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Abstract: We derive the stabiliser group of the four-vector, also known as Wigner’s little group,
in case of massless particle states, as the maximal solvable subgroup of the proper orthochronous
Lorentz group of dimension four, known as the Borel subgroup. In the absence of mass, particle
states are disentangled into left- and right-handed chiral states, governed by the maximal solvable
subgroups sol±2 of order two. Induced Lorentz transformations are constructed and applied to
general representations of particle states. Finally, in our conclusions, it is argued how the spin-flip
contribution might be closely related to the occurrence of nonphysical spin operators.
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1. Introduction

As neutrino oscillations are observed in experiments, it seems obvious that all fermions
carry a mass. Even though the mass spectrum reaches from small fractions of eV for
neutrinos up to 175 GeV for the top quark, a hierarchy waiting still for an explanation,
the fact that a fermion carries a mass allows going to the rest frame of the particle and
observing both left-handed and right-handed states.

Therefore, the concept of massless fermions, moving with the speed of light, has to
be considered as an approximation. This approximation holds true if some of the masses
of fermions interacting in a perturbative calculation can be neglected compared to other,
larger fermion masses. However, while assuming a fermion to be massless, one not only
obtains an essential simplification of the calculation but also different symmetries, which
are not given for fermions with small but finite mass. As an example, the breakdown
of these symmetries can cause spin-flip effects where the result of the mass-zero limit
differs from the result for massless fermions [1–11]. This effect can be understood as a
discontinuity in freezing the spin of the fermion. However, to the best of our knowledge, a
deeper understanding of these effects is still missing.

In this paper, we analyse the structure of Wigner’s little group for massless particles by
adding a small but essential degree of freedom, given by the fact that the momentum vector
of a massless particle defines a projective space. In doing so, we come to the conclusion
that the stabiliser subgroup is not given by a semisimple group as for massive particles but
by a solvable group. In Section 2, we give details on the Borel subgroup as the maximal
solvable subgroup describing the stabiliser. In Section 3, we deal with the representation
space in terms of common eigenvectors which, in a natural way, leads to the split-off of the
representation space into left- and right-handed parts, described as a Kronecker sum in
Section 4. The two-dimensional subspaces are governed by the solvable groups sol−2 and
sol+2 which are expressed in terms of the Chevalley basis in Section 5. Finally, in Section 6,
we give our conclusions and present an outlook on how the Weyl equations for these
massless states can be combined to a Dirac equation for fermions with mass.
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1.1. Analysis of Wigner’s Little Group

In his paper “Sur la dynamique de l’électron” from July 1905 [12], Henri Poincaré
formulated the “Principle of Relativity”, introduces the concepts of Lorentz transformation
and the Lorentz group, postulating the covariance of the laws of nature under Lorentz
transformations. The full Lorentz group is a six-dimensional, noncompact and non-abelian
real Lie group which is not connected. The four connected components of this group
are related to each other via discrete transformations (parity and time reversal). None
of these components are simply connected. In describing physics, one usually considers
the component connected to the identity, called the proper orthochronous Lorentz group
Lor(1, 3).

An important subgroup of Lor(1, 3) that preserves a given four-vector p is Wigner’s
little group. For p describing the momentum of a massive particle, the condition Λp p = p
for the elements Λp of the little group can be solved in the rest frame of the particle where
the normalised momentum vector is given by p̂ = (1; 0, 0, 0)T , leading to the block structure

Λ̂p =

(
1 0⃗T

0⃗ D

)
= Rp, (1)

where DDT = 13 = DT D. Therefore, the little group of a massive particle is isomorphic to
SO(3). However, for a massless particle, the momentum vectors p = (1; 0, 0, ε) with ε = ±1
for a movement along the z axis are projective vectors. Therefore, solving the generalised
equations Λp = λp and ΛTηp = λ−1ηp for p = (1; 0, 0, ε) with a general value of ε and the
Minkowskian metric η = diag(1;−1,−1,−1) via the block ansatz

Λ =

(
A B⃗T

C⃗ D

)
(2)

leads to εB3 = λ − A, εC3 = A − λ−1, εD33 = ελ − C3, and εD33 = B3 + ελ−1. The two last
conditions are in agreement if and only if

ε2λ − A + λ−1 = λ − A + ε2λ−1 ⇔ (1 − ε2)(λ − λ−1) = 0. (3)

This equation marks the point where two different paths are possible to follow: for
λ = λ−1 = 1 (λ > 0 for the proper orthochronous Lorentz group), one ends up again
with Wigner’s little group SO(3). For massless particles, however, one has ε2 = 1 and,
therefore, one can keep λ > 0 arbitrary, ending up with the Borel subgroup explained in
the following.

1.2. Justification of the Extension

The introduction of an extension of Wigner’s little group needs justification. Wigner
introduced the little group as a stabiliser group with respect to the momentum vector p.
However, because the four-length of the momentum vector for a massless particle is zero
and, therefore, the multiplication of this vector with an arbitrary scale does not change
the physics of this particle, the physical situation is better described by a projective space.
The existence of an invariant subspace is guaranteed by the Lie–Kolchin theorem,

Lie–Kolchin Theorem: If G is a connected and solvable linear algebraic group defined over an
algebraically closed field and ρ : G → GL(V) is a representation on a nonzero finite-dimensional
vector space V, then there exists a one-dimensional linear subspace L of V such that

ρ(G)(L) = L. (4)

In 1956, Armand Borel generalised the Lie–Kolchin theorem as a fixed-point theorem for
algebraic varieties [13] and, therefore, also for a projective space.
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Borel Fixed-Point Theorem: If G is a connected, solvable algebraic group acting regularly on a
non-empty, complete algebraic variety V over an algebraically closed field, then there exists a fixed
point of V.

As expressed by Equation (3), the projectivity of the fixed-point is broken if ε2 < 1, i.e.,
if the particle gains mass. In this case, we fall back to Wigner’s little group. The extension
can also be understood on the level of Lie algebras, as for massless particles the interchange
of the space and time components of the momentum vector is an additional symmetry
that is absent for massive particles. Note that in this context E(2), as the little group for
massless particles proposed by Wigner, is also a solvable group, though not maximal.

2. The Borel Subgroup Bor(1, 3; p)

From now on, we use ε only as the sign of the momentum 3-component. The fact
that the momentum vector p ∼ (1; 0, 0, ε) for a massless particle is symmetric (up to the
sign ε = ±1) under the interchange of the first and the last component gives an additional
element of the algebra which is missing so far in Wigner’s little group. In order to see
this, one can find solutions for the character problem (summation over repeated indices
is implied)

Λµ
ν(p)pν = λ(Λ)pµ. (5)

Solving this problem for the Lorentz matrix Λp = (Λµ
ν(p)) with ΛT

p ηΛp = η (the matrix is
transposed (indicated by the upper index T) for visualisation reasons only) one obtains

Λp =


cosh t + 1

2 e−t(u2 + v2) εu εv ε(sinh t + 1
2 e−t(u2 + v2))

ε(u cos w − v sin w) cos w − sin w u cos w − v sin w
ε(u sin w + v cos w) sin w cos w u sin w + v cos w

ε(sinh t − 1
2 e−t(u2 + v2)) −u −v cosh t − 1

2 e−t(u2 + v2)


T

, (6)

where we have chosen λ = et and introduced three additional parameters u, v, and w.
Expanding in these parameters one obtains Λp ≈ 14 + Tt + Uu + Vv + Ww, where

T =
∂Λ
∂t

∣∣∣
0
=


0 0 0 ε
0 0 0 0
0 0 0 0
ε 0 0 0

, U =
∂Λ
∂u

∣∣∣
0
=


0 ε 0 0
ε 0 0 −1
0 0 0 0
0 1 0 0

,

V =
∂Λ
∂v

∣∣∣
0
=


0 0 ε 0
0 0 0 0
ε 0 0 −1
0 0 1 0

, W =
∂Λ
∂w

∣∣∣
0
=


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

, (7)

and the lower index “0” symbolises the initial value t = u = v = w = 0. T, U, V, and W
are generators of the maximal solvable Lie subgroup of Lor(1, 3), i.e., the Borel subgroup
Bor(1, 3; p) ⊂ Lor(1, 3). For the corresponding Lie algebra g = span

R
{T, U, V, W} =

bor(1, 3; p) one easily obtains

[T, U] = U, [T, V] = V, [W, U] = −V, [W, V] = U, (8)

with all other commutators being zero. Accordingly, one has [g, g] = span
R
{U, V} and

[[g, g], [g, g]] = 0 such that g is solvable. Note that the element (6) of the Borel subgroup
Bor(1, 3; p) is given by a polar decomposition, i.e., it can be restored by calculating

Λp = exp(Uu + Vv) exp(Tt + Ww). (9)

Because [T, W] = 0, one has exp(Tt) exp(Ww) = exp(Tt + Ww) = exp(Ww) exp(Tt).
The two parts of the second exponential factor commutate with each other. They constitute
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the maximal torus Tor(1, 1; p) describing the transformations that leave the direction of
the momentum vector p invariant: a boost directed along the z axis described by exp(Tt)
and a rotation about the z axis described by exp(Ww). However, these two factors do not
commute with the first exponential factor Λu,v := exp(Uu + Vv) which constitutes the
physically nontrivial part T (2; p) of the Borel subgroup (translations),

Λu,v = exp


0 εu εv 0
εu 0 0 −u
εv 0 0 −v
0 u v 0

 =


1 + 1

2 (u
2 + v2) εu εv − 1

2 ε(u2 + v2)
εu 1 0 −u
εv 0 1 −v

1
2 ε(u2 + v2) u v 1 − 1

2 (u
2 + v2)

. (10)

Note that due to the solvability, the series expansion breaks at the second order. Together,
these two parts of the polar decomposition of Λp represent the Borel subgroup as a semidi-
rect product,

Bor(1, 3; p) = T (2; p)⋊ Tor(1, 1; p). (11)

A Bridge from Massive to Massless

Even though the main emphasis of this paper is on the independent treatment of the
little group of massless particles as the maximal noncompact solvable subgroup of the
proper orthochronous Lorentz group, there is still a way to find a bridge connecting this part
of the Lorentz group to the maximal compact simple subgroup, which is quite remarkable.
Starting with a massive particle, in the rest frame of this particle, a proper orthochronous
Lorentz transformation Λ̂p = Br,s,tRu,v,w can be written as a polar decomposition of the
Wigner rotation matrix Ru,v,w followed by a boost Br,s,t, where

Br,s,t = exp


0 r s t
r 0 0 0
s 0 0 0
t 0 0 0

, Ru,v,w = exp


0 0 0 0
0 0 w −u
0 −w 0 −v
0 u v 0

. (12)

The transformation to the laboratory frame where the momentum vector of the particle is
given by p is performed with the help of the boost matrix Bp = B0,0,εξp parametrised by the
momentum vector p,

Bp = exp


0 0 0 εξp
0 0 0 0
0 0 0 0

εξp 0 0 0

 =


cp 0 0 εsp
0 1 0 0
0 0 1 0

εsp 0 0 cp

, (13)

where cp = cosh ξp and sp = sinh ξp with a rapidity of ξp. Accordingly, the proper
orthochronous Lorentz transformation in the laboratory frame is given by

Λp = BpBr,s,tRu,v,wB−1
p = BpBr,s,tB−1

p BpRu,v,wB−1
p . (14)

For the generic Lie algebra element generating the boost Br,s,t one obtains

Bp


0 r s t
r 0 0 0
s 0 0 0
t 0 0 0

B−1
p =


0 cpr cps t

cpr 0 0 −εspr
cps 0 0 −εsps
t εspr εsps 0

. (15)

Because cp, sp → ∞ in the massless limit, r and s (but not t) have to be renormalised in
order to obtain a finite matrix BpBr,s,tB−1

p . This can be performed by replacing r by xr and
s by xs where xcp = xsp → 1 in the massless limit x → 0. Raising the generic element in
Equation (15) to the exponent, one obtains Bxr,xs,t = BxrBxsBt, where the exponential factors
Bxr and Bxs factorise and commute with each other and with the remaining factor Bt due to
the smallness of the renormalised parameters xr and xs. The factor Bt describes a boost
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along the z axis. Compared to the boost Bp in the same direction, the former is negligible in
the massless limit. Therefore, one can replace Bp with BpB−1

t = B−1
t Bp and obtain

Λp = BpBεxrBεxsB−1
p BpRu,v,wB−1

p Bt → Λεr,εsBpRu,v,wB−1
p Bt. (16)

Because of the renormalisation, BpBxrBxsB−1
p is finite in the massless limit and gives Λεr,εs,

which can be seen by comparing the result of the exponentiation with Equation (10).
Looking at the second main factor in Λp, a similar consideration can be made for

BpRu,v,wB−1
p Bt. Starting from

Bp


0 0 0 0
0 0 w −u
0 −w 0 −v
0 u v 0

B−1
p =


0 εspu εspv 0

εspu 0 w −cpu
εspv −w 0 −cpv

0 cpu cpv 0

, (17)

u and v (but not w) have to be renormalised, again using x with xcp = xsp → 1. Raising
the generic element in Equation (17) to the exponent, one obtains Rxu,xv,w = RxuRxvRw
where all three factors again commute with each other. As Rw also commutes with B−1

p ,
this factor can be pulled out, and the remaining product BpRxuRxvB−1

p gives Λu,v in the
massless limit. Therefore, in this limit, Λp will decay into

Λp → Λεr,εsΛu,vRwBt, Rw = exp(Ww), Bt = exp(Tt). (18)

In this product, Λu,vRwBt constitutes the generic element of the Borel subgroup Bor(1, 3; p)
and Λεr,εs constitutes the rest class Lor(1, 3)/ Bor(1, 3; p). To conclude, the little groups of
massive and massless particles are connected by a singular transformation, induced by an
infinitesimal boost, interpreted as contraction in the sense of Inonu and Wigner [14].

3. Common (Pseudo)eigenvectors

The exponential representation (9) is a special case of the representation

Λ(ω) = exp
(
−1

2
ωαβeαβ

)
(19)

of the full Lorentz group where (eαβ)µ
ν = ηα

νηβµ − ηαµηβ
ν, η = diag(1,−1,−1,−1).

Of course, the generators T, U, V, and W can then be expressed in terms of eαβ,

T = −εe03, U = e31 − εe01, V = e32 − εe02, W = e12 (20)

with the non-vanishing parameters εω03 = εω30 = t, εω01 = εω10 = ω13 = −ω31 = u,
εω02 = εω20 = ω23 = −ω32 = v, and ω21 = −ω12 = w. For technical reasons, instead of
{T, U, V, W} we may use the notation {Tε

0, Tε
1, Tε

2, T3} = {Tε
i }3

0 in the following. The upper
index ε indicates the dependence on ε, where T−ε

0 = −Tε
0 and T−ε

3 = Tε
3. Because Tε

3 = W
does not depend on ε, one can skip the index in this case.

According to Lie’s theorem, a solvable algebra has a single common eigenvector.
Solving the equations Tε

i ℓ0 = λ
(0)
i ℓ0 (i = 0, 1, 2, 3), one obtains

ℓ0 = (1; 0, 0, ε)T/
√

2, λ
(0)
0 = +1, λ

(0)
1 = 0, λ

(0)
2 = 0, λ

(0)
3 = 0. (21)

Not very surprisingly, the common eigenvector is given simply as p. In order to specify the
defective matrices T̂ε

i of the solvable algebra, the equations
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Tε
i ℓ1 = λ

(1)
i ℓ1 + γ0

1iℓ0

Tε
i ℓ2 = λ

(2)
i ℓ2 + γ1

2iℓ1 + γ0
2iℓ0

Tε
i ℓ3 = λ

(3)
i ℓ3 + γ2

3iℓ2 + γ1
2iℓ1 + γ0

2iℓ0 (22)

are solved in a step-wise manner to obtain a system of pseudo-eigenvectors and -eigenvalues.
Collecting all these equations in a single equation, after some normalisation one obtains

Tε
i P = P


λ
(0)
i γ0

1i γ0
2i γ0

3i
0 λ

(1)
i γ1

2i γ1
3i

0 0 λ
(2)
i γ2

3i
0 0 0 λ

(3)
i

, P =
1√
2


1 0 0 −ε
0 1 i 0
0 i 1 0
ε 0 0 1

, (23)

where P = (ℓ0, ℓ1, ℓ2, ℓ3) is rearranged in order to be unitary, P−1 = P†. Turning back to
the original notation, one obtains TP = PT̂, UP = PÛ, VP = PV̂, and WP = PŴ, where

T̂ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

, Û =


0 ε iε 0
0 0 0 −1
0 0 0 i
0 0 0 0

,

V̂ =


0 iε ε 0
0 0 0 i
0 0 0 −1
0 0 0 0

, Ŵ =


0 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 0

 (24)

are upper triangular forms of the four generators.

Generating the (Pseudo)eigenvectors

Even though the four generators have only a single common eigenvector, this is not
the case for the generic element Λp ∈ Bor(1, 3; p) in Equation (6). Solving the fourth-
order equation det(Λp − λ1) = 0 for λ leads to λ ∈ {et, eiw, e−iw, e−t}. The corresponding
system of eigenvectors can be calculated. However, here we give a more elegant method to
calculate this system of eigenvectors. Using the exponential representation (9) and

(Uu + Vv)P = P(Ûu + V̂v), (Tt + Ww)P = P(T̂t + Ŵw), (25)

one obtains Λp = PKu,vKt,wP−1 with unipotent Ku,v = exp(Ûu + V̂v) and semisimple
Kt,w = exp(T̂t + Ŵw),

Ku,v =


1 ε(u + iv) ε(v + iu) −ε(u2 + v2)
0 1 0 −u + iv
0 0 1 −v + iu
0 0 0 1

, Kt,w =


et 0 0 0
0 eiw 0 0
0 0 e−iw 0
0 0 0 e−t

. (26)

Because Kt,w is a diagonal matrix containing the four eigenvectors, the system of eigenvec-
tors is given by the matrix Q obeying ΛpQ = QKt,w. Inserting Λp = PKu,vKt,wP−1 into this
eigenvalue equation, after some rearrangements, one obtains

P−1Q = Ku,vKt,wP−1QK−1
t,w. (27)

This equation for the unknown quantity P−1Q can be solved iteratively, starting with
P−1Q = 1, i.e., Q = P. The iterative solution can be shown to converge to
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P−1Q =



1
ε(u + iv)
1 − et−iw

ε(v + iu)
1 − et+iw

−ε(u2 + v2)

(1 − et−iw)(1 − et+iw)

0 1 0
−u + iv
1 − et+iw

0 0 1
−v + iu
1 − et−iw

0 0 0 1


. (28)

Multiplying with P from the left, one finally obtains the system of eigenvectors

Q =
1√
2



1
ε(u + iv)
1 − et−iw

ε(v + iu)
1 − et+iw −ε − ε(u2 + v2)

(1 − et−iw)(1 − et+iw)

0 1 i
−u + iv
1 − et+iw + i

−v + iu
1 − et−iw

0 i 1 i
−u + iv
1 − et+iw +

−v + iu
1 − et−iw

ε
u + iv

1 − et−iw
v + iu

1 − et+iw 1 − ε(u2 + v2)

(1 − et−iw)(1 − et+iw)


. (29)

Expressed in a slightly philosophical manner, one can say that starting from the very sparse
boundary of four defective matrices, the Lie algebra (in this case, the Borel subalgebra)
knits the sweater Q for the Lie group in a straightforward, iterative way.

4. Kronecker Sum of Solvable Algebras

Although we were able to analyse the solvable algebra bor(1, 3; p), the representation
in terms of the generators T, U, V, and W is not the best one to see the structure of this
algebra. Therefore, we use a second one, namely

Jε
3 =

1
2
(−T − iW), Jε

− =
1
2
(−U + iV),

Kε
3 =

1
2
(T − iW), Kε

+ =
1
2
(U + iV), (30)

obeying

[Jε
3, Jε

3] = 0, [Jε
3, Jε

−] = −Jε
−, [Jε

−, Jε
−] = 0,

[Kε
3, Kε

3] = 0, [Kε
3, Kε

+] = Kε
+, [Kε

+, Kε
+] = 0 (31)

and [Jε
3, Kε

3] = [Jε
3, Kε

+] = [Jε
−, Kε

3] = [Jε
−, Kε

+] = 0. The first justification for the sign notations
for Jε

− and Kε
+ is given by the commutator relations (31). In terms of the pairs {Jε

3, Jε
−} and

{Kε
3, Kε

+} of generators, bor(1, 3; p) can be rewritten as a Kronecker sum sol−2 ⊞ sol+2 of two
two-dimensional solvable algebras, as will be detailed in the following.

4.1. Weyl’s Unitary Trick

A deeper look at this change of representation unveils that this change is actually
a composition of several steps. In order to illustrate these steps, one can start again
with the proper orthochronous Lorentz group Lor(1, 3) ⊂ SO(1, 3), the elements of
which are given by the exponential representation (19) where (eαβ)µ

ν = ηα
νηβµ − ηαµηβ

ν,
η = diag(1,−1,−1,−1). This representation can be written in a different form as

Λp = exp(⃗τ · E⃗ + ω⃗ · B⃗), (32)

using an analogy to the electromagnetic field strength tensor Fµν to write
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−1
2

ωαβeαβ =


0 ω01 ω02 ω03

ω01 0 ω12 −ω31
ω02 −ω12 0 ω23
ω03 ω31 −ω23 0

 = τ⃗ · E⃗ + ω⃗ · B⃗, (33)

where τ⃗ = (ω01, ω02, ω03), ω⃗ = (ω23, ω31, ω12), and E⃗ = −(e01, e02, e03), B⃗ = −(e23, e31, e12),
or e0i = −Ei, eij = −ϵijkBk with the convention of lower indices for E⃗ and B⃗ and related
three-vectors, ϵ123 = 1. The 3 + 3 generators of Lor(1, 3) obey the commutation relations

[Bi, Bj] = ϵijkBk, [Bi, Ej] = ϵijkEk, [Ei, Ej] = −ϵijkBk. (34)

Obviously, the algebra lor(1, 3) is a real algebra. It contains a compact subalgebra k related
to the Bi which is isomorphic to the compact algebra so(3). Actually, lor(1, 3) is in the
shape of a Cartan decomposition g = k +̇ p characterised by the values ϕ(k) = k, ϕ(p) = −p

of an involution ϕ. As vector spaces, k and p are orthogonal, because given a scalar product
(k, p) invariant under this involution, one obtains

(k, p) = (ϕ(k), ϕ(p)) = (k,−p) = −(k, p) ⇒ (k, p) = 0 (35)

However, [k, p] ̸= 0. Therefore, we used the symbol +̇ instead of the symbol ⊕ for the direct
sum. The algebra g can be transformed to a compact form by using Weyl’s unitary trick.
The result is an algebra g∗ = k +̇ ip, where the implications for introducing an imaginary
factor will be explained later. In case of lor(1, 3), the involution is given by

ϕ : eµν → η(eµν) := ηeµνη = −eµνT (36)

(matrix indices are suppressed) or ϕ(B⃗) = B⃗, ϕ(E⃗) = −E⃗. Therefore, the compact form of
lor(1, 3) is given by the generators Bi and iEi obeying the commutation relations

[Bi, Bj] = ϵijkBk, [Bi, (iEj)] = ϵijk(iEk), [(iEi), (iEj)] = ϵijkBk. (37)

Considered as a real algebra, this algebra is isomorphic to so(4). However, the generators
are antihermitean, B†

i = −Bi, and (iEi)
† = −iEi and, therefore, the group is unitary.

In general, Weyl’s unitary trick can be seen to lead always to unitary Lie groups.

4.2. Duplication and Complexification

The addition of an imaginary factor i turns the real algebra into a complex algebra,
at least for intermediate steps. In general, this process is called complexification and is
denoted by a lower index C (or additional argument) to the algebra symbol. Given a real
Lie algebra L, the duplication of this algebra is given by [15]

L + iL := {x + iy | x, y ∈ L}. (38)

L + iL is still a real vector space. In defining the multiplication of an element x + iy ∈ LC
with a complex number α = a + ib ∈ C by (a + ib)(x + iy) := (ax − by) + i(bx + ay)
and the commutator of two elements x + iy and x′ + iy′ by

[x + iy, x′ + iy′] := [x, x′]− [y, y′] + i([x, y′] + [y, x′]), (39)

L + iL constitutes a complex form, denoted by LC := C⊗R L. This complex form again is
a complex Lie algebra, which is called the complexification of L. Applied to the actual case,
the complexification turns the real algebra so(1, 3) into the complex algebra so(4,C).

However, it is obvious that the algebra given by the commutator relations (37) is
real, not complex. The final algebra, therefore, is a real form of this complex algebra,
defined as follows: a subalgebra K of the duplicated algebra L + iL is called real form if
the complexification of this subalgebra is the same as the original algebra, KC = L. As the
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duplication is not unique (for instance, a part of the basis elements can be duplicated with
i, another part with −i), there are also different real forms to a given complex algebra.

4.3. Compactified and Decompactified Real Forms

Most important real forms are the normal real form where the duplicates are again
taken as separate elements, and the compact real form which exists for all (semi)simple
complex Lie algebras. Because we will meet these forms in the lower-dimensional case,
we postpone the discussion about the different real forms. In the actual case, one of the
compact real forms is so(4). However, another one is given by

Ai =
1
2
(Bi + iEi), Āi =

1
2
(Bi − iEi) (40)

with the commutation rules

[Ai, Aj] = ϵijk Ak, [Ai, Āj] = 0, [Āi, Āj] = ϵijk Āk. (41)

Therefore, the algebra decomposes into two separate algebras which are isomorphic to su(2)
(su(2) is preferred instead of so(3) because Ai and Āi are antihermitean, leading to unitary
groups). Turning back to solvable groups, the decomposition into su(2) = span

R
{Ai}

and su(2) = span
R
{Āi} does not yet conform with the definitions given in Equation (30).

Looking at the definitions of Tε
i , on the one hand, and the definitions of Ei and Bi, on the

other hand, one obtains

Jε
3 =

1
2
(εe03 − ie12) =

1
2
(−εE3 + iB3), Kε

3 =
1
2
(−εe03 − ie12) =

1
2
(εE3 + iB3) (42)

and generally, Jε
i = 1

2 (−εEi + iBi) = iĀi, Kε
i = 1

2 (εEi + iBi) = iAi. As Ai and Āi are
antihermitean, Jε

i and Kε
i are hermitean and, therefore, constitute decompactified subgroups

generated by exp(iji Jε
i ) and exp(ikiKε

i ). One obtains

Jε
1 − i Jε

2 =
1
2
(−εE1 + B2 + i(εE2 + B1)) =

1
2
(−Tε

1 + iTε
2) = Jε

−,

Kε
1 + iKε

2 =
1
2
(εE1 − B2 + i(εE2 + B1)) =

1
2
(Tε

1 + iTε
2) = Kε

+ (43)

which is the other justification for the sign notations in Jε
− and Kε

+. Actually, the algebra
looks like sl(2,R) with one generator missing (Jε

+ or Kε
−, respectively). In lor(1, 3), these

missing generators exist. In bor(1, 3; p), however, the generators are found in the respective
algebra with an opposite sign ε,

Jε
+ = Jε

1 + i Jε
2 =

1
2
(−εE1 − B2 + i(−εE2 + B1)) =

1
2
(
T−ε

1 + iT−ε
2
)
= K−ε

+ ,

Kε
− = Kε

1 − iKε
2 =

1
2
(εE1 + B2 + i(−εE2 + B1)) =

1
2
(
−T−ε

1 + iT−ε
2
)
= J−ε

− , (44)

while J±ε
3 = K∓ε

3 . Therefore, bor(1, 3; p) splits up into the subalgebras

sol−2 := span
R
{Jε

3, Jε
−} = span

R
{K−ε

3 , K−ε
− } and

sol+2 := span
R
{Kε

3, Kε
+} = span

R
{J−ε

3 , J−ε
+ }. (45)

As there is a homomorphism between the two algebras sol+2 and sol−2 , both solvable
algebras are maximal and, therefore, are Borel subalgebras of the larger algebra sl(2,R).
For a free choice of ε one can represent the two Borel subalgebras as being generated by
a solvable part of the set {J±ε

3 , J±ε
+ , J±ε

− } of generators of sl(2,R), thereby skipping the
second (redundant) set {K∓ε

3 , K∓ε
+ , K∓ε

− }. Alternatively, one can use the two sets and skip
ε = +1. Though the first choice is more intriguing, for this paper we stay with the clearer
second one.
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4.4. In Search of Left and Right

Searching for eigenvectors of the set {J3, J+, J−} one finds that these eigenvectors are
disjoint, as is known for semisimple algebras. The same holds for the set {K3, K+, K−}.
However, for each of the solvable subalgebras sol−2 and sol+2 one obtains only a single com-
mon eigenvector. In order to analyse the eigenvector structure, we return to the eigenvectors

ℓ0 =
1√
2


1
0
0
ε

, ℓ1 =
1√
2


0
1
i
0

, ℓ2 =
1√
2


0
1
−i
0

 and ℓ3 =
1√
2


1
0
0
−ε

 (46)

of Section 3 to which we apply the algebra elements, obtaining

J3ℓ0 = − 1
2 ℓ0 J+ℓ0 = −εℓ1 J−ℓ0 = 0 K3ℓ0 = + 1

2 ℓ0 K+ℓ0 = 0 K−ℓ0 = εℓ1
J3ℓ1 = + 1

2 ℓ1 J+ℓ1 = 0 J−ℓ1 = −εℓ0 K3ℓ1 = + 1
2 ℓ1 K+ℓ1 = 0 K−ℓ1 = εℓ3

J3ℓ2 = − 1
2 ℓ2 J+ℓ2 = −εℓ3 J−ℓ2 = 0 K3ℓ2 = − 1

2 ℓ2 K+ℓ2 = εℓ0 K−ℓ2 = 0
J3ℓ3 = + 1

2 ℓ3 J+ℓ3 = 0 J−ℓ3 = −εℓ2 K3ℓ3 = − 1
2 ℓ3 K+ℓ3 = εℓ1 K−ℓ3 = 0

(47)

For {J3, J−} the common eigenvector is given as a linear combination of ℓ0 and ℓ2 while
for {K3, K+} the common eigenvector is given by the linear combination of ℓ0 and ℓ1. On
the other hand, the common eigenvector for {J3, J+} is a linear combination of ℓ3 and ℓ1
while the common eigenvector of {K3, K−} is a linear combination of ℓ3 and ℓ2. While ℓ0
(ℓ3) is proportional to the (space-inverted) momentum four-vector p, the interpretation
of the eigenvectors ℓ1 and ℓ2 deserves more effort. For this, one can return to the circular
polarisation [16,17]. The representation

E⃗(z, t) = E0 Re
(
(⃗ex + i⃗ey)eikz−iωt

)
= E0

(⃗
ex cos(kz − ωt)− e⃗y sin(kz − ωt)

)
(48)

describes the right turn of the electric vector in the (x, y) plane, as can be seen by comparing
the solution for z = 0 at t = 0 and after a short time t = ∆t. Therefore, the vector ℓ1 can be
identified with a right turn. However, a turn can be identified with handedness or chirality
only in combination with a direction of propagation as in case of the circular polarisation
by the argument kz − ωt. (In optics, this solution is called left polarised, as looked at from
the direction the light comes from (passive direction). In our case, however, we consider the
direction of propagation (active direction).) This direction is given by ℓ0 (or ℓ3). Therefore,
one can interpret (in case of ε = 1)

{J3, J−} as forward-propagating left-handed,

{K3, K+} as forward-propagating right-handed,

{J3, J+} as backward-propagating left-handed, and

{K3, K−} as backward-propagating right-handed. (49)

4.5. The Irreducible Representation

In terms of 4× 4 matrices, the generators Ji and Ki (i = 3,±) are, of course, not given in
the irreducible representation. However, they can be related to irreducible representations
in an easy way. In fact, there is a similarity transformation such that

Ji → S−1 JiS =: J⊞i , Ki → S−1KiS =: K⊞
i (50)

(a deeper understanding of the representation index ⊞ will be given soon) where
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S =
1√
2


0 −1 1 0
−1 0 0 1
−i 0 0 −i
0 1 1 0

 (51)

and S−1 = S†. In detail, one obtains

J⊞3 =
1
2
(σ3 ⊗ 1), J⊞± =

1
2
(σ± ⊗ 1),

K⊞
3 =

1
2
(1⊗ σ3), K⊞

± =
1
2
(1⊗ σ±), (52)

where the outer product is defined by (A ⊗ B)(ik)(jl) := AijBkl , i.e., the first matrix sets the
frame for the second one. The matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(53)

are the usual Pauli matrices, and σ± = σ1 ± iσ2. The same similarity transformation via S
can be applied also to the generators Ei and Bi of the proper orthochronous Lorentz group
Lor(1, 3). One obtains

E⊞
i := S−1EiS = −1

2
(σi ⊗ 1− 1⊗ σi),

B⊞
i := S−1BiS = − i

2
(σi ⊗ 1+ 1⊗ σi). (54)

These two results can be rewritten by employing the Kronecker sum

A ⊞ B := A ⊗ 1+ 1⊗ B. (55)

Using this notation, one obtains

E⊞
i = −1

2
σi ⊞

(
+

1
2

σi

)
, B⊞

i = − i
2

σi ⊞
(
− i

2
σi

)
. (56)

Therefore, the representation index ⊞ indicates that in this representation obtained via
the similarity transformation with S, the matrix can be written as a Kronecker sum. It is
characteristic that

J⊞i =
1
2

σi ⊞ 0, K⊞
i = 0 ⊞

1
2

σi (57)

contribute only to the first or second component of the Kronecker sum, respectively. Fol-
lowing the argumentation of Section 4.4, one can conclude that the first component of
the Kronecker sum (and thereby J⊞i ) is left-handed while the second component of the
Kronecker sum (and thereby K⊞

i ) is right-handed. Finally, we conclude that via the same
similarity transformation S, the maximal solvable algebra bor(1, 3; p) in the representation
of this section can indeed be decomposed into the Kronecker sum sol−2 ⊞ sol+2 .

5. The Chevalley Basis

From Equation (57), it is obvious that sol−2 and sol+2 are isomorphic to Borel subalge-
bras of the real algebra sl(2,R) given in the Chevalley basis by the three generators

σ3 =

(
1 0
0 −1

)
, σ+ =

(
0 2
0 0

)
and σ− =

(
0 0
2 0

)
. (58)

One can write sol±2 = span
R
{σ3, σ±}. The algebra sl(2,R) = span

R
{σ3, σ+, σ−} can be

complexified to obtain sl(2,C) = span
C
{σ3, σ+, σ−}. Therefore, sl(2,R) is a real form of

sl(2,C). The compact real form of sl(2,C) is given by su(2) = spanR{σ1, σ2, σ3}, while



Symmetry 2024, 16, 97 12 of 16

sl(2,R) can be called the decompactified real form of sl(2,C). Similar to how the complex-
ified version of lor(1, 3) is isomorphic to su(2)⊞ su(2), the complexified version of the
extended little algebra bor(1, 3; p) is isomorphic to sol−2 ⊞ sol+2 .

5.1. Common Eigenvectors

The concept of common eigenvectors introduced in Section 4.4 pulls through to the
very core, i.e., to the irreducible representation. The set of generators {σ3, σ+} of sol+2 have
the common eigenvector (1, 0)T and the set {1, 0} of eigenvalues, while for {σ3, σ−} (i.e.,
sol−2 ) the common eigenvector is (0, 1)T with eigenvalues {−1, 0}. Reintroducing the sign
ε, the two non-trivial eigenvalue equations can be cast into the form

σ3ψ+ = εψ+, ψ+ =

(
(1 + ε)ψ1

(1 − ε)ψ2

)
. (59)

This is the first quantisation step. Indeed, introducing

σ0 :=
(

1 0
0 1

)
= 1 (60)

one obtains the Weyl equation ((σµ) := (σ0; σ1, σ2, σ3))

0 = (εσ0 − σ3)ψ+ = εpµσµψ+ =: εσ(p)ψ+. (61)

However, this is not the only possible quantisation. Equivalently, one may write

σ3ψ− = −εψ−, ψ− =

(
(1 − ε)ψ1

(1 + ε)ψ2

)
(62)

or
0 = (εσ0 + σ3)ψ− = εpµσ̃µψ− =: εσ̃(p)ψ− (63)

((σ̃µ) = (σ0;−σ1,−σ2,−σ3)) which is the dual Weyl equation. In using the tilde notation
for σ̃, one avoids the breakdown of the covariant notation. Using Weyl’s representation

γ
µ
W =

(
0 σµ

σ̃µ 0

)
, γ5

W =

(
−1 0
0 1

)
(64)

of the Dirac matrices, for finite mass m, one ends up with the Dirac equation

(pµγ
µ
W − mc)ψW = 0, ψW =

(
ψ−
ψ+

)
. (65)

ψ+ is the right-handed spinor, and ψ− is the left-handed spinor. This is in agreement with
the usual definition ψR = 1

2 (1 + γ5)ψW = (0, ψ+)T and ψL = 1
2 (1 − γ5)ψW = (ψ−, 0)T .

5.2. Induced Lorentz Transformations

The contractions of the momentum four-vector p with σ and σ̃ induces two (proper
orthochronous) Lorentz transformations AΛ and ÃΛ which make the diagram

AΛ : σ(p) −→ σ(Λp)
π ↑ ↑ σ ↑ σ
Λ : p −→ Λp
π̃ ↓ ↓ σ̃ ↓ σ̃

ÃΛ : σ̃(p) −→ σ̃(Λp)

commutative. The induced Lorentz transformations are defined by

AΛσ(p)A†
Λ = σ(Λp), ÃΛσ̃(p)Ã†

Λ = σ̃(Λp). (66)
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A long but straightforward calculation shows that

AΛ =
σµΛµνσ̃ν

2 tr(A†
Λ)

, A−1
Λ =

σµΛνµσ̃ν

2 tr(A†
Λ)

, ÃΛ =
σ̃µΛµνσν

2 tr(Ã†
Λ)

, Ã−1
Λ =

σ̃µΛνµσν

2 tr(Ã†
Λ)

. (67)

AΛ and ÃΛ can be written in an exponential form similar to Equation (19),

AΛ(ω) = exp
(
−1

2
ωαβaαβ

)
, ÃΛ(ω) = exp

(
−1

2
ωαβ ãαβ

)
. (68)

For the exponential coefficients of AΛ one obtains

aαβ =
1
4
(eαβ)µνσµσ̃ν = −1

2
(σασ̃β − σβσ̃α) (69)

which can be detailed into aij = i
2 ϵijkσk =: −ϵijkbk, a0i = 1

2 σi =: −ei with

bi = − i
2

σi, ei = −1
2

σi, (70)

where bi and ei obey the algebra lor(1, 3),

[bi, bj] = ϵijkbk, [bi, ej] = ϵijkek, [ei, ej] = −ϵijkbk. (71)

For the exponential coefficient of ÃΛ one obtains

ãαβ =
1
4
(eαβ)µνσ̃µσν = −1

2
(σ̃ασβ − σ̃βσα) (72)

which gives ãij = − i
2 ϵijkσk =: ϵijk b̃k, ã0i = 1

2 σ̃i =: ẽi. The generators

b̃i = − i
2

σ̃i, ẽi =
1
2

σ̃i (73)

(note the sign changes compared to bi, ei) obey again the algebra lor(1, 3),

[b̃i, b̃j] = ϵijk b̃k, [b̃i, ẽj] = ϵijk ẽk, [ẽi, ẽj] = −ϵijk b̃k. (74)

Formally, the transitions to the induced Lorentz transformations can be considered as
mappings π : Λ → AΛ with π(eαβ) = aαβ and π̃ : Λ → ÃΛ with π̃(eαβ) = ãαβ. Under these
mappings, the generators Jε

i and Kε
i of sol±2 are mapped onto the Chevalley basis. Under π

one obtains

Jε
3 → 1

4
(1 + ε)

(
1 0
0 −1

)
, Kε

3 → 1
4
(1 − ε)

(
1 0
0 −1

)
,

Jε
− → 1

4
(1 + ε)

(
0 0
2 0

)
, Kε

+ → 1
4
(1 − ε)

(
0 2
0 0

)
, (75)

while under π̃ one obtains

Jε
3 → −1

4
(1 − ε)

(
1 0
0 −1

)
, Kε

3 → −1
4
(1 + ε)

(
1 0
0 −1

)
,

Jε
− → −1

4
(1 − ε)

(
0 0
2 0

)
, Kε

+ → −1
4
(1 + ε)

(
0 2
0 0

)
, (76)

i.e., the same result as for ε ↔ −ε and the total sign interchanged. Again, we are faced with
the fact that half of the generators are mapped to zero. Taking into account the relations to
J⊞i and K⊞

i , one can state that π maps to the first component of the Kronecker sum while π̃
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maps to the second component of the Kronecker sum. Due to Section 4, π is the mapping
to the left-handed sector, π̃ the mapping into the right-handed sector.

Using Equation (67) and performing a couple of simple conversions, one obtains the
explicit shape for AΛ for Λ of Equation (6) with dependence on ε,

Aε
Λ =

(
e(−εt+iw)/2 1

2 (1 − ε)(u − iv)e(−εt−iw)/2

− 1
2 (1 + ε)(u + iv)e(εt+iw)/2 e(εt−iw)/2

)
(77)

(Ãε
Λ = A−ε

Λ ), which can be rewritten as

Aε
Λ = R−εt Aε

u,vRiw, (78)

where

Rx :=
(

ex/2 0
0 e−x/2

)
, Aε

u,v :=
(

1 1
2 (1 − ε)(u − iv)

− 1
2 (1 + ε)(u + iv) 1

)
(79)

and det Aε
u,v = det Rx = 1. Using (Aε†

Λ )−1 = (Aε
Λ)

−1† = A−ε
Λ = Ãε

Λ and (Ãε†
Λ )−1 = Aε

Λ
and Equation (66), one obtains the Lorentz transformation ψW(Λp) = U(Λ)ψW(p) of the
Weyl spinor where

U(Λ) =

(
Aε

Λ 0
0 Ãε

Λ

)
, ψW(p) =

(
ψ−(p)
ψ+(p)

)
. (80)

5.3. Representations of the Proper Orthochronous Lorentz Group

Using the two mappings π : Lor(1, 3) → SL(2,C), π̃ : Lor(1, 3) → SL(2,C) (π :
Λ 7→ AΛ and π̃ : Λ 7→ ÃΛ) and the Kronecker sum, one can define the representation
(1/2, 1/2) by

π(1/2,1/2)(Λ) := (π ⊗ π̃)(Λ ⊞ Λ) = π(Λ)⊞ π̃(Λ), (81)

for which (and for the choice ε = +1)

π(1/2,1/2)(Ei) = −1
2

σi ⊞
(
+

1
2

σi

)
= E⊞

i , π(1/2,1/2)(Ji) =
1
2

σi ⊞ 0 = J⊞i ,

π(1/2,1/2)(Bi) = − i
2

σi ⊞
(
− i

2
σi

)
= B⊞

i , π(1/2,1/2)(Ki) = 0 ⊞
1
2

σi = K⊞
i . (82)

Therefore, the map π(1/2,1/2) : Lor(1, 3) → SL(2,C)⊗ SL(2,C) may replace the similarity
transformation via S. The benefit of using this map instead of the similarity transformation
is that such a construction can easily be generalised to a representation π(k,l) of the proper
orthochronous Lorentz group.

In proceeding to these general (k, l) representations, the common eigenvectors (1, 0)T

of the set {σ3, σ+} and (0, 1)T of the set {σ3, σ−} can be written as states |l; m⟩ = |1/2; 1/2⟩
and |l; m⟩ = |1/2;−1/2⟩, respectively, with

σ3|l; m⟩ = 2m|l; m⟩, σ±|l; m⟩ = 2ρ(l;±m)|l; m ± 1⟩, (83)

where ρ(l; m) =
√
(l − m)(l + m + 1). For the general (k, l) representation the states are

given by |k, l; mk, ml⟩, with

π(k,l)(J3)|k, l; mk, ml⟩ = 2mk|k, l; mk, ml⟩,

π(k,l)(J±)|k, l; mk, ml⟩ = 2ρ(k;±mk)|k, l; mk ± 1, ml⟩,

π(k,l)(K3)|k, l; mk, ml⟩ = 2ml |k, l; mk, ml⟩,

π(k,l)(K±)|k, l; mk, ml⟩ = 2ρ(l;±ml)|k, l; mk, ml ± 1⟩. (84)
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Of these (2k + 1)× (2l + 1) states, only those for ρ(k;−mk) = 0 or ρ(l; ml) = 0, i.e., for
mk = −k or ml = l are common eigenstates of sol−2 = {J3, J−} and sol+2 = {K3, K+},
respectively, with |k, l;−k, l⟩ being the common eigenvector for both algebras [18].

5.4. Helicity

In order to define a helicity

H( p⃗) = p̂ · s⃗, p̂ =
p⃗
| p⃗ | , (85)

one needs a spin vector s⃗. This vector can be defined by si = ih̄bi, because then the com-
mutation relation [bi, bj] = ϵijkbk for the generators of Aε

Λ leads to the usual commutation
relation

[si, sj] = ih̄ϵijksk (86)

of an angular momentum algebra. For the three-vector part p⃗ = (0, 0, 1)T of the momentum
vector p generating the Borel subgroup Bor(1, 3; p), one obtains

H( p⃗) = s3 = ih̄b3 =
h̄
2

σ3 =
h̄
2

(
1 0
0 −1

)
. (87)

Therefore, the common eigenvector (1, 0)T of sol+2 has a helicity h = +h̄/2, and the common
eigenvector (0, 1)T of sol−2 has a helicity h = −h̄/2, in agreement (for ε = +1) with the
previous understanding of left and right.

As bi is the two-dimensional representation of Bi, the concept of helicity can be
generalised to representations (k, l),

H(k,l)( p⃗) = π(k,l)(ih̄B3) =
h̄
2

π(k,l)(σ3 ⊞ σ3), (88)

Applied to the state |k, l; mk, ml⟩, one obtains

H(k,l)( p⃗)|k, l; mk, ml⟩ = h̄(mk + ml)|k, l; mk, ml⟩ (89)

which means that the helicity of this state is h = h̄(mk + ml).

6. Conclusions and Outlook

In this paper, we have calculated the stabiliser group of the proper orthochronous
Lorentz group, which turns out to be the maximal solvable or Borel subgroup of dimension
four. We have explained the continuous transition between the stabiliser groups of massive
and massless particles that describes the massless limit but fails for exactly massless states.
We have dealt with the system of eigenvectors of the Borel subgroup and shown that the
Borel subgroup can be described by a Kronecker sum of two two-dimensional solvable
groups sol±2 representing right- and left-handed chirality states. Finally, in the Chevalley
basis we have derived the Weyl and Dirac equations for massless and massive particles
and have defined the helicity of the massless states. Note that without the generator T,
such a Kronecker sum of chiral states would not emerge. The Borel subgroup, as the
maximal solvable subgroup of the proper orthochronous Lorentz group, provides exactly
four eigenvectors describing these two chiral states, of which the left-handed state is
populated by massless fermions and the right-handed is populated by antifermions. This is
the physical content of our extension.

Even though the foundations for an explanation of the spin-flip effect are prepared
by this, an exact formulation is not gained here but is aimed at in a future publication.
The effect is closely related to the concept of mass which we want to understand in more
detail. In our argumentation, we obtained unexpected help from a not yet published
seminal work explaining in detail the construction of a spin operator by a linear combination
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of components of the Pauli–Lubanski pseudovector [19]. Not unexpectedly, the authors end
up with two spin (tensor) operators and corresponding chirality states that are interchanged
under parity transformation. Parity eigenstates can be constructed as particle or antiparticle
compound states. Applying the Lorentz transformation to the massive states of Ref. [19],
the parity eigenstates are shown to evolve to solutions of the Dirac equation.

In Ref. [19] it is emphasised that the two spin operators are neither axial nor Hermitian,
and the same holds for the spin operators in the (1/2, 0)⊕ (0, 1/2) representation. However,
both properties are restored if applied to particle and antiparticle states. On the other hand,
as both properties are essential for physical states, we can conclude that massless left-
and right-handed states are physical only in the total absence of mass. This “gap of
(un)physicalness” as an explanation for the spin-flip effect has to be investigated in detail.
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