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Abstract: The communication of Industrial Internet of Things (IloT) devices faces important security
and privacy challenges. With the rapid increase in the number of devices, it is difficult for traditional
security mechanisms to balance performance and security. Although schemes based on encryption
and authentication exist, there are still difficulties in achieving lightweight security. In this paper,
an authentication and key exchange scheme combining hardware security features and modern
encryption technology is proposed for the MQTT-SN protocol, which is not considered security.
The scheme uses Physical Unclonable Functions (PUFs) to generate unpredictable responses, and
combines random numbers, time stamps, and shared keys to achieve two-way authentication and
secure communication between devices and broker, effectively preventing network threats such
as replay and man-in-the-middle attacks. Through verification, the proposed scheme has proved
effective in terms of security and robustness, has computational and communication cost advantages
compared with recent schemes, and provides higher availability.

Keywords: IIoT; MQTT-SN protocol; PUF; lightweight safety

1. Introduction

The IloT stands as a pivotal element within the broader Internet of Things (IoT) ecosys-
tem, significantly enhancing the sophistication of contemporary industrial intelligence
and propelling the evolution of smart manufacturing. The IIoT is distinguished by its
attributes of real-time functionality, automation, embedded software, robust security mea-
sures, and seamless information interoperability. These features are actively propelling
the fourth industrial revolution, ushering in transformative changes across a spectrum of
sectors, including but not limited to energy, manufacturing, urban planning, healthcare,
and transportation [1].

As the convergence of industrial automation and information technology accelerates,
the scope of IloT applications is continually expanding. With this expansion comes an
escalating imperative for security, encompassing protocol security, equipment security, data
protection, connection integrity, and management control. Among these, protocol security
emerges as the paramount concern within IloT network security, underpinning the entire
network’s defense architecture [2]. The swift adoption of contemporary IloT devices has
amplified the necessity for resilient security protocols. Implementing stringent security
and privacy measures at the protocol level could substantially fortify the IloT application
ecosystem. Given that the majority of IloT devices are resource-limited, traditional security
protocols are often ill-suited to their needs. Hence, there is an urgent need to devise
security protocols that are specifically calibrated to the constraints and requirements of this
context [3].

Within the IloT landscape, the Machine-to-Machine (M2M) environment plays an
indispensable role, enabling seamless data interchange and automated control mechanisms
between machines through advanced communication technologies. This facilitates an
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unobstructed device-to-device dialogue within the IIoT framework, thereby enhancing
operational efficiency and fostering innovation in industrial processes.

Therefore, the M2M environment requires a reliable and efficient communication path
to ensure real-time, accurate, and secure data transmission. This is crucial not only for data
integrity and device interoperability but also for operational efficiency, security, and cost-
effectiveness. When building and managing an M2M environment, efficient, reliable, and
secure communication protocols such as Message Queuing Telemetry Transport (MQTT)
and Extensible Messaging and Presence Protocol (XMPP) are typically chosen to facilitate
device communication [4]. MQTT, a lightweight open messaging protocol, is specifically
designed for resource-constrained network clients, particularly in low-bandwidth envi-
ronments [5]. It provides reliable communication paths for M2M environments, enhances
system scalability, and reduces long-distance transmission delays and bandwidth usage.
To achieve a more efficient and flexible communication mode in resource-constrained envi-
ronments, the MQTT for Sensor Networks (MQTT-SN) protocol, which is even lighter than
MQTT, has been proposed. The MQTT-SN protocol is an M2M communication protocol
designed specifically for the constrained environments of sensor networks [6].

However, the MQTT-SN protocol does not account for security, and most networks
utilizing it still rely on plaintext transmission. Additionally, while standard security proto-
cols like Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
exist, they are not designed for the constrained environments of IloT and are unsuitable
for restricted networks due to their high overhead [7]. Therefore, many scholars have
introduced security mechanisms based on the MQTT-SN protocol and are working to
design new protocols to ensure security.

In recent years, PUF hardware has gained significant attention for its uniqueness,
unidirectionality, unpredictability, and resistance to cloning. PUF is an encryption tech-
nology that offers hardware-level security, based on the principle of utilizing the chip’s
physical characteristics to generate a unique identity or key for security operations like
authentication, encryption, and decryption [1]. SRAM PUF, a specific implementation of
PUF based on SRAM memory, leverages the deep submicron variations that naturally occur
during semiconductor production to impart each transistor with a slight random electrical
characteristic, thereby generating a unique and unclonable encryption root key for the
device. SRAM PUEF is reliable, scalable, and easily implemented, and it can be adapted
to various process nodes used in IoT devices [8]. It is the only known PUF type that can
be implemented simply by loading software onto a chip. In constrained environments,
such as resource-limited IoT devices, SRAM PUF offers a secure and efficient method for
key generation and management. As the keys are randomly extracted from within the
chip, no additional hardware or memory is needed, reducing both cost and complexity.
Additionally, the SRAM PUF key is generated dynamically, only when needed, and is not
permanently stored in the device, further enhancing security [9].

Given this background, the integration of PUF into the security protocols of IoT devices
presents a promising avenue for research and development. This paper delves into this
domain, offering a novel perspective on enhancing the security of IoT communications.
The main contributions of this paper are as follows.

1. This paper presents a lightweight security protocol based on MQTT-SN, utilizing
lightweight PUF, XOR, hash functions, and other operations.

2. The paper employs the ProVerif tool (It is hereafter abbreviated as ProVerif), a formal
verification tool grounded in the Dolev-Yao attacker model, to rigorously validate the
proposed scheme, thereby substantiating its robust security profile.

3. The proposed scheme is designed with a strong emphasis on ensuring anonymity and
untraceability, while also striving for scalability and resilience against DOS attacks,
culminating in a high degree of usability.

4. A comparative analysis reveals that, when juxtaposed with similar schemes, the
proposed scheme delivers optimal security at a reasonable cost.
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5. The scheme’s comprehensive fail-stop property marks a significant advancement in
proactive attack detection. In the event of an attack against the protocol within the
network, the system is equipped to swiftly identify the intrusion and consequently
dispatch an immediate alarm to the upper management system, enabling the imple-
mentation of subsequent defensive strategies.

The structure of this paper is as follows: Section 2 offers a comprehensive review of
the most pertinent literature to date. Section 3 lays down the foundational preliminaries
essential for understanding the project design. Section 4 presents a meticulous exposition
of the proposed scheme. Section 5 delves into both formal and informal security analyses
of the scheme. Section 6 juxtaposes the proposed scheme with related work, examining
its security and cost implications. Concluding the paper, Section 7 provides a thorough
summary of the findings and contributions.

2. Related Work

In the domain of IloT M2M security protocols, a critical examination of recent propos-
als has revealed persistent challenges. While cryptographic techniques like Diffie-Hellman,
elliptic curves, and bilinear pairings are utilized, they often struggle to reconcile the compet-
ing demands of protocol accessibility and robust security. Achieving a balanced approach
is essential for enhancing M2M communication security within the IloT landscape.

Yu et al. [10] proposed a data encryption transmission algorithm, MQTT Encryption
Algorithms (MQTT-EA), based on MQTT, which requires no additional hardware support,
is simple to implement, and is cost-effective. Zheng et al. [11] proposed a new lightweight
mutual authentication and key exchange protocol based on PUF for peer-to-peer (P2P)
IoT applications. Chao et al. [12] proposed the MQTT-SE data encryption transmission
algorithm, which includes a bidirectional authentication scheme based on symmetric
encryption, public key, and public key certificates. Although these schemes offer security
improvements, they may suffer from performance drawbacks and increase computing and
communication overhead.

Wang et al. [13] proposed a PUF-based RFID security authentication protocol to
guard against physical cloning. The protocol ensures communication security using two
cryptographic primitives, PUF and hash functions, with all communications encrypted
to guarantee information privacy and security. He et al. [14] proposed a lightweight two-
party authentication and session key (SK) exchange protocol, which performs security
authentication and establishes a shared SKbetween a PUF-enabled cryptosystem and a
server. Xu et al. [15] combined hash functions and PUF to design a MAC algorithm, but
this algorithm has high storage and communication overhead, making it less suitable for
resource-limited IoT devices.

Wang et al. [16] proposed an efficient anonymous identity authentication protocol
for lightweight IoT devices. The protocol is based on PUF technology and implements
security attributes such as anonymity, confidentiality, untraceability, forward security,
and resistance to modeling attacks. The authors validated the protocol’s security using
formal security models and ProVerif, demonstrating that it offers significant advantages
in terms of computational, storage, and communication overhead, making it ideal for
resource-constrained IoT devices.

Ma et al. [17] proposed PUF-RAKE, a lightweight and highly reliable authentication
and key establishment protocol based on PUE. By employing error correction and dynamic
CRP obfuscation techniques, the protocol enables efficient device authentication while
preventing masquerading, brute force, replay, and modeling attacks. By implementing error
correction on the server side and utilizing a lightweight stream authentication mechanism,
PUF-Rake significantly reduces resource usage while maintaining security, making it
particularly suitable for resource-constrained IoT devices.

Bian et al. [18] proposed Bio-AKA, a two-factor user authentication and key protocol
that combines PUF with fingerprint biometrics. By employing PUF technology and a fuzzy
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extractor, the scheme enables secure user authentication and key negotiation without a pass-
word, protects user anonymity and privacy, and prevents fingerprint information leakage.

Many existing solutions in this area struggle with excessive performance overhead
and high computational and communication costs, particularly in resource-constrained
environments. In this paper, we introduce PUF technology, combined with hash functions
and XOR operations, to achieve lightweight two-way authentication and secure communi-
cation between devices. This approach reduces computational and communication costs
while enhancing privacy protection and resistance to attacks, effectively addressing the
limitations of previous solutions.

Additionally, this paper provides a comparative analysis of the aforementioned
works [10-18] in the subsequent chapters. In summary, the diverse solutions proposed in
recent years for IlloT M2M security protocols have notably enhanced security measures,
especially for lightweight IloT devices with limited resources. Nonetheless, these schemes
still face challenges related to performance, computational overhead, and practical appli-
cation. Therefore, further research and optimization are needed to balance security and
availability, and to enhance their applicability in real-world scenarios.

3. Preliminaries

In this Section, we examine the necessity of using the MQTT-SN protocol in the
context of IIoT and its associated challenges in resource-constrained networks. Next, we
introduce the selection criteria for PUFs and their application in IloT devices, with a focus
on addressing the jitter problem in PUF outputs [19]. Finally, we briefly discuss the ProVerif,
emphasizing its role in analyzing and verifying security protocols. This discussion lays
the foundation for subsequent research, aiming to enhance the security and reliability of
protocol design in IIoT systems.

3.1. IIoT MQTT-SN Environment and Constraints

The expansion of the IIoT model introduces challenges in quickly detecting and
assessing attacks on co-existing systems. One of the most common methods used by cy-
bercriminals is exploiting vulnerabilities in communication protocols, which can enable
them to access, modify, and delete data, or even disable devices or entire infrastructure.
In the context of IIoT, the MQTT protocol is widely used due to its portability, enabling
resource-constrained devices to communicate with each other [20]. To enhance its effective-
ness, a lightweight version of the protocol, MQTT-SN, has emerged. MQTT-SN is suitable
for Wireless Sensor Networks (WSNs), networks that do not support TCP/IP, and those
with limited bandwidth. In these constrained network environments, MQTT-SN extends
MQTT’s functionality, including features such as subject name registration, gateway dis-
covery, sleep and wake mechanisms, and different Quality of Service (QoS) levels [21]. The
architecture diagram of the MQTT-SN protocol is shown in Figure 1.

MQTT-SN
T T e
MQTT

MQTT-SN

MQTT-SN

\ 4

MQTR-S MQTT-SN
_—

Figure 1. MQTT-SN protocol architecture diagram.
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In the IIoT field, MQTT-SN can adapt to various network environments by utilizing
different underlying protocols, including but not limited to 6LoWPAN (IPv6 over Low-
Power Wireless Personal Area Networks) [22]. 6LoWPAN is a network protocol designed
for low-power wireless personal area networks, such as IEEE 802.15.4 standard devices [23].
It enables these devices to communicate over IPv6, efficiently using limited bandwidth
and adapting to scenarios requiring low power consumption and high network reliabil-
ity [24]. When 6LoWPAN is used as the underlying protocol, it introduces a fragmentation
mechanism to support larger packet transfers, as it was designed to accommodate the
small packet structure of the IEEE 802.15.4 standard, which typically has a maximum
payload of 127 bytes [25]. However, to ensure efficient communication, the maximum
data size for a single packet without fragmentation is usually limited to the maximum
frame size of IEEE 802.15.4. After subtracting the security header, MAC layer header, and
6LoWPAN header, the remaining data available for applications are approximately 40 to
100 bytes, depending on header usage and security settings. This limitation is why MQTT-
SN is designed to reduce message size and optimize data transfer for resource-constrained
network environments.

In the IIoT field, where MQTT-SN and 6LoWPAN are used as low-level communi-
cation protocols, restricted devices typically exhibit characteristics such as low power
consumption, limited processing power, small storage space, low bandwidth connections,
and simplified communication protocols [26]. According to RFC 7228, restricted devices
are roughly categorized into Class 0 (C0), Class 1 (C1), and Class 2 (C2) devices. In this
field, restricted devices mainly refer to Class 1 and Class 2 devices, which can support
6LoWPAN and MQTT-SN/MQTT communication, either directly or through appropri-
ate adaptation layers [27]. These devices can effectively participate in the IIoT network,
performing data collection, processing, and communication tasks despite their limited
resources. Since the protocol discussed in this article utilizes PUF and requires a long-term
private key and secure storage area, it is not suitable for extremely restricted devices, such
as Class 0 devices.

3.2. Selection and Description of PUFs

PUF is a security technology based on the unique physical characteristics of hard-
ware. It leverages the minute physical variations that occur during device manufacturing
to generate a unique and irreproducible “fingerprint” for device authentication and key
generation. PUF technology is inherently unpredictable and unique, making it highly
effective against counterfeiting and cloning attacks, which presents significant advantages
for resource-constrained IoT devices. In this study, we utilize PUF technology to generate
unpredictable responses, combined with hash functions and XOR operations, to imple-
ment a lightweight two-way authentication and secure communication protocol. This
solution not only effectively counters forgery and replay attacks, but also significantly
reduces computational and communication overhead while enhancing the device’s privacy
protection capabilities.

PUFs are widely used in the security field, particularly in device authentication and
key generation. Based on their physical characteristics and implementation methods, PUFs
can be categorized into silicon-based PUFs, optical PUFs, acoustic PUFs, magnetic PUFs,
and biological PUFs. Silicon-based PUFs further include SRAM PUFs, array PUFs, and
flip-chip PUFs [28]. In the IIoT, a simple and feasible PUF implementation is based on
SRAM. This type of PUF leverages the random behavior of SRAM when the storage unit is
not initialized to generate a unique fingerprint. The advantages of SRAM PUFs include
easy implementation and high resistance to replication, but they require a certain amount
of storage space to generate sufficient entropy. However, this PUF can be implemented
using existing inherent equipment [29].

However, regardless of the type of PUF, it is susceptible to environmental changes
(temperature, voltage, humidity, etc.) and equipment aging, which can lead to output errors.
Therefore, in practical applications, minimizing output jitter is crucial. Several commonly
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used methods can significantly reduce PUF output jitter and the likelihood of errors. These
methods include the following: first, designing a robust PUF structure to maintain output
consistency under different operating conditions; second, calibrating the environment and
operating conditions to record the PUF output under standard conditions before use; third,
applying error correction coding (such as Hamming code, BCH code, or Reed-Solomon
code) to ensure that the original PUF output can be reconstructed even if an error occurs
in the PUF response; additionally, reliability can be further improved through response
filtering and post-processing algorithms, such as conformance testing to remove unstable
bits and retain only those that remain consistent across multiple measurements; finally, by
performing multiple measurements and statistical analysis of the PUF, the response with
the least variation is selected as the effective output, reducing the impact of output jitter.

3.3. ProVerif Tool

ProVerif is a powerful automated tool for analyzing and validating security protocols,
based on the formalized pi-calculus model. It can automatically verify security attributes
such as confidentiality, authentication, and forward security by simulating the behavior of
potential attackers. ProVerif helps detect security vulnerabilities in protocols and analyzes
how they perform under different attacker models [30].

The advantage of this tool lies in its automated processing capability, enabling rapid
verification of complex protocol designs and greatly reducing the effort and error likelihood
associated with manual analysis. ProVerif is widely used in academic research and practical
engineering to analyze network security protocols, such as TLS and IPsec, ensuring they
are designed and implemented to withstand various known attacks.

Given its powerful verification capabilities, ProVerif is an indispensable tool in secure
protocol design and analysis, particularly in scenarios requiring a high degree of security.

3.4. Security Mechanism

The fail-stop mechanism is a protective strategy designed to immediately terminate
the current operation or protocol execution if the system detects an anomaly or potential
security threat, preventing further damage or information disclosure. The core idea of this
mechanism is to ensure that the system does not further expose its vulnerabilities or allow
attackers to exploit them by halting operations when it cannot determine whether it is safe
to continue. This mechanism activates when the system detects errors, abnormal behavior,
or potential attacks, such as replay attacks, man-in-the-middle attacks, desynchronization
attacks, or other security threats, causing the system to immediately stop the current
process. This prevents erroneous data from being further processed and blocks attackers
from exploiting erroneous states.

To ensure that the protocol can respond promptly to potential attacks or abnormal
conditions, this paper introduces the fail-stop mechanism. This mechanism prevents
further damage or information leakage by halting protocol operations as soon as an error
or abnormal behavior is detected. The fail-stop mechanism is particularly effective against
threats such as denial-of-service (DoS) attacks and replay attacks, providing an additional
layer of security to the system by aborting operations promptly.

4. Proposed Protocol Scheme

Before presenting the protocol scheme, this Section outlines the basic assumptions and
required environment for the protocol design. This Section not only provides the necessary
background to understand how the protocol works but also clarifies its applicability and
limitations. The protocol environment is then described in detail, including the participants,
required hardware, and assumptions about operating conditions.

4.1. Environment and Assumptions

In the communication model based on the MQTT-SN protocol presented in this paper,
the main roles are the Device and the Broker. The Device typically refers to an endpoint
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in an IoT environment, such as a sensor, actuator, or any other smart device capable of
connecting to the network. The Broker, on the other hand, receives, processes, and forwards
messages, acting as a server that manages connections, sessions, and message routing for
all clients. Although it is somewhat equivalent to a server, the term “Broker” is used to
emphasize its role in message forwarding and management, rather than as a traditional
server, especially in the context of the MQTT-SN protocol [31].

In this research, the relationship between the Device and the Broker is one-to-many.
The Device is resource-constrained, while the Broker is resource-unrestricted. The protocol
is initiated by the Device, and the Broker responds. The protocol is divided into three
phases: registration, authentication and secret key exchange, and PUF shuffling. Both
parties need to store pre-shared data, including a pre-shared secret key (PSK), a pre-
shared secret (S), and 30 sets of CRPs assumed for the PUE. The protocol does not include
an independent logout phase; devices that have not been contacted for a long time are
considered logged out. Additionally, this paper assumes that both communicating parties
are equipped with long-term secret keys at the factory. The pre-shared secret, AID, and
CRP messages are stored in the non-volatile memory (NVM, such as EEPROM) of the
device, and in the broker’s database. The PSK is stored encrypted with the long-term
secret key of both parties. The derived shared secret, denoted as S, is safeguarded in the
device’s secure storage compartment, potentially within a Hardware Security Module
(HSM), and similarly within the broker’s secure environs, perhaps utilizing the broker’s
Trusted Platform Module (TPM) for enhanced security.

The QoS mechanism of the MQTT protocol offers varying degrees of message trans-
mission guarantees through three levels (QoS 0, 1, 2). QoS 0 does not guarantee message
delivery, QoS 1 ensures the message is delivered at least once, potentially with duplication,
and QoS 2 ensures the message is delivered only once without duplication. This mechanism
allows for flexible selection of message reliability and transmission overhead based on
requirements in resource-constrained network environments. The QoS mechanism of the
MQTT-SN protocol is cleverly embedded into multiple design stages to ensure the reliabil-
ity and security of data transmission. The QoS mechanism plays a key role, particularly in
ensuring message transmission and security. For example, when a message is transmitted
between a device and a Broker, the QoS level determines whether the message may be
sent multiple times to ensure successful delivery. In the AKE phase, the proposed protocol
requires MQTT QoS Level 3, which includes an acknowledgment mechanism to ensure
that the message is neither lost nor duplicated, assuming the MQTT communication link
remains intact.

In this paper, the administrator must determine the bit lengths of all parameters, the
frequency of CRP updates, the survival time of encrypted sessions, and the maximum
error counter value based on the specific usage scenario. Under typical conditions without
special security requirements, this paper assumes that the input and output of the PUF
are 128-bit binary, the hash function uses SHA3-256, truncating the first 128 bits as the
output, and other parameters such as the pre-shared secret key and secret S are 128 bits,
while the timestamp is 64 bits. The session survival time is set to 24 h, and the number of
CRPs updated at a time is 30 (implying a PUF update cycle of approximately 30 days). The
error counter is capped at 5, and when it reaches this limit, corresponding actions will be
taken, such as blocking the channel or triggering an alarm. This protocol assumes that all
entities are equipped with an error counter for any step involving parameter verification,
such as verifying the consistency of hash values, during protocol operations. With this
design, the system can issue an out-of-band alarm to the upper layer when a specific error
counter exceeds a predetermined threshold while implementing the fail-stop mechanism.
This mechanism supports attack detection across the entire system.

Finally, the protocol assumes that the PUF has undergone the error correction pro-
cessing described in Section 3.2, and the specific details of this processing are not further
elaborated. Table 1 lists all the symbols used in this paper and their descriptions.
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Table 1. Notations and Descriptions.

Notation Description
Na, Ny, Tnioy Random numbers
AID; Identity identifier of the Device
PSK; Pre-Shared Key
CRP Challenge-response
C-HRPs Challenge-Hushed Response Pairs
Ty, T;, Ty Timestamps
S Pre-shared secret
C Challenge
R Response
hR Response encrypted using a hash function
PUF() Physically Unclonable Function
n; A random set of numbers generated by the broker
ESK Used SK for encryption
DK Device’s long-term private key
BK Broker’s long-term private key
h() Cryptographic hash function
&) Bit-wise XOR operation
alb Cut lower b bits from a
X* The parameter was taken from the database
X Received value or the value computed from received values

* indicates the updated value.

The proposed scheme consists of three main phases: the Registration phase, the
Authentication and Key Exchange phase, and the PUF-Shuffling phase. The specific steps
for each phase are detailed below.

4.2. Registration Phase

This phase takes place in a secure channel between the device and the Broker, and the
device synchronizes the clock with the Broker. The steps are shown in Figure 2.

]

Device

([

Broker

Generate {n,},i=1,2,..30
Generate Tn,
Generate PSK,S

= & T
my = {m & T} m, = {n, PSK,S)
Generate nonce Tn, )
my = {m, & Tny}
m, = lmy & Tny) Generate nonce Tn,
Generate nonce Tn, =
m, @O TnJ‘
PUF _out = PUF(n;),i =1,2,..30
PSK' = PUF _ out[PSK]
§' = PUF _out[S]
AID = random()
my = {AID, [PSK _crps}} Me = {"15 52 Tn4]
m, = (m, & Tn.) Generate nonce Tng
Generate nonce T,
Store( AID,C 116, ENC(DK, PSK))
mg = {m, &Tn,} Generate nonce T,

mg & Tn,
h(PUF _CRPs),k=1,2,..30
Store( AID, h(RPs), ENC(BK, PSK))

Figure 2. Registration phase (Secure channel).

Step 1: Device < Broker, my = {my & Tny }.
The Broker generates a random number group n;, pre-shared key PSK, and random
number S containing 30 pieces of information and packages them as m;, then generates
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a random number with the same length as m, performs an XOR operation with it, and
finally sends the obtained result my = m; @ Tn; to the Device.

Step 2: Device — Broker, m3 = {m, @ Tny}.

Upon receiving m;, the Device generates a new random number of the same length as
it and sends its XOR result m3 = my @ Tny back to the Broker over the secure channel.

Step 3: Device < Broker, my = {m3 @ Tnz}.

Upon receiving m3, the Broker generates a new random number of the same length as
it and sends their XOR result my = m3 & Tns back to the Device over the secure channel.

Step 4: Device — Broker, mg = {ms @ Tng}.

The Device receives 14, generates a new random number of the same length, obtains
their XOR result m5 and sends it back to the Broker. The Device computes the PUF response
sequence based on the received random number n;. And use these PUF responses to
generate a new key PSK ‘and a random number S’ Then, the Device generates a random
identifier AID and sends the message 4 containing the identifier AID and the XOR result
of PSK ‘and S’ to the Broker through a secure channel.

Step 5: Device < Broker, my = {mg @ Tns}.

Upon receiving myg, the Broker generates a new random number Tns and sends
the XOR result my; = mg @ Tns of message mg and Tns back to the Device through the
secure channel.

Step 6: Device — Broker, mg = {my @ Tng}.

The Device generates a new random number 1714 and sends the received message 11y
with the XOR result mg = my @ Tng of Tng to the Broker over a secure channel.

Step 7: Broker.

The Broker computes the hash of the PUF CRPs and generates the encrypted key
information ENC(BK, PSK).

At the end of this phase, the device and the Broker will each maintain a record of the
other. Specifically, the device stores <AID, C132, DK & PSK> in NVM and <S> in a secure
storage area. The Broker stores <AID, C-HRPs, BK & PSK> in its database and <S> in a
secure storage area.

4.3. Authentication and Key Exchange Phase

This phase occurs in an open channel between the device and the Broker. To ensure
communication security in an insecure environment, the protocol employs encryption and
authentication mechanisms. The steps are illustrated in Figure 3.

Step 1: Device — Broker, msgl = { AID;, By, By, T1 }.

The device generates a random number N; obtains the current timestamp T;; calculates
B; = N @ h(PSK;, S;, T;), where @ represents XOR operation, h is a hash function, PSK;
is a pre-shared key, and S; is the state of the device; sends msgl = {AID;, By, By, T} } to
the broker.

Step 2: Device < Broker, msg2 = {C;, B3, By, T» }.

The broker verifies the validity of the timestamp by obtaining the current timestamp
T, and checks T, — T; whether it is smaller than the AT. Uses the device AID; to find
relevant data in the database; then, calculates N;/ = B; & h(PSK;, S;, T;), uses the resulting
sum, AID;/ and T;/ hash and checks whether the result is equal with B,/; if not, the protocol
is terminated, the error count is increased by 1, and the system determines whether to
send an alarm to the upper layer. Otherwise, then select a challenge-response to CRP
from the database and generate a random number N; calculate B3 = N}, & h(PSK;, S;, T»)
and By = h(C,hR, N,, Ny, T,); at this point, CRP is marked in the database as used, and
msg2 = {C;, B3, By, Tp } is sent to the device.

Step 3: Device — Broker, msg3 = {Bs, T5}.

The device obtains the current timestamp T; again and checks T, — T; if it is less than
AT; if not, terminate the protocol operation. Otherwise, if the time is valid, the device
removes C |16 (timeout challenge) from the challenge manager CM and makes sure N/
is new. After the device calculates N; = B; @ h(PSK;, S;, T!) and checks the value of B,,
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where N; = B, ® h(PSK;, S;, T/), R" = PUF(C'); the device then computes the new AID;,
PSK;, and SK; device generation B; = h(h(R’),S;, Ny, T;); brings new AIDj; finally, the
device sends msg3 = {Bs, T3} to the broker.

After calculating the new AID;, PSK;, and S;, the device must also store the previous
values of AID;, PSK;, and S;. This ensures that synchronization with the Broker can be
restored in case of a power outage, system restart, or desynchronization attack. The specific
recovery process is as follows: First, the device attempts to send msgl, generated using
the new synchronization data, to the Broker and waits for a response. If no response
is received after three attempts, the device then tries to send msgl generated from the
previous synchronization data. If there is still no response after another three attempts,
the device repeats the process after a waiting period, continuing until synchronization is
successfully restored.

Step 4: Device < Broker, msg4 = {Bg, T4 }.

The broker obtains the current timestamp T, and checks T, — Ti’ if it is less than
AT; if not, terminate the protocol operation. Otherwise, calculate B. = h(hR,S;, Ny, Ti/ );
update AID; = h(AID;, N, ® Ny, hR’) in the database; then, calculate; calculate PSK; =
h(N;, PSK;, hR') and S; = h(N,, Ny, S;); calculate the session key SK; = h(h(N,, N,) @ hR’);
check whether CRP in the database is less than 2; if B, is received, then PUF shuffling is
performed. Last, send msg4 = {Bg, T4} to the device.

Step 5: Next steps (optional).

Once the broker sends msg4, it means that the server finds C-HRPs exhausted. Shuf-
fling is required. Thus, the PUF shuffling phase is entered.

- =
-—t
Device, Broker
Generate nonce N,
Get current timestamp T,
B =N, & h(PSK;,S;,T;) msgl={AID,,B,,B,,T]}
By = W(AID;, N, T}) Get current timestamp T,
IT, —T I< AT

Find ng[éer_ 's date with AIDI.'
N, = B, & h(PSK,,$,,T,)
B,' = h(AID,", N, T,")

Generate nonce N f

B, =N, ©h(PSK_,S,,T.
. msg2 — {CiIB3IB4IT2] 3 b 1( i 2)
Get current timestamp T B, =h(C,hR,N_,N,,T,)
I'T, -T, < AT?
C132 € CM[N]?
Delect C132 from CM[N],N >2
N,'=B, '@ h(PSK,S,,T,"
R' = PUF(C")
B," £ mC'WR)N,_N,"T,")
AID; = h(AID,, N, & N, ,h(R"))
PSK.* = h(N,, PSK., h(R"))

S, =h(N,,N,,S;)
SK; = h(h(N Ny ) D h(R") msg3 = (B, T, } )
B, = h(h(R),S;,N,.,Ty) Get current timestamp T,
IT, ~T, I<AT?
By'L h(hR,S;,N,,T;")

AID, = h(AID,;,N, © N, ,hR")
PSK; = h(N,, PSK,,hR")
8 =h(N,N,,5)
msg4 = (B, T,} SK, —h(h(N”,Nb)»h_hR )<
€ —————— B, = RST, Eg, (h(AID,,S;, PSK}))

Figure 3. Authentication and Key Exchange phase (Unsecure channel).
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4.4. PUF Shuffling Phase

This phase occurs in an insecure channel between the device and the broker. These
steps are shown in Figure 4.

- =
]
Device Broker
. L msg5 = {RST,SK{h(AID, S, PSK)}}
DEC(SK, h(AID, S, PSK))
Verify(h(AID, S, PSK))
Cl16 = {l‘l,rz,...,rBU)
D, = ENC(SK,(C116 & I(PSK & AID©S) 06— (D, D, T, )
D, =h(C116,T5) DEC(SK,(D,,D,,T,))
Verify(D,, D,)
< C=1n.ry, 1)
R = PUF(C)
CRP

C — HRPs = h(CRP)

Figure 4. PUF shuffling phase (Unsecure channel).

Step 1: When the time since the last CRP update exceeds a certain threshold (e.g.,
25 days), or the number of CRPs stored by the broker is less, after completing the AKE
phase above, the broker sends an optional response msg5 = {RST,SK{h(AID, S, PSK)}}.

Step 2: After receiving msgb, the device decrypts the received information with SK to
verify whether the result is equal to h(AID, S, PSK); if they are equal, enter the PUF update
phase, generate 30 16-bit random numbers, and save each 16-bit number as an element to
the array C116. On SET, D; = ENC(SK, (C|16 & h(PSK & AID & S)), Dy = h(C|16, Ts)
(On SET is a circular completion of lack of bits) is calculated, and msg6 = {Dq, Dy, Ts } is
sent to Broker.

Step 3: After receiving it, the Broker decrypts it, verifies it, generates 30 112-bit random
numbers, concatenates them one by one to C 116, forms a complete C, and then sends it to
the device.

After receiving it, the device inputs C one by one into the PUF to obtain R, which is
spliced into CRP and sent to the Broker.

Upon receipt, the Broker validates, hashes all the responses in the new CRP, and
overwrites the resulting CRPs into the database.

At this point, the PUF shuffling phase is complete.

5. Security Verification
5.1. Formal Security Verification

In this paper, the Dolev-Yao attacker model is used for formal analysis, assuming that
the attacker possesses powerful capabilities, such as controlling the network, replaying
messages, and having comprehensive knowledge of the protocol, to test the protocol’s
security in harsh environments. By simulating various attacker operations, the Dolev-Yao
model can evaluate the security attributes of protocols in different scenarios. To further
verify the security of the protocol, this paper introduces the formal verification tool ProVerif,
which can automatically analyze the protocol, detect its resistance to various attacks, and
ensure that the designed security protocol is effective and reliable in practice.

ProVerif is a powerful automated tool for formal verification and analysis of security
protocol attributes. Developed by Bruno Blanchet, ProVerif employs model checking and
theorem-proving methods based on Horn clauses. It can handle an infinite number of
sessions and complex messaging patterns, including encryption and decryption operations.
By modeling the behavior of both the protocol and the attacker, ProVerif generates a series
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of queries to detect potential security vulnerabilities and verify attributes such as confi-
dentiality, authentication, and integrity. Its automation capabilities and wide applicability
make it a popular choice in academic research and the design and evaluation of practical
security protocols. ProVerif can also effectively verify the robustness of protocols against
various attack modes, ensuring resistance to known attack methods. The verification results
are shown in Figure 5.

Verification summary:
attacker(PSK[]) is
attacker(S[]) is
attacker(Resi[]) 1is
attacker(HResi[]) 1is

Query inj-event(BrokerEnd) ==> inj-event(BrokerStart) is

Query inj-event(DeviceEnd) ==> inj-event(DeviceStart) is

Figure 5. Verification result.

The result of this verification is “true” showing some results of this query:

1.  Query not attacker (PSK []) is true: indicates that the pre-shared key (PSK) is not
obtained by the attacker.

2. Query not attacker (S []) is true: the secret S is not obtained by the attacker.

3. Query not attacker (Resi []) is true: the response value Resi is not obtained by
the attacker.

4. Query not attacker (HResi []) is true: indicates that the HResi response value is not
obtained by the attacker.

5. Query inj-event (BrokerEnd) ==> inj-event (BrokerStart) is true: Indicates that if
a BrokerEnd event occurs, a BrokerStart event must also occur. This is a causal
verification, and the result is true, indicating that the causal relationship is valid.

6. Query inj-event (DeviceEnd) ==> inj-event (DeviceStart) is true: If the DeviceEnd
event occurs, the DeviceStart event must also occur. This is a causal verification, and
the result is true, indicating that the causal relationship is valid.

The significance of these verification results is that the security and event-triggering
logic of the system are guaranteed, with all key security properties and event logic validated
in the verification. The formal verification using the ProVerif demonstrates that this protocol
maintains all required security properties under the Dolev—Yao attacker model.

5.2. Informal Security Verification

Informal security verification aims to evaluate and demonstrate the security of a pro-
tocol through logical reasoning and intuitive interpretation. This method does not rely on
complex mathematical proofs but instead focuses on a step-by-step analysis of the proto-
col’s various steps and defense mechanisms, ensuring that each step is protected against
potential attacks. This verification approach helps identify and correct security vulnerabili-
ties at an early stage of protocol design, providing easy-to-understand security assessment
results. The following are the informal security validations for the proposed scheme.

5.2.1. Confidentiality

Once the device is authenticated and a secure connection to the server is established,
all communication data are encrypted using a SK. This ensures that even if the data are
intercepted in transit, a third party without the key cannot interpret the content, thereby
guaranteeing the confidentiality of the data. To further enhance security, the system period-
ically updates the SK. By automatically changing the key after each communication session
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or at regular intervals, the security of new communications remains unaffected even if the
old key is compromised. Additionally, the critical data are encrypted, preventing attackers
from obtaining the plaintext of the critical data, thereby ensuring the confidentiality of
the protocol.

5.2.2. Prevent Replay Attacks

Timestamps and random numbers are employed in the protocol to prevent replay
attacks. In each communication, the device and broker generate new random numbers,
and each message includes the current timestamp. The broker verifies that the difference
between the timestamp in the message and the current time is within the allowed time
window, thereby preventing replay of old messages. Additionally, this protocol uses invalid
flags and delete operations to prevent attackers from using invalid or outdated data in
replay attacks by checking the validity of entries and deleting those that are invalid.

5.2.3. Prevent Man-in-the-Middle Attacks

The two parties in the communication share a PSK and multiple C-HRPs. These
shared data enable both parties to verify each other’s identity during communication.
The uniqueness of PUF technology ensures that each device’s response is unique and
unpredictable, making it impossible for an attacker to spoof the identity authentication of
either party.

5.2.4. Key Compromise Impersonation (KCI) Attack

The non-clonability of the PUF in this protocol ensures that even if the private key is
compromised, an attacker cannot replicate the device’s unique response. Random number
generation and verification ensure the uniqueness and security of each communication,
preventing attackers from exploiting the leaked key. In the proposed protocol, secrets are
stored in different areas. Even if an attacker gains access to the long-term private keys
of both the device and the Broker and successfully recovers the encrypted PSK, they still
cannot calculate critical data, such as the SK and the AID used in the next round, because
they cannot access the secret S stored in the secure area. Therefore, the proposed protocol
can effectively resist KCI attacks and maintain the security of communication.

5.2.5. Perfect Forward Security

Perfect forward security ensures that even if a session key is compromised in the future,
the contents of previous communications remain secure. This protocol ensures both forward
and backward security in the communication process through a multi-level key protection
mechanism. First, the SK is calculated based on various factors such as dynamically
generated random numbers, timestamps, and PUF responses in each communication.
Therefore, even if the SK in one communication is compromised by an attacker, the previous
and subsequent communication content will not be affected because the key used in each
communication is independent.

5.2.6. Prevent Data Tampering

Preventing data tampering is crucial to ensuring the integrity and consistency of
communication data. This paper achieves this goal through a multi-layer design, including
encryption to protect transmitted data, hash verification to detect data integrity, and
the use of timestamps and random numbers to ensure data timeliness and uniqueness.
Additionally, an NVM update mechanism was designed to ensure data consistency after the
device is powered down or restarted, further preventing data tampering. These protocol-
level designs jointly ensure the security and reliability of data during communication.

5.2.7. Privileged Insider Attack

Preventing insider authorization attacks involves protecting against system insiders
who may abuse their privileges to perform unauthorized operations or access sensitive
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information. In the proposed scheme, even if authorized personnel obtain all CRPs stored
in plaintext in the TA database during the AKE phase, they still cannot calculate other
critical data because they cannot access the PSK and secret S. As a result, they cannot
intervene in or influence the negotiation process between any entities. Furthermore, even
if an authorized attacker attempts to obtain sensitive information by eavesdropping on
the secret channel during the registration phase, they will not succeed. This is because,
during the registration phase, the proposed protocol uses XOR operations to encrypt
each transmitted data, ensuring that no plaintext is transmitted over the channel. Even
if the attacker eavesdrops, they cannot obtain all the parameters needed to calculate the
critical data. Therefore, the proposed scheme demonstrates strong resistance to insider
authorization attacks.

5.2.8. Mutual Authentication

During AKE, the Broker authenticates the device’s identity by sending a PUF challenge
and verifying the device’s PUF response. In turn, the device verifies the Broker’s identity
by checking the PSK sent by the Broker and the parameters calculated using secret S.
This two-way verification mechanism ensures the authenticity of both parties’ identities,
achieving the security goal of two-way authentication.

5.2.9. Device Anonymity and Untraceability

Each time a device authenticates, a one-time temporary identity AID is generated
based on the random challenge of the current session. This ensures that even if multiple
communications from the same device are intercepted, an attacker cannot correlate them
to identify the specific device. Additionally, during the authentication process, the pro-
tocol verifies identity through the device’s PUF response without directly conveying any
fixed identity information. Because PUF responses are physically based and unique, they
inherently provide a layer of anonymity to the device.

Untraceability refers to the ability to protect a device’s identity from being identified
and tracked by an attacker analyzing communication data across multiple interactions.
In the proposed protocol, all parameters transmitted over the insecure channel change
with each round of communication, preventing an attacker from tracing the same de-
vice by eavesdropping on fixed parameters during different rounds of protocol execu-
tion. This mechanism enables the protocol to achieve untraceability, effectively protect-
ing the device’s privacy and preventing its identity from being tracked and identified
during communication.

5.2.10. Resist Modeling Attack

A modeling attack involves collecting the input and output data of a device to build
a model that predicts and falsifies the response of the PUF. In this paper, in the proposed
protocol, the PUF response is neither transmitted in plaintext over the channel nor directly
stored in the Broker’s database. Instead, the Broker’s database stores the hashed PUF
response data. As a result, even if an attacker eavesdrops on the communication channel or
gains access to all the data in the database, they still cannot retrieve the original PUF’'s CRPs
of the device. Due to the uniqueness and unpredictability of the PUF response, and the fact
that it is never exposed in plaintext, an attacker cannot fabricate the device’s PUF response
by modeling the acquired data. This design greatly enhances the protocol’s resistance
to modeling attacks, ensures the security of device identity authentication, and further
improves the overall protection level of the system. By leveraging this mechanism, the
proposed protocol effectively prevents attackers from reconstructing and mimicking the
device’s behavior through eavesdropping or data leakage, thereby ensuring the reliability
and security of the device authentication process.
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5.2.11. Resist Desynchronization Attack

An anti-desynchronization attack aims to prevent an attacker from interfering or
tampering with data during communication, which could result in inconsistent information
between the device and server, rendering the protocol invalid. This paper primarily
addresses the data update issue in the third step of the protocol. If a desynchronization
attack occurs, the device and server may store inconsistent keys, random numbers, or other
critical data, leading to failures in subsequent authentication or communication processes.

The QoS mechanism of the MQTT-SN protocol enables the device to detect desynchro-
nization in a timely manner. Specifically, if the device does not receive an ACK response
after sending msg3, it recognizes that msg3 may not have been delivered correctly and
immediately attempts to resend the AKE request with updated data. If the server remains
unresponsive after more than three retries, the device will attempt to resend the AKE
request using parameters such as PID and S from the previous round. Through this mecha-
nism, even if desynchronization occurs between the device and the Broker due to msg3 loss,
the protocol can restore synchronization using the steps described above, ensuring con-
tinuous and reliable communication. This design not only effectively addresses potential
desynchronization attacks but also maintains data consistency between the device and the
server during communication, thereby enhancing the protocol’s robustness and security.

5.2.12. Denial of Service (DoS) Resistance

DoS resistance is a security measure designed to prevent system resources from being
exhausted by detecting and blocking a large number of invalid or malicious requests,
thereby ensuring the availability and stability of services. In general, security protocols
alone are typically insufficient to resist DoS attacks directly and often require the combi-
nation of additional software and hardware defense measures. However, the proposed
protocol makes a proactive attempt to resist DoS attacks. Specifically, the protocol intro-
duces a fail-stop mechanism, which halts its operation as soon as an error is detected. This
design endows the protocol with a certain level of “attack-awareness.” For example, during
the AKE phase, if the protocol receives msgl with constant parameters multiple times, it
can detect that a replay attack may be occurring.

To further mitigate the impact of DoS attacks, the protocol tracks the frequency of
errors of the same type. If the same type of error occurs frequently within a short period,
the protocol will temporarily block the channel, reducing the risk of DoS attacks caused
by a large volume of error messages. By actively sensing and responding to abnormal
behaviors at the protocol level, the protocol can mitigate the impact of DoS attacks and
enhance the system’s overall resilience. Although this design cannot completely prevent
DoS attacks, it enhances the protocol’s robustness and its ability to resist attacks.

5.2.13. Intrusion Detection

In this paper, we explore and implement an intrusion detection mechanism within
the security protocol design, aiming to enhance communication security in the IIoT en-
vironment. Specifically, the protocol achieves monitoring and defense against potential
intrusions through multi-level security measures. First, the protocol employs a timestamp
and random number mechanism to ensure the uniqueness and timeliness of each commu-
nication, allowing for the detection of abnormal behaviors such as replay attacks or data
tampering. Second, the protocol includes an error counter that triggers security measures
when abnormal operations are detected repeatedly. These measures may include blocking
further communication or renegotiating security parameters to prevent potential intrusions.

Additionally, the PUF mechanism in the protocol is not only used for security authen-
tication and key generation but also for error correction to identify and exclude abnormal
outputs caused by physical attacks or environmental interference. Together, these measures
form a dynamic and sensitive intrusion detection system, enabling the protocol to respond
to and address various potential security threats in a timely manner, thereby enhancing the
overall protection and robustness of the system.
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5.2.14. Desynchronization Attack

A desynchronization attack is a method that disrupts the communication process
between a device and a server, causing their states or data to become unsynchronized.
This can result in failed subsequent communications or authentication attempts. Generally,
desynchronization does not occur easily because the QoS mechanism of MQTT-SN ensures
reliable message delivery. However, in the AKE phase of the proposed protocol, if the device
does not receive an ACK acknowledgment for msg3, it will recognize the situation and
immediately recompute msgl using the last known synchronization data, thereby restarting
the handshake process. If the device fails to receive msg3 multiple times consecutively, it
can reasonably infer that a desynchronization attack may have occurred. In this case, the
device can pause further computation and transmission of msgl and consider reporting
the anomaly to the upper layer.

Additionally, if the device fails to receive msg3 due to a power outage or an un-
successful restart and is uncertain whether the Broker has updated the synchronization
parameters, it will first attempt to compute msgl with the latest synchronization data and
send a new request. If there is no response from the Broker after three consecutive attempts,
the device will then recompute and resend msg1 using the previous synchronization data.
If no response is received after three more attempts, the device may conclude that the
channel is blocked and repeat the process after a delay. This approach ensures that the
device can withstand active or passive desynchronization attacks by utilizing a recovery
synchronization mechanism in the event of such attacks or other abnormal conditions,
thereby maintaining the protocol’s robustness and security.

In this chapter, we first conduct a comprehensive evaluation of the proposed proto-
col through formal security verification and informal security analysis. These analyses
not only confirm the protocol’s effectiveness in defending against various attacks (such
as desynchronization attacks and DoS attacks) but also demonstrate its robustness and
adaptability in practical application scenarios. Based on this, we will further conduct a
detailed comparison of the protocol’s security and performance to evaluate its feasibility
and superiority in practical applications. This comparison will help clarify the protocol’s
performance under different security requirements and provide an important reference for
future optimization and application.

6. Security Analysis and Performance Comparison

In this chapter, we conduct a comprehensive analysis and comparison of the security
and performance of the protocols. First, the protocol’s effectiveness against various attacks
is evaluated. Second, we compare the protocol with existing similar protocols to analyze its
performance in terms of computational overhead, communication efficiency, and overall
security. Through this analysis, we aim to verify the feasibility and superiority of the
protocol’s design for practical application in the IIoT environment, providing a reference
for further optimization and expansion.

6.1. Security Analysis

In this Section, we compare the security of the protocol with similar schemes and
evaluate its reliability and resistance to attacks in practical applications by analyzing each
security feature individually. The security comparison is presented in Table 2.

The comparison results above demonstrate that our protocol offers superior security
compared to similar schemes.
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Table 2. Security comparison.

Security Property Scheme [19] Scheme [18] Scheme [17] Scheme [16] Our Scheme

Resist replay attacks Vv Vv Vv Vv Vv
Resistance to man-in-the-middle

attacks v v v v v
Resist KCI attacks X X X X v
Modeling attack resistance X X Vv X v
Resist desynchronization attacks Vv Vv Vv X Vv
Resisting DoS attacks Vv Vv X X v
Perfect forward safety v Vv Vv v v
Device anonymity Vv Vv X X v
Untraceability Vv Vv X X v
Expandability X X vV X v

6.2. Performance Comparison

In this Section, we analyze and compare the performance of the proposed scheme,
focusing primarily on computing overhead and communication overhead.

6.2.1. Computation and Communication Cost Evaluation

We also compare the proposed protocol with a similar protocol [17-20] and assume
that the length of the parameters is shown in Table 3.

Table 3. Each parameter conforms to and length.

Parameters Conforms Length (bit)
Identification ID 64
Random number n 128
Timestamp T 32
Challenge C 128
Response R 128
Hash calculation result H 128
XOR calculation result XOR The longest between two operands
Elliptic curve cryptography ECC 160

Generally, when elliptic curve points are used as calculation parameters in a security
scheme, only the X-coordinate value is utilized as the operand. This approach is also
employed in this paper.

In addition, the symbols and time required for each cryptographic operation are shown
in Table 4.

Table 4. Symbols and running time of each operation.

Arithmetic Symbols Time (ms)
Hash computation T, 0.03
Random number Tr 0.035
Symmetric encryption/decryption algorithms T 0.075
PUF module Ty 0.15
MASK/UNMASK functions Tm 0.686
Helper functions Tr 0.036
Run time for error correction function recovery TrEREP 2.85

Therefore, the total computational cost of the protocol in this paper is 0.58 ms, and the
communication overhead of both parties is 608 bits (76 bytes). The comparison results with
other protocols proposed in the literature are shown in Tables 5 and 6.
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Table 5. Comparison of the computational cost of similar schemes.

Schemes

Initiator Responder Total

Scheme [18]
Scheme [17]
Scheme [19]
Scheme [16]
Our scheme

AT}, + 2T, + 2Ty 2T}, + T, + 2Ty 6T) + 3T, + 4Ty
2T, + 8TF + 2Tg 8Tr + 2T 2T, + 16TF + 4Tg
5Ty + Tp +3Tr 5Ty + 2Ty + Tr 10Ty + 3Ty +4Tr
11Th+Tli +TR+TFE.REP 10Th +Tp +TFE.REP 21Th +2Tp +T[{ +2TFE.REP
6T, + Ty + Tr 6Ty, + Tr 12T, + Ty + 2Tg

Table 6. Comparison of the communication overhead of similar schemes.

Schemes Communication Overhead Number

Scheme [18 dI+21HI
Scheme [17 ®I

Scheme [19 @1 +4 1 ECCI
Scheme [16 d1+31HI

Our scheme PI+3IHI+3ITI+IClI

[l e R
W W s NNW

Table 5 shows a comparison of the computational costs of similar schemes, while
Table 6 shows a comparison of the corresponding communication costs and the number
of interactions. Through the analysis of these two sets of data, the performance of each
scheme can be evaluated more comprehensively.

Analysis of Tables 5 and 6 reveals that this scheme offers significant advantages in
both computation and communication overhead. Compared to other schemes, this scheme
not only maintains low computing costs but also significantly reduces communication costs
and interaction times. This balance makes the scheme more efficient in practical applica-
tions, particularly in scenarios sensitive to resource consumption and requiring efficient
communication. Therefore, this scheme demonstrates excellent overall performance and is
well-suited for prioritization in various application scenarios.

6.2.2. Computation versus Communication Cost Comparison

The comparison of communication and computation costs for each scheme is illus-
trated in Figure 6. This protocol incurs the lowest costs in both categories while also offering
superior security and applicability.

Computational Cost(ms) Communication Overhead(bit)

our scheme [l 058 our scheme _ 928
Bian,Wet a1.2020 | N <55 Bian, Wet a1.2020 | RN (02
Qureshi M Azet 212021 | 745 QureshiM.Asetal2021 [ (405
Huang Kieta1.2020 I 1.016 Huang, Ket 212020 | R (26
Wang, Zet a1.2022 [ 093 Wang Zeta12022 [ N s

1 2 3 4 5 6 7 8 0 200 400 600 800 1000 1200 1400 1600

(a) (b)

Figure 6. Calculation cost and communication overhead comparison. (a) The comparison of computa-
tion costs for each scheme. (b) The comparison of communication overhead for each scheme [16-19].

In summary, this paper presents a comprehensive security analysis and performance
comparison of the proposed M2M security protocols for IIoT. These analyses reveal the
strengths and weaknesses of each scheme in defending against various attack types, such
as replay attacks, modeling attacks, and side-channel attacks, and also evaluate their
performance in terms of computation, storage, and communication overhead. Based on
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the data in the chart, our scheme performs well in terms of computational overhead,
with a time of only 0.58 milliseconds, which is at least 43% faster than other similar
schemes. In terms of communication overhead, our scheme reduces the communication
cost by about 10% compared to the closest competing scheme. These evaluations provide
a more complete understanding of the applicability and limitations of these protocols in
real-world applications.

7. Conclusions

This paper proposes an authenticated and encrypted channel establishment scheme
based on lightweight PUF technology to enhance the security of the MQTT-SN protocol in
the IoT environment. By integrating hardware security features and modern encryption
technology, the scheme effectively addresses the security and privacy challenges in IoT
device communication and demonstrates significant advantages.

First, this paper designs a lightweight security protocol that uses PUF technology to
generate unpredictable responses, combines XOR operations and hash functions to achieve
mutual authentication and secure communication between the device and the Broker, and
maintains low computation and communication overhead in resource-constrained environ-
ments. Second, formal verification is conducted using the ProVerif tool, combined with
informal analysis, to demonstrate the protocol’s effectiveness in resisting common security
threats such as replay attacks, man-in-the-middle attacks, and impersonation attacks. Third,
the scheme emphasizes the anonymity and untraceability of the device, ensuring that it
cannot be identified or tracked by an attacker across different communication rounds,
thereby effectively protecting the device’s privacy. Finally, the comprehensive fail-stop
feature enhances the protocol’s attack awareness, allowing the system to quickly respond
and send an alarm signal when an attack is detected, enabling timely defensive measures.

In terms of practical performance, the proposed protocol demonstrates excellent ef-
ficiency, with a total computation cost of only 0.58 milliseconds and a communication
cost of 608 bits (76 bytes). Compared to similar schemes, the proposed protocol reduces
computational cost by at least 43% and communication cost by approximately 10%. These
quantitative results verify the efficiency and feasibility of the proposed scheme in practical
applications, particularly for resource-constrained IoT devices. In conclusion, the proposed
PUF-based MQTT-SN protocol provides an efficient and secure solution for IoT commu-
nication, fully demonstrating the significant potential of PUF technology in enhancing
IoT security.

While this paper has delved into the security challenges of the MQTT protocol within
the M2M context of the Client/Server architecture, there are numerous uncharted territories
within the IIoT that warrant further exploration. Our future endeavors will extend to
encompass a broader spectrum of scenarios, including multicast communication, Device-
to-Device (D2D) interactions, and the unique constraints of resource-limited IloT settings.
To this end, we intend to leverage a suite of advanced, yet lightweight, cryptographic
methodologies. Our overarching objective is to cultivate a suite of security protocols
that are not only robust but also adaptable to the diverse and evolving demands of the
IIoT landscape.
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