upper hull. Using the orientation test, we fix the rightmost vertex (p)
in the left upper hull and orient between the leftmost vertex and the next vertex in the
right upper hull, moving the right upper hull vertex one step until it becomes clockwise.
It is tested by pushing back individually. Similarly, based on the leftmost vertex in the
right upper hull, we orient the rightmost vertex in the left upper hull and the vertices in
the upper hull behind it and test by pushing the vertices in the left upper hull one step
at a time until they turn counterclockwise. do. Using this method, the vertex is found

Symmetry 2024, 16, 1590

6 of 20

in the left upper hull, and the vertex is found in the right upper hull. Each operation is
O(1), and thus requires O(n). Therefore, the entire method considers O(nlogn) time as
T(n) =n+2T(n/2).(n > 3)

2.1.4. Chan’s Algorithm

Chan’s algorithm [18] is an output-sensitive method for computing the convex hull
of a set of points. This algorithm combines Graham Scan and Jarvis’s March algorithms,
aiming to achieve a more efficient time complexity. Graham Scan has a time complexity
of O(nlogn) because it starts by sorting all points. On the other hand, Jarvis’s March
algorithm works without sorting the points. By combining these two approaches, Chan’s
algorithm achieves a time complexity of O(nlogh), where h represents the number of
points on the convex hull.

In Algorithm 4, the process begins by dividing the set of n points into n/h subsets,
where each subset has h points. The convex hull for each subset is calculated using Graham
Scan, which takes O(hlogh) time. The total time for calculating the convex hulls of all
subsets is O(nlogh). Since the value of / is not known initially, it needs to be predicted.
If the predicted value h* is too large, the overall time complexity will become O(nlogn),
but the algorithm ensures that #* remains within the range h < h* < 2h.

Once the mini-hulls are computed, they are merged into a single convex hull using
Jarvis’s March algorithm. In this step, the tangent is calculated using a binary search method
in O(log 1) time. Given that there are n/h mini-hulls, the total time for this merging step is
O(nlogh). Thus, the total time complexity for Chan'’s algorithm is O(nlogh).

In summary, Chan’s algorithm efficiently combines the strengths of the Graham Scan
and Jarvis’s March algorithms to compute the convex hull in O(nlogh) time. The above
steps are shown in Figure 4 below.

Algorithm 4 Chan’s Algorithm.

Input: A set of n points in the plane, P = {p1,p2,...,Pn}

Output: The convex hull H, a sequence of points ordered counterclockwise
Divide the set P into 1n/h subsets, each containing / points

For each subset, calculate the convex hull using Graham’s Scan in O(hlogh) time
Merge the mini-hulls using Jarvis’s March algorithm

Return H

Figure 4. Implementation of Chan’s algorithm.

2.1.5. QuickHull Algorithm

QuickHull [29] is a Divide and Conquer algorithm similar to Quicksort. This algorithm
divides a set of points, ignores internal points, and recursively determines a convex hull only
for external points. The algorithm operates by finding extreme points and progressively
refining the convex hull.

In Algorithm 5, the algorithm begins by finding two points with the smallest and
largest x coordinates. These two points form a line segment that is part of the convex hull.
The remaining points are divided into two subsets based on which side of the line segment

Symmetry 2024, 16, 1590

7 of 20

they lie on. Next, for each subset, the algorithm identifies the point that is furthest from the
line segment, which forms a triangle with the two points. This step is recursively applied
to find external points for the convex hull.

The process continues by ignoring the points inside the triangle and recursively finding
the point that is furthest from the newly drawn line segment. This procedure ensures that
the points forming the boundary of the convex hull are identified. The algorithm stops
when there are no more external points to be added to the convex hull, resulting in the final
convex polygon.

The time complexity of QuickHull is O(nlogn), similar to Quicksort. However,
in cases where the point set has a special configuration and partitioning is inefficient during
the recursive steps, the total recursive time can degrade to O(n?). In the worst case, the time
complexity becomes O(n?), but the algorithm performs efficiently for general cases.

In conclusion, QuickHull is an efficient Divide and Conquer algorithm for computing
the convex hull. Its average time complexity is O(n log 1), making it faster than algorithms
like Jarvis’s March for larger datasets. The algorithm’s efficiency, combined with its sim-
plicity, makes it a popular choice for convex hull computations. The above steps are shown
in Figure 5 below.

Algorithm 5 QuickHull Algorithm.

Input: A set of n points in the plane, P = {p1,p2,...,Pn}
Output: The convex hull H, a sequence of points ordered counterclockwise
Find the two points with the smallest and largest x-coordinates, pyin and pmax
Draw a line segment between pmin and pmax
Divide the remaining points into two subsets: points to the left and points to the right of
the line segment
for each subset do
Find the point pryrinest that is furthest from the line segment
Form a triangle with pmin, Pmax, Pfurthest
Recursively find the points that are furthest from the sides of the triangle and discard
points inside the triangle
end for
Return H s

Figure 5. Implementation of the QuickHull algorithm.

2.1.6. Kirkpatrick-Seidel

The Kirkpatrick—Seidel algorithm [17], also known as the “ultimate planar convex hull
algorithm”, employs a divide-and-conquer strategy and is recognized for its simplicity and
optimal performance in two-dimensional convex hull computations. The Kirkpatrick-Seidel
algorithm is a divide-and-conquer method used to compute the convex hull of a set of
points in a two-dimensional plane. Unlike traditional Divide and Conquer algorithms
that first compute the convex hull of two halves of the point set and then combine them,

Symmetry 2024, 16, 1590

8 of 20

this algorithm first finds the edge of the convex hull connecting the two halves before
computing the convex hull for both sets.

In Algorithm 6, the algorithm begins by taking as input a set of n points, denoted
as P = {p1,p2, ..., pn}- The output of the algorithm is the convex hull H, a sequence of
points that represent the vertices of the convex polygon enclosing all the input points,
ordered counterclockwise.

The algorithm follows these main steps:

¢ First, the set of points is divided into two halves based on the middle value of the
x coordinate.

¢ Then, the tangent of the upper convex hull between the two sets is found.

¢ Points below the tangent line are ignored.

e The process is repeated recursively for both the upper and lower convex hulls.

In conclusion, the Kirkpatrick-Seidel algorithm is efficient with a time complexity of
O(nlogn), where n is the number of input points. It is particularly useful for large datasets
due to its divide-and-conquer approach and efficient handling of the convex hull’s edge
detection. The algorithm is effective for computing the convex hull in a computationally
efficient manner, especially when the number of boundary points is large.

Algorithm 6 Kirkpatrick-Seidel Algorithm.

Input: A set of n points in the plane, P = {p1,p2,..., Pn}

Output: The convex hull H, a sequence of points ordered counterclockwise
Divide the set P into two halves based on the middle value of the x-coordinate
Find the tangent of the upper convex hull between both sets

Ignore all points below the tangent line found in the previous step
Recursively apply the algorithm to the upper and lower sets

Return H

At this point, if process 2 takes O(n) times three, this process is repeated O(h) times,
not O(n), so a total of O(nlogh) is required to implement this algorithm. It can be observed
that this process requires time. In other words, like Chan’s algorithm, this algorithm is also
an optimal output-sensitive algorithm.

It is unclear how the process of finding the upper convex hull tangent between both
sets can be performed in O(n). However, it can be performed by considering the relationship
between the slope of an arbitrary line and the upper supporting point of the set of points for
that line. You can obtain this idea by doing so. When the slope of the straight line decreases
from oo to —oo, the upper supporting point moves from the extreme left to the extreme
right. Therefore, for slope s of a straight line, if the upper supporting point is located to the
left of the line dividing the set of points, the slope of the upper convex hull tangent must
be less than or equal to s. This is because if the slope of the upper convex hull tangent is
greater than s, one endpoint of the tangent cannot be located on the right. Similarly, if for a
line’s slope s the upper supporting point is located to the right of the line dividing the set of
points, then the slope of the tangent to the upper convex hull is greater than or equal to s.

Therefore, if we randomly pair points and know that for a given slope s, the upper
supporting point is located on either of the two point sets, the points on the left or right side
of the pair among the paired points are the upper convex hulls. They could not be located
along a tangential line. Here, if s is taken as the median of the slopes of randomly paired
points, 1/4 of the points are removed each time this process is performed, and because it
takes O(n) time to perform this process once, there are two total times that O(n + (3/4)n +
(3/4)2n+...) = O(n) is consumed until a point remains. This process can be written as
Algorithm 7. The above steps are shown in Figure 6 below.

Symmetry 2024, 16, 1590

9 of 20

Algorithm 7 Upper Convex Hull Tangent Process.

Input: A set of n points in the plane, P = {p1,p2,...,Pn}

Output: The upper convex hull tangent for the set of points

Randomly match the points in pairs. If only one point remains, leave it alone.

Find the median of the slopes of the pairs.

Find the upper supporting point for the median slope.

If the upper supporting point is to the left of the baseline, remove all pairs to the right
with a slope greater than the median.

If the upper supporting point is to the right of the baseline, remove all pairs to the left
with a slope smaller than the median.

Repeat steps 1 to 4 until only two points remain.

s it grow ot e e e

Figure 6. Implementation of the Kirkpatrick-Seidel algorithm.

2.1.7. TORCH Algorithm

The total-order convex hull (TORCH) algorithm [30] refers to an algorithm developed
for efficient computation of convex hulls in higher dimensions, making it particularly suit-
able for large datasets where computational efficiency is essential. The TORCH algorithm
is a heuristic-based convex hull algorithm that efficiently determines the convex hull by
focusing on the leftmost, rightmost, topmost, and bottommost points of a given set of
points. This algorithm improves computational efficiency by constructing an approximate
convex hull before performing the final convex hull calculation.

In Algorithm 8, the process begins by aligning all points based on the x-axis. This
sorting ensures that the points are organized in sequential order for easier analysis. Once
aligned, the algorithm identifies the rightmost and leftmost points of the set. Next, the low-
est and highest points are also determined. These points serve as the corners of the con-
vex hull.

Using the information obtained from the previous step, the TORCH algorithm gen-
erates four lateral hulls between the turning points. For instance, it calculates the lateral
hull between the leftmost and topmost points by determining the range of x values from
the leftmost point to the highest x value, and then drawing edges to connect points that
increase along the y-axis until the highest point is reached. This method results in four
lateral hulls being constructed.

These lateral hulls represent an approximate convex hull that encloses the points. Once
the approximate convex hull is constructed, the algorithm converts it into a convex hull
using the Jarvis’s March algorithm. This final step efficiently calculates the true convex
hull by focusing only on the points within the approximate convex hull, rather than all the
original points.

The TORCH algorithm is particularly advantageous when dealing with larger datasets
because it reduces the number of points that need to be processed to construct the convex
hull. Although the time complexity remains O(nlogn), the computational speed is faster
compared to other 2D convex hull algorithms due to the preliminary approximation step.
The above steps are shown in Figure 7 below.

Symmetry 2024, 16, 1590 10 of 20

Algorithm 8 TORCH Algorithm

Input: A set of n points in the plane, P = {p1,p2,...,Pn}

Output: The convex hull H, a sequence of points ordered counterclockwise

Align all points based on the x-axis

Find the rightmost point pign: and the leftmost point pjes

Find the lowest point ppoom and the highest point piop

Construct four lateral hulls between the turning points

For each lateral hull, draw edges connecting points along the y-axis from the leftmost to
the uppermost point

Construct an approximate convex hull by merging the four lateral hulls

Convert the approximate convex hull into a convex hull using the Jarvis’s March algo-
rithm

Return H

Figure 7. Implementation of the TORCH algorithm.

2.2. Analysis of 2D Convex Hull
2.2.1. Environment

The programming language was implemented using Python 3. There were five shapes
for each dot: Circle, Disc, Square, Art, and Though, as shown in Figure 8. In the experiment,
the time taken was measured as the number of points increased by 1000 points from 1000
to 10,000 points.

N
y

Circle Disc Square Star Though

Figure 8. Overview of the general case.

2.2.2. Result

The complexities of the convex hull algorithms in a two-dimensional plane are com-
pared below. Jarvis’s March: O(nh)(h: number of vertices), Graham Scan, Divide and
Conquer, QuickHull; TORCH: O(nlogn), Kirkpatrick-Seidel; Chan’s algorithm: O(nlogh).
It appears to be the most optimal among the Kirkpatrick-Seidel and Chan algorithms.
However, in actual programming, the experimental results for each algorithm differed
from the theoretical complexity. Therefore, we analyzed the time required to calculate the
convex hull for each algorithm using programming. The assumptions for the experiment
are as follows:

Symmetry 2024, 16, 1590

11 of 20

—_

As the number of points increases, the calculation time increases.
2. Each algorithm will have significant differences depending on the scattered shape of
the given points.

A. The number of dots increases from 1000 to 10,000 in increments of 1000.
B. The following five types of point distribution are applied and we calculate the convex
hull in each case. The time is measured.

(@) Inthe case of the Disc, Square, and Though, most of the points are placed on the inner
white plane, and some of the points form a convex hull.

(b) In Circle, the points are placed only on the edges of the Circle, so most of the points
form a convex hull. In contrast, in the Star, most of the points are placed on the inner
white plane as follows, and the points are placed on the five most protruding vertices
of the Star. Only five points are used to create the convex hull.

How much performance will each algorithm show, on average, in a general case like
(a) (Disc, Square, Though), and what performance will each algorithm perform if there is a
drastic difference in the results, as in (b)? This experiment aimed to investigate whether
there were any differences in performance between the algorithms. First, the results for
distribution type (a) were as follows.

Figure 9 illustrates the performance of convex hull algorithms when applied to general
point distributions, specifically Disc, Square, and Though. The results highlight several crit-
ical observations regarding the practical performance of these algorithms. First, the TORCH
algorithm consistently outperformed all others, achieving the shortest computation time
across all tested point quantities. Its performance superiority became even more pro-
nounced as the number of points increased. This finding underscores the practical efficiency
of the TORCH algorithm, making it a strong candidate for real-world applications where
computational efficiency is critical. Second, while algorithms like Kirkpatrick-Seidel (KS)
and Chan’s algorithm are theoretically optimal with a complexity of O(nlog &), their actual
performance lagged behind simpler algorithms such as TORCH and Graham Scan. This
discrepancy can be attributed to the constants hidden within their theoretical complexity,
as well as the computational overhead introduced by their more intricate implementation
details. Consequently, the theoretical advantage of these algorithms was not fully real-
ized in practice, especially under general point distributions where the number of points
forming the convex hull (h) is relatively small compared to the total number of points (1).
Third, the characteristics of the point distributions significantly influenced the performance
outcomes. In cases like Disc, Square, and Though, where most points are concentrated
inside the convex hull, algorithms optimized for 1 < n scenarios did not showcase their
theoretical strengths. Instead, algorithms such as TORCH and Graham Scan, which rely
more heavily on n-centered computations, exhibited better performance. Finally, the results
reveal the importance of implementation efficiency. Despite the theoretical strengths of KS
and Chan’s algorithm, the computational complexity of the functions used during their
implementation had a substantial impact on their overall performance. This observation
highlights the need to consider both theoretical complexity and practical implementation
details when selecting algorithms for real-world use.

Figure 10 provides an analysis of convex hull algorithms under special point distribu-
tions, specifically Circle and Star, which offer distinct characteristics compared to general
distributions. The results offer insights into the behavior of output-sensitive algorithms in
these unique scenarios. In the case of the Circle distribution, where most points form the
convex hull (h = n), algorithms such as Jarvis’s March, Chan'’s algorithm, and KS exhibited
the slowest computation times. These output-sensitive algorithms are designed to excel
when h < n, but their computational overhead becomes a limitation when h approaches 7.
Conversely, algorithms like TORCH and Graham Scan demonstrated superior performance
under this distribution, as their designs are better suited to scenarios where the convex
hull encompasses a large portion of the points. In contrast, the Star distribution presents a
situation where only a small number of points (k) form the convex hull, while the majority

Symmetry 2024, 16, 1590

12 of 20

are located inside it (7 < n). In this scenario, output-sensitive algorithms such as Jarvis’s
March, Chan’s algorithm, and KS capitalized on their design advantages, showing relatively
better performance. However, TORCH continued to deliver competitive results, reinforcing
its versatility and adaptability across varying distributions. These results underscore the
strong relationship between point distribution characteristics and algorithm performance.
Output-sensitive algorithms exhibit clear advantages in cases where the convex hull is
formed by a small subset of the total points. However, in distributions where most points
form the convex hull, their performance can be significantly hindered.

Average time (Point Shape : Disc)

Average time (Point Shape : Square)

Average time (Point Shape : Though)

== Javis's March 067 4= Javis's March —&- Javis's March
144 —¢~ Graham's Scan ¢~ Graham's Scan 9~ Graham's Scan
== Quick Hull -~ Quick Hull 084 —& Quick Hull
124 == KS Algorithm 059 o ks Alggrithm / - X5 Algorithm
-o Divide & Conquer -~ Dvide & Conquer -8 Divide & Conquer
10 —& Chan's Algorithm 04 -~ Chan's Algorithm -8 Chan's Algorithm
o~ TORCH Algorithm & TORCH Algoritam 0.6 - TORCH Algorithm
s o) 3 29—
v 08 3 v Z
£ £03
: “ T o4
06 Pl \\‘
/ \ 02 T
04 S " .___/ o /
> g — ad
i —3 02 A e oo e
> A al o —a e '7-—0*
02 B S L IR _»
L A el .
A —— A e
B = e ST e . : M = = = o enandEDES
T2 ’ 5 8 1 2 ‘ 6 8 1 2 A) A 5
of Points(x1000) # of Points(x1000) # of Points(X1000)
Figure 9. Average time for several 2D algorithms for each point (point shapes: Disc, Square, and Though).
Average time (Point Shape : Circle) Average time (Point Shape : Star)
—8— Javis's March —8— Javis's March
3.0 4 —® Graham's Scan ~®— Graham's Scan
—8— Quick Hull 0.4 {1 —@— Quick Hull
—8— KS Algorithm —8— KS Algorithm
2.5 —e— Divide & Conquer —e— Divide & Conquer
—e— Chan's Algorithm —8— Chan's Algorithm
2.0 —® TORCH Algorithm 0.3 4 —e— TORCH Algorithm
2 2
[[
£ 15 £
= 0.2 4
1.0 4
0.1 __e——*
0.5 —— e
0.0 . —— = 2 0.0 e — — — T
2 4 6 8 10 2 4 6 8 10
of Points(X1000) # of Points(X1000)

Figure 10. Average time for several 2D algorithms for each point (point shapes: Circle and Star).

3. Three-Dimensional Convex Hull Algorithms

As in the two-dimensional case, the three-dimensional convex hull is defined as the
smallest convex set containing all given points. However, when calculating the convex hull
in 3D, several points that are different from when calculating the convex hull in 2D must be
considered. Most importantly, polyhedra in three dimensions are not uniquely determined,
and reconstructing a convex hull from a set of points on a convex set is not a simple task.
Therefore, the 3D convex hull algorithm must create a convex hull and return a set of lines
and faces along with a set of points on the hull. In addition, the complexity of the convex
hull, which is the number of lines and faces on the convex hull, must be considered when
analyzing the convex hull algorithm. In 2D, a polygon with n vertices has n edges.

Symmetry 2024, 16, 1590

13 of 20

Therefore, it is not necessary to seriously consider the complexity of a convex hull.
However, in a general d-dimensional case, the complexity of the convex hull can increase
faster than linearly with respect to n, which affects the execution time of the convex hull
algorithm. In fact, according to the upper bound theorem, the number of faces of the convex
hull in the d dimension is O(n[d/2]), and when d is four or more, it becomes O(n2) or more;
therefore, the time taken to calculate the convex hull is O(n2). The complexity of the convex
hull governs this. Fortunately, in the 3D case, the complexity of the convex hull is linear,
which means that it can be drawn in 2D without any edges intersecting the 3D convex hull.
Thus, the 3D convex hull is a triangulation of n points in 2D. This can be seen from the fact
that the number of edges and faces increases linearly with n. Therefore (because the 3D
convex hull algorithm must be able to calculate the 2D convex hull), the fastest execution
time is O(nlogn); as we will see later, in the case of the Divide and Conquer and QuickHull
algorithms, this complexity can be confirmed. In addition, the output-sensitive O(nlogh)
algorithm is known among the halfplane-intersection algorithms. The halfplane-intersection
algorithm is the dual of the convex hull algorithm, so in the case of 3D, the output-sensitive
algorithm is at least O as in 2D. It can be observed that it takes (n log h). In this study, we
cover three 3D convex hull algorithms based on the 2D convex hull algorithm, the Jarvis’s
March [31], Divide and Conquer, and QuickHull algorithms; how these three algorithms are
extended to 3D; and how 3D, unlike 2D, is used. We explain the additional work required
for each algorithm.

3.1. Jarvis’s March (Gift Wrapping) Algorithm

Similar to the 2D Gift Wrapping algorithm, the basic principle of the 3D Gift Wrapping
algorithm is to expand the convex hull by side in Figure 11. However, unlike in the case of
a 2D Circle where the 'next’ edge can be easily found, in 3D, it is not intuitive to determine
the direction, so the 2D algorithm cannot be directly applied to the 3D algorithm. The next
step must be that you need to consider how to find it.

Figure 11. Implementation of the Jarvis’s March (Gift Wrapping) algorithm.

Similar to the 2D case, in 3D, given a line and a point, the direction of the point relative
to the line can be determined. Additionally, given a face and a point, the direction of the
point relative to the surface can be determined. This is performed by calculating the sign
of the dot product between the normal vector of the surface and the perpendicular vector
from the point to the surface.

Symmetry 2024, 16, 1590

14 of 20

In 3D, given an edge and two points, we can determine which of the two points lies
further ‘outside’ the edge. When searching for a new face, we consider edges that have
not yet been explored. From these, we find the outermost points and create new faces.
The process begins by finding the first edge to create the first face. This is carried out by
selecting the point with the lowest z coordinate, followed by selecting a second point that
forms the largest angle with the z-axis based on the first point. A search algorithm can then
be used to identify these points.

The process can be summarized in pseudocode as in Algorithm 9.

Algorithm 9 Jarvis’s March Algorithm (3D Version).

Input: A set of n points in 3D space
Output: The convex hull H, a set of faces that form the convex polyhedron
Step 1: Find the point p with the smallest z-coordinate (the bottom point)
Step 2: Find the point g that makes the largest angle with the z-axis from p
Step 3: Initialize the search queue Q = {(p,9)}
while Q is not empty do

Randomly select an edge (x,y) from Q

Determine the two outermost points v and w relative to edge (x,y)

if Faces (x,y,v) and (x,y, w) are not already added to the convex hull then

Add faces (x,y,v) and (x,y, w) to H

end if

Add the edges (x,v), (y,v), (x,w), and (y, w) to the search queue Q
end while
Return H

The steps in lines 1 and 2 each require O(n) time. Line 4 is repeated times, where # is
the total number of edges or faces in the convex hull. Each iteration of loop 4 (particularly
step B) requires O(n) time, leading to an overall time complexity of O(nh), similar to the
2D case.

While the 3D Jarvis’s March algorithm follows a simple principle and can be imple-
mented relatively easily, it becomes more complex in three dimensions due to the increased
number of edges and faces. In 3D, the convex hull tends to have more edges compared to
the 2D case, as it includes the sides of the convex polyhedron. This complexity makes the
algorithm less efficient in 3D spaces with a large number of points.

3.2. Divide and Conquer Algorithm

The basic form of the 3D Divide and Conquer algorithm follows the same principles
as in the 2D case. The steps are as follows in Algorithms 10 and 11:

Algorithm 10 Three-Dimensional Divide and Conquer Algorithm for Convex Hulls.

Input: A set of n points in 3D space

Output: The convex hull of the set of points

Step 1: Find the median value for one axis coordinate

Step 2: Divide the points into two sets based on the median value
Step 3: Recursively apply the algorithm to each of the two sets
Step 4: Combine the two convex hulls obtained in step 3

Since steps 1 and 2 take linear time, and step 4 takes O(n) time, the overall time
complexity of the algorithm is O(nlog n). However, combining two convex hulls in 3D is
more complex than in 2D. In 3D, when combining two convex hulls, a tube with a ring at
both ends is added to the ring formed by certain edges of the two convex hulls, and the
surfaces inside the tube are discarded. This step requires an efficient method for creating
the tube.

Symmetry 2024, 16, 1590 15 of 20

Steps 1, 2, and 3 in the process of combining the two convex hulls take O(#n) time.
Therefore, the overall time complexity of the Divide and Conquer algorithm remains
O(nlogn).

Algorithm 11 Combining Two Convex Hulls in 3D.

Input: Two convex hulls H; and H; from two subsets of points

Output: The combined convex hull Hogmpined

Step 1: Find the first edge of the tube by finding the tangent of the 2D projection of both
convex hulls

Step 2: Repeat the following process until the first edge is reached again:

Find the next edge of the tube from the neighbors of both endpoints of the current edge
Connect the outermost point among the neighbors to the corresponding point in the
opposite convex hull

Step 3: Discard all the surfaces inside the tube and combine the tube with the remaining
surfaces to form the final convex hull

3.3. QuickHull Algorithm

The 3D QuickHull algorithm follows the same basic principles as the 2D QuickHull
algorithm. The steps are as follows in Algorithms 12 and 13:

Algorithm 12 Three-Dimensional QuickHull Algorithm.

Input: A set of n points in 3D space

Output: The convex hull of the set of points

Step 1: Select three points on the convex hull to form a plane
Step 2: Find the point that is furthest from the plane

Step 3: Connect the selected point and the plane

Step 4: Recursively repeat steps 2—4 for the new faces formed

Algorithm 13 Connecting Points and Planes in 3D QuickHull.

Input: A face F, a set of points, and the current convex hull

Output: Updated convex hull with new faces

Step 1: Place the current face in the navigation queue

Step 2: While the queue is not empty, repeat:

Pop face F from the queue

For all unvisited neighbors of F, do:

Compute the dot product of the outer normal vector of F and the perpendicular vector
drawn from the face

If the dot product is negative and the edge is shared with F, add the face to the result set
If the dot product is positive, add the neighboring face to the search queue

Step 3: Add the faces from all edges in the result set to the current point and delete all
visited faces (those with a positive dot product)

Selecting the three points on the convex hull is simple because the point with the
smallest z coordinate is the lowest point, and the point with the largest z coordinate
is the highest point. The third point is selected by finding the point furthest from the
plane formed by the first two points. Finding the farthest point is straightforward by
drawing a perpendicular line from each point to the plane and choosing the point with the
largest distance.

The complexity arises in Step 3 when connecting points and planes because, unlike in
2D, multiple polyhedra can be formed from the same set of points in 3D. Thus, there may
be cases where an edge must be flipped after the third process to maintain the convex hull.
In Step 3, the connection of a point and a plane must be performed carefully by not just
connecting the point from the current face but also by looking at the completed convex hull
and properly connecting to the border.

Symmetry 2024, 16, 1590

16 of 20

To achieve this, we use a search algorithm to identify visible faces from the current
face and connect the edges of all visible faces while removing faces inside the edges.

Steps 1, 2, and 3 in the process of connecting points and planes require O(#n) time.
Therefore, the overall time complexity of the QuickHull algorithm is O(nlogn) on average.

In Step 3, when selecting a point to add next, there is no need to guarantee that the
point is already on the convex hull. By inserting points in an order that simplifies finding
visible sides, randomization can be employed to optimize the insertion process, and the
algorithm can be executed in a similar manner.

3.4. Transformation Algorithm

There are many variations of the 2D and 3D algorithms described so far. Newton Apple
Wrapper [22] is a variant of the 3D randomized insertion convex hull algorithm, in which
points are pre-sorted in the order of (z(x(y)) coordinates and then sorted sequentially
starting from the first point. This method was applied to a convex hull. At this time, since
the points are sorted in coordinate order, it has the advantage of easily determining that
the next point is outside the convex hull and which side to look at. For the 2D QuickHull
algorithm, many parallelization techniques have been devised for the examples [32,33].
A parallelized example of the 3D QuickHull algorithm is the CudaHull algorithm [24].
These parallelization algorithms generally parallelize the process of finding the point fur-
thest from the current face/edge rather than adding a point to the convex hull. For example,
in the CudaHull algorithm, the process of finding a point to be added is based on a set
of points. It is parallelized by dividing and distributing it to each GPU core. One CPU
core is responsible for adding and deleting faces and points. This is because the QuickHull
algorithm spends most of its time looking at many points and finding those that are the
furthest away.

4. Disccusion
4.1. Contribution

This study makes several significant contributions to the field of computational ge-
ometry. First, it provides a comprehensive analysis of convex hull algorithms, including
Jarvis’s March, Graham Scan, Divide and Conquer, Chan’s Algorithm, and QuickHull,
covering both two-dimensional and three-dimensional cases. Through systematic imple-
mentation and evaluation, the study highlights the computational performance, strengths,
and limitations of these algorithms under varying conditions.

Additionally, the research enhances understanding through detailed visualization of
algorithmic processes. These visualizations illustrate the computational flow and princi-
ples behind each method, making complex geometric computations more accessible to
researchers and practitioners. Such an approach not only aids in education but also supports
more informed decision-making when selecting algorithms for specific applications.

The study also explores parallelized implementations, such as CudaHull and Paral-
lel Divide and Conquer, demonstrating their effectiveness in diversely shaped datasets.
This investigation broadens the scope of convex hull algorithms, emphasizing their po-
tential in computationally intensive environments and practical applications requiring
high performance.

Furthermore, the study evaluates algorithm performance across diverse scenarios,
including varying data distributions and dimensionalities. These evaluations provide
actionable insights, such as the suitability of output-sensitive algorithms like Chan’s Al-
gorithm for datasets with fewer hull points and the practicality of three-dimensional
adaptations for theoretical and applied tasks. By addressing these factors, the research
bridges the gap between theoretical complexity and real-world utility.

Symmetry 2024, 16, 1590

17 of 20

Overall, this study makes a substantial contribution to computational geometry by
systematically addressing the theoretical and practical aspects of convex hull algorithms.
It lays a robust foundation for future research, particularly in optimizing algorithms for
specific contexts and extending their applications to higher-dimensional spaces.

4.2. Scalability of the Algorithm in Large Dataset and Higher Dimensions

Scalability is indeed a crucial aspect, particularly in computational geometry, and we
have addressed the handling of large-scale problems for each of the algorithms as follows:

The Gift Wrapping algorithm, also known as Jarvis’s March, has a time complexity of
O(nh), where n is the number of points and / is the number of points on the convex hull.
While this algorithm performs well for small- to medium-sized datasets, its performance
significantly deteriorates as the dataset size increases. This is because the number of
iterations grows linearly with the number of points on the hull. For large datasets, Gift
Wrapping becomes inefficient and impractical due to its high complexity, especially when
h is large.

In contrast, Graham Scan operates with a time complexity of O(nlog n), which makes
it more efficient and scalable for large datasets. The dominant factor in the time complexity
is the sorting step, and since sorting is performed in O(nlogn) time, this algorithm can
handle larger datasets with ease. However, despite its efficiency, Graham Scan may face
limitations in terms of memory usage when dealing with extremely large datasets.

The divide-and-conquer approach, which also has a time complexity of O(nlogn), is
efficient for large-scale problems. By dividing the problem into smaller subproblems and
merging the results, the divide-and-conquer method can handle large datasets effectively.
Its performance scales well as the size of the dataset increases, making it a suitable choice
for problems involving thousands of points. Furthermore, its memory handling during the
merge phase is efficient, which contributes to its scalability.

Quickhull, a Divide and Conquer algorithm, typically operates with an expected time
complexity of O(nlogn), although it can degrade to O(n?) in the worst case. Quickhull
performs well on large datasets in practice, but its worst-case performance can be prob-
lematic, particularly in cases involving highly irregular or degenerate datasets. Therefore,
while QuickHull is a good choice for large-scale problems, caution is needed to handle
edge cases to avoid significant performance degradation.

TORCH is an advanced algorithm that is particularly efficient for higher-dimensional
datasets. With a time complexity of O(n log 1) in practice, TORCH excels in higher-dimensional
spaces compared to traditional 2D or 3D convex hull algorithms. However, as the dataset
size grows, the algorithm’s memory usage and computational demands increase. There-
fore, while TORCH is scalable for large datasets, its performance depends heavily on data
distribution and dimensionality.

Kirkpatrick-Sediel is a randomized incremental algorithm with an expected time com-
plexity of O(nlog n). This algorithm performs well for large datasets as it allows for efficient
incremental updates of the convex hull. While its design supports scalability, the quality of
the randomization process can impact its performance. Nevertheless, Kirkpatrick-Sediel is
typically suitable for large-scale problems and can handle reasonably large datasets with
proper optimization.

Chan’s algorithm combines the divide-and-conquer strategy with a refined approach
to convex hull problems, achieving a time complexity of O(nlogh), where h is the number
of points on the convex hull. This makes Chan’s algorithm particularly efficient for sparse
datasets where / is small relative to 7. It scales very well with large datasets, especially in
cases where the number of points on the convex hull is much smaller than the total number
of points. As a result, Chan’s algorithm is highly efficient for large-scale datasets, where it
can significantly reduce the computational complexity.

The CudaHull [24] algorithm was introduced to improve the scalability of the algo-
rithm in higher dimensions. CudaHull is a parallelized convex hull algorithm designed
to run efficiently on CUDA-enabled GPUs. By distributing the convex hull computation

Symmetry 2024, 16, 1590

18 of 20

across multiple GPU threads, CudaHull accelerates the process, significantly reducing
computation time compared to CPU-based methods. It also optimizes memory usage by
utilizing shared memory and minimizing data transfers between the host and GPU. These
improvements make CudaHull highly scalable, allowing it to handle large datasets and
high-dimensional spaces, where traditional convex hull algorithms become computation-
ally expensive.

5. Conclusions

In this study, we implemented various algorithms to calculate convex hulls and
confirmed their principles. In particular, there is a significant gap between the theoretical
time complexity of the seven 2D convex hull algorithms (Graham Scan, Divide and Conquer,
Jarvis’s March, QuickHull, TORCH, Kirkpatrick-Seidel, and Chan’s algorithms) and the
actual performance. This was confirmed. (This seems to be due to the role of constant
values that are not expressed in the Bigp function and the use of complex functions for
theoretical optimization.) In addition, the performance depends on the result value for
algorithms that are sensitive to the result value (output-sensitive). Statistically significant
differences were observed between the groups. This means that when we use the convex
hull algorithm in an application, simply using only a theoretically optimized algorithm may
decrease performance. Therefore, in each expected situation and environment, variables
include how quickly the most frequently called function or command in the algorithm can
be called and executed, expected result value, increase in constant value, etc. The algorithm
that shows statistically optimal performance through simulation should be selected. In the
case of the 3D convex hull algorithm, we looked at how the 2D convex hull algorithm can
be applied to 3D cases. Compared with the 2D case, in the 3D case, the polyhedron can be
uniquely determined from the points. Several differences, such as examining the direction
between the surfaces and points instead of lines and points, were confirmed. It was also
confirmed that the time complexities of O(nh) and O(nlogn) remained the same despite
the additional steps, owing to this difference.

Future work could focus on domain-specific algorithm selection, where the most
suitable algorithm is chosen based on the unique characteristics of the dataset and compu-
tational environment, thereby ensuring optimal performance in real-world applications.
Additionally, there is significant potential for integrating convex hull algorithms with other
geometric algorithms, such as Voronoi diagrams, Delaunay triangulations, and nearest-
neighbor searches. This integration could lead to more efficient solutions for a wide range
of problems in fields like robotics, spatial data analysis, and path planning. Addressing
these areas of research will considerably enhance the applicability and efficiency of convex
hull algorithms across diverse domains.

Author Contributions: H.K.: Conceptualization, Methodology, Writing—original draft, Software, Val-
idation, Formal analysis, and Visualization. 5.0.: Conceptualization, Methodology, Formal analysis,
Validation, Writing—original draft, Writing—review and editing, and Visualization. J.-W.B.: Concep-
tualization, Formal analysis, Writing—review and editing, Funding acquisition, and Supervision. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korean government (MSIT) (RS-2023-00218832).

Informed Consent Statement: All authors give ethical and informed consent. There are no human or
animal experiments in this paper. Also, there are no copyrighted data related to the figures.

Data Availability Statement: The data used to support the findings of this study will be available
from the corresponding author upon request after acceptance.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publica-
tion of this paper.

Symmetry 2024, 16, 1590 19 of 20

References

1. Knueven, B.; Ostrowski, J.; Castillo, A.; Watson, J.P. A computationally efficient algorithm for computing convex hull prices.
Comput. Ind. Eng. 2022, 163, 107806. [CrossRef]

2. Seidel, R. Convex hull computations. In Handbook of Discrete and Computational Geometry; Chapman and Hall/CRC: Boca Raton,
FL, USA, 2017; pp. 687-703.

3. Kenwright, B. Convex Hulls: Surface Mapping onto a Sphere. arXiv 2023, arXiv:2304.04079.

4. Rossignol, H.; Minotakis, M.; Cobelli, M.; Sanvito, S. Machine-learning-assisted construction of ternary convex hull diagrams. J.
Chem. Inf. Model. 2024, 64, 1828-1840. [CrossRef] [PubMed]

5. DeFord, D.; Dhamankar, N.; Duchin, M.; Gupta, V.; McPike, M.; Schoenbach, G.; Sim, KW. Implementing partisan symmetry:
Problems and paradoxes. Political Anal. 2023, 31, 305-324. [CrossRef]

6. Meyer,].J.; Mularski, M.; Gil-Fuster, E.; Mele, A.A.; Arzani, F.; Wilms, A; Eisert, J. Exploiting symmetry in variational quantum
machine learning. PRX Quantum 2023, 4, 010328. [CrossRef]

7. Izsdk, R, Ivanov, A.V,; Blunt, N.S.; Holzmann, N.; Neese, F. Measuring electron correlation: The impact of symmetry and orbital
transformations. J. Chem. Theory Comput. 2023, 19, 2703-2720. [CrossRef] [PubMed]

8. Fabrizio,]. How to compute the convex hull of a binary shape? A real-time algorithm to compute the convex hull of a binary
shape. J. Real-Time Image Process. 2023, 20, 106. [CrossRef]

9. Guan, Y.; Yan, W,; Li, Y. Convex Hull Collaborative Representation Learning on Grassmann Manifold with Norm Regularization.
In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China, 13-15 October
2023; pp. 453-465.

10. Ansar, H.; Al Mudawi, N.; Alotaibi, S.S.; Alazeb, A.; Alabdullah, B.I.; Alonazi, M.; Park, J. Hand gesture recognition for characters
understanding using convex Hull landmarks and geometric features. IEEE Access 2023, 11, 82065-82078. [CrossRef]

11. Huang, Z.; Wu, Z.; Yan, H. A convex-hull based method with manifold projections for detecting cell protrusions. Comput. Biol.
Med. 2024, 173, 108350. [CrossRef] [PubMed]

12. Du, N;; Xie, L.; Zhou, M.; Gao, W.; Wang, Y.; Hu, J]. Convex Hull Triangle Mesh-Based Static Mapping in Highly Dynamic
Environments. IEEE Trans. Instrum. Meas. 2024, 73, 8500814. [CrossRef]

13. Wibowo, A.; Santoso, H.B.; Rachmat, C.A.; Delima, R. Mapping and grouping of farm land with Graham scan algorithm on
convex hull method. In Proceedings of the 2019 International Conference on Sustainable Engineering and Creative Computing
(ICSECC), Bandung, Indonesia, 20-22 August 2019; pp. 121-126.

14. Zhou, T.; Bilmes, J.A.; Guestrin, C. Divide-and-conquer learning by anchoring a conical hull. Adv. Neural Inf. Process. Syst. 2014,
27,1242-1250.

15. Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 1996,
22,469-483. [CrossRef]

16. Gomes, A.]. A total order heuristic-based convex hull algorithm for points in the plane. Comput.-Aided Des. 2016, 70, 153-160.
[CrossRef]

17. Kumar, V.; Mahima; Verma, S.; Nijhawan, N. Convex Hull: Applications and Dynamic Convex Hull. In Ambient Communications
and Computer Systems: Proceedings of RACCCS 2021; Springer: Cham, Switzerland, 2022; pp. 371-381.

18. Chan, T.M. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discret. Comput. Geom. 1996, 16, 361-368.
[CrossRef]

19. An, PT,; Hoang, N.D.; Linh, N.K. An efficient improvement of gift wrapping algorithm for computing the convex hull of a finite
set of points in R". Numer. Algorithms 2020, 85, 1499-1518. [CrossRef]

20. Day, A. Parallel implementation of 3D convex-hull algorithm. Comput.-Aided Des. 1991, 23, 177-188. [CrossRef]

21. Zhao, J.; Jiao, L.; Liu, F; Fernandes, V.B.; Yevseyeva, I; Xia, S.; Emmerich, M.T. 3D fast convex-hull-based evolutionary
multiobjective optimization algorithm. Appl. Soft Comput. 2018, 67, 322-336. [CrossRef]

22. Sinclair, D. A 3D Sweep Hull Algorithm for computing Convex Hulls and Delaunay Triangulation. arXiv 2016, arXiv:1602.04707.

23. Blelloch, G.E.; Gu, Y,; Shun, J.; Sun, Y. Randomized incremental convex hull is highly parallel. In Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual, 15-17 July 2020; pp. 103-115.

24. Stein, A,; Geva, E.; El-Sana, J]. CudaHull: Fast parallel 3D convex hull on the GPU. Comput. Graph. 2012, 36, 265-271. [CrossRef]

25. Amato, N.M.; Preparata, EP. The parallel 3D convex hull problem revisited. Int.]. Comput. Geom. Appl. 1992, 2, 163-173. [CrossRef]

26. Mei, G. CudaChain: A Practical GPU-accelerated 2D Convex Hull Algorithm. arXiv 2015, arXiv:1508.05488.

27. Alshamrani, R.; Alshehri, F.; Kurdi, H. A preprocessing technique for fast convex hull computation. Procedia Comput. Sci. 2020,
170, 317-324. [CrossRef]

28. Xu,]J.; Zheng, Z.; Feng, Y.; Qing, X. A concave hull algorithm for scattered data and its applications. In Proceedings of the 2010
3rd International Congress on Image and Signal Processing, Yantai, China, 16-18 October 2010; Volume 5, pp. 2430-2433.

29. Gamby, A.N.; Katajainen,]. Convex-hull algorithms: Implementation, testing, and experimentation. Algorithms 2018, 11, 195.
[CrossRef]

30. Alshehri, FA.; Alshamrani, R. A Filtering Method for Fast Convex Hull Construction. J. Ubiquitous Syst. Pervasive Netw. 2011, 3, 7.

31. Jarvis, D.; Griffiths, PD. Clinical applications of 3D volume MR imaging of the fetal brain in utero. Prenat. Diagn. 2017, 37, 556-565.

[CrossRef]

http://doi.org/10.1016/j.cie.2021.107806
http://dx.doi.org/10.1021/acs.jcim.3c01391
http://www.ncbi.nlm.nih.gov/pubmed/38271693
http://dx.doi.org/10.1017/pan.2021.49
http://dx.doi.org/10.1103/PRXQuantum.4.010328
http://dx.doi.org/10.1021/acs.jctc.3c00122
http://www.ncbi.nlm.nih.gov/pubmed/37022051
http://dx.doi.org/10.1007/s11554-023-01359-8
http://dx.doi.org/10.1109/ACCESS.2023.3300712
http://dx.doi.org/10.1016/j.compbiomed.2024.108350
http://www.ncbi.nlm.nih.gov/pubmed/38555705
http://dx.doi.org/10.1109/TIM.2023.3348881
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1016/j.cad.2015.07.013
http://dx.doi.org/10.1007/BF02712873
http://dx.doi.org/10.1007/s11075-020-00873-1
http://dx.doi.org/10.1016/0010-4485(91)90087-D
http://dx.doi.org/10.1016/j.asoc.2018.03.005
http://dx.doi.org/10.1016/j.cag.2012.02.012
http://dx.doi.org/10.1142/S021819599200010X
http://dx.doi.org/10.1016/j.procs.2020.03.046
http://dx.doi.org/10.3390/a11120195
http://dx.doi.org/10.1002/pd.5042

Symmetry 2024, 16, 1590 20 of 20

32. Srikanth, D.; Kothapalli, K.; Govindarajulu, R.; Narayanan, P. Parallelizing two dimensional convex hull on NVIDIA GPU and
Cell BE. In Proceedings of the International Conference on High Performance Computing (HiPC), Kochi, India, 16-19 December
2009; pp. 1-5.

33. Srungarapu, S.; Reddy, D.P.,; Kothapalli, K.; Narayanan, P. Fast two dimensional convex hull on the GPU. In Proceedings of the
2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications, Biopolis, Singapore,
22-25 March 2011; pp. 7-12.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Two-Dimensional Convex Hull
	Two-Dimensional Convex Hull Algorithm
	Jarvis’s March Algorithm
	Graham Scan Algorithm
	Divide and Conquer Algorithm
	Chan’s Algorithm
	QuickHull Algorithm
	Kirkpatrick–Seidel
	TORCH Algorithm

	Analysis of 2D Convex Hull
	Environment
	Result

	Three-Dimensional Convex Hull Algorithms
	Jarvis’s March (Gift Wrapping) Algorithm
	Divide and Conquer Algorithm
	QuickHull Algorithm
	Transformation Algorithm

	Disccusion
	Contribution
	Scalability of the Algorithm in Large Dataset and Higher Dimensions

	Conclusions
	References

