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1. Introduction

The study of warped product manifolds has attracted considerable attention in the
field of research, particularly due to their applications in physics and the theory of
relativity [1]. These manifolds have proven to be valuable tools in providing essential
solutions to the Einstein field equations [1], which govern the behavior of gravity in space-
time. One of the most intriguing applications of warped product manifolds is their role in
modeling the behavior of spacetime near black holes in the universe. By utilizing warped
product manifolds, researchers are able to gain insights into the intricate nature of these
astrophysical phenomena.

An important example of a warped product manifold is the Robertson–Walker model,
which serves as a cosmological model for the structure and spacetime of the
universe [2]. This model describes the expanding universe, taking into account the cur-
vature of spacetime and the distribution of matter and energy within it. The warped
product structure captures the spatial geometry of the universe, providing a framework for
understanding its evolution and dynamics.

In their investigations, Bishop and Neill delved into the geometry of Riemannian
manifolds with negative curvature and introduced the concept of warped products for
such manifolds [3]. This notion, defined in Section 2 of their work, extends the idea of
Riemannian product manifolds and offers a more flexible and versatile framework for
studying curved spaces. By utilizing the concept of warped products, researchers are able
to explore and analyze a wide range of geometric structures and their associated properties.

The properties of warped product manifolds have been a subject of significant
interest [3]. Researchers have sought to understand the intrinsic characteristics and be-
havior of these manifolds, which differ from those of Riemannian product manifolds. By
investigating the properties of warped product manifolds, researchers have been able to
uncover unique geometric features and gain deeper insights into the underlying structures
of curved spaces.
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Overall, the study of warped product manifolds has emerged as a captivating topic
of research, driven by their applications in physics and the theory of relativity. These
manifolds provide valuable solutions to the Einstein field equations and offer a versatile
framework for modeling various physical phenomena, such as the behavior of spacetime
near black holes. The exploration of warped product manifolds, including their properties
and geometric characteristics, contributes to our understanding of curved spaces and their
implications in different fields of study.

In 1981, Chen made a significant contribution to the field by introducing the concept
of warped products as a means to study CR-submanifolds of Kaehler manifolds [4,5]. This
work focused on investigating the existence of CR-warped product submanifolds in the
context of Kaehler manifolds. Chen demonstrated that it is possible to construct such
submanifolds of the form NT × f N⊥, where NT represents the holomorphic submanifold
and N⊥ represents the totally real submanifold.

Expanding on Chen’s pioneering work, Hasegawa and Mihai [6] extended the study
of CR-warped product submanifolds to Sasakian manifolds. They explored the contact
CR-warped product submanifolds within the framework of Sasakian manifolds. By con-
sidering the interplay between the warping function and the squared norm of the second
fundamental form, Mihai [7] derived an estimate for the latter for contact CR-warped
product submanifolds in Sasakian space forms.

Following these foundational contributions, numerous researchers have engaged in
the study of warped product submanifolds in different settings of Riemannian manifolds.
As a result, a wealth of existence results and findings have emerged in this field of re-
search. For a comprehensive overview of these developments, one can refer to the survey
article [8], which provides a thorough exploration of the topic.

In 1999, Chen made a notable contribution regarding the connection between Ricci
curvature and the squared mean curvature vector in any Riemannian manifold [9]. This
breakthrough led to a series of subsequent articles that aimed to formulate and explore
the relationship between Ricci curvature and squared mean curvature within the con-
text of various key structures on Riemannian manifolds [7,10–15]. These works built
upon Chen’s initial findings, delving into the intricate relationship between these two
geometric quantities.

More recently, Ali et al. [16] made significant contributions to this line of research by
establishing a relation between Ricci curvature and squared mean curvature, specifically for
warped product submanifolds of a sphere. Their work not only formulated this relationship
but also provided numerous physical applications, highlighting the practical implications of
this geometric connection. By studying the interplay between Ricci curvature and squared
mean curvature in the context of warped product submanifolds, Ali et al. shed light on the
underlying geometric structures and their relevance in various physical phenomena.

On the other hand, the introduction of the idea of a semi-symmetric linear connection
on a Riemannian manifold can be attributed to Friedmann and Schouten [17]. Subsequently,
Hayden [18] defined a semi-symmetric connection as a linear connection, ∇, existing
on an n-dimensional Riemannian manifold (M, g), where the torsion tensor, T, satisfies
T(γ1, γ2) = π(γ2)γ1 − π(γ1)γ2, with π representing a 1-form and γ1, γ2 ∈ TM. The
properties of semi-symmetric metric connections were further explored by K. Yano [19]. He
demonstrated that a conformally flat Riemannian manifold admitting a semi-symmetric
connection exhibits a vanishing curvature tensor. Sular and Ozgur [20] delved into the
investigation of warped product manifolds equipped with a semi-symmetric metric con-
nection, focusing specifically on Einstein warped product manifolds with such connections.
However, in their work [21], they obtained additional results pertaining to warped product
manifolds with a semi-symmetric metric connection. Motivated by these previous studies,
our interest lies in examining the influence of a semi-symmetric metric connection on Ricci
curvature of contact CR-warped product submanifolds and their geometry within an odd
dimensional sphere.
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2. Preliminaries

Suppose (M̄, g) is an odd dimensional Riemannian manifold. We define M̄ as an
almost contact metric manifold if there exists a tensor field, ϕ, of type (1, 1) and a global
vector field, ξ, on M̄ satisfying the following conditions

ϕ2γ1 = −γ1 + η(γ1)ξ, g(γ1, ξ) = η(γ1) (1)

g(ϕγ1, ϕγ2) = g(γ1, γ2)− η(γ1)η(γ2). (2)

The dual 1-form of ξ is denoted as η. It is a well-known fact that an almost contact
metric manifold can be classified as a Sasakian manifold if and only if the following tensorial
equation holds

( ¯̄∇γ1 ϕ)γ2 = g(γ1, γ2)ξ − η(γ2)γ1. (3)

It is straightforward to observe that on a Sasakian manifold, M̄, the following can be readily
deduced

¯̄∇γ1 ξ = −ϕγ1, (4)

here, γ1, γ2 ∈ TM̄, and ¯̄∇ represents the Riemannian connection associated with the metric
g on M̄.

Now, defining a connection, ∇̄, as

∇̄γ1 γ2 = ¯̄∇γ1 γ2 + η(γ2)γ1 − g(γ1, γ2)ξ (5)

such that ∇̄g = 0 for any γ1, γ2 ∈ TM, where ¯̄∇ is the Riemannian connection with
respect to g. The connection ∇̄ is semi-symmetric because T(γ1, γ2) = η(γ2)γ1 − η(γ1)γ2.
Using (5) in (3), we have

(∇̄γ1 ϕ)γ2 = g(γ1, γ2)ξ − g(γ1, ϕγ2)ξ − η(γ2)γ1 − η(γ2)ϕγ1 (6)

and
∇̄γ1 ξ = γ1 − η(γ1)ξ − ϕγ1. (7)

If a S-M M̄ has a constant ϕ-holomorphic sectional curvature, c, it is called a S-S-F and
denoted as M̄(c).

The expression for the curvature tensor, R̄, corresponding to the S-S-M connection, ∇̄,
can be expressed as

R̄(γ1, γ2)γ3 = ∇̄γ1∇̄γ2 γ3 − ∇̄γ2∇̄γ1 γ3 − ∇̄[γ1,γ2]
γ3. (8)

Likewise, the curvature tensor, ¯̄R, can be defined for the Riemannian connection, ¯̄∇.
Let

α(γ1, γ2) = (∇̄γ1 η)γ2 − η(γ1)η(γ2) +
1
2

g(γ1, γ2). (9)

Now, by the application of (5), (8), and (9), we obtain

R̄(γ1, γ2, γ3, γ4) =
¯̄R(γ1, γ2, γ3, γ4) + α(γ1, γ3)g(γ2, γ4)

− α(γ2, γ3)g(γ1, γ4) + α(γ2, γ4)g(γ1, γ3)

− α(γ1, γ4)g(γ2, γ3).

(10)

By employing the computed value of ¯̄R(γ1, γ2, γ3, γ4), as detailed in [22], by computation,
we obtain the following expression for the curvature tensor, R̄, of a S-S-F:
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R̄(γ1, γ2, γ3, γ4) =
c + 3

4
{g(γ2, γ3)g(γ1, γ4)− g(γ1, γ3)g(γ2, γ4)}

+
c − 1

4
{η(γ1)η(γ3)g(γ2, γ4)− η(γ2)η(γ3)g(γ1, γ4)

+ g(γ1, γ3)η(γ2)η(γ4)− g(γ2, γ3)η(γ1)η(γ4)

+ g(ϕγ2, γ3)g(ϕγ1, γ4) + g(ϕγ3, γ1)g(ϕγ2, γ4)

− 2g(ϕγ1, γ2)g(ϕγ3, γ4)}+ α(γ1, γ3)g(γ2, γ4)

− α(γ2, γ3)g(γ1, γ4) + α(γ2, γ4)g(γ1, γ3)

− α(γ1, γ4)g(γ2, γ3),

(11)

for all γ1, γ2, γ3, γ4 ∈ TM̄.
For a submanifold, M, isometrically immersed in a Riemannian manifold, M̄, ad-

mitting a S-S-M connection, it is easy to derive the Gauss and Weingarten formula as
follows

∇̄γ1 γ2 = ∇γ1 γ2 + h̄(γ1, γ2)

and
∇̄γ1 N = −ANγ1 +∇⊥

γ1
N + η(N)γ1,

where ∇ is the induced s-s-m connection on M, γ1, γ2 ∈ TM, and N ∈ T⊥M.
The relationship between the second fundamental form, h̄, and the shape operator,

AN , can be expressed by the following formula

g(h̄(γ1, γ2), N) = g(ANγ1, γ2).

For the vector fields γ1 ∈ TM and γ3 ∈ T⊥M, we can decompose the expression as follows

ϕγ1 = Pγ1 + Fγ1 (12)

and
ϕγ3 = tγ3 + f γ3 (13)

where Pγ1(tγ3) and Fγ1( f γ3) are the tangential and normal components of ϕγ1(ϕγ3),
correspondingly.

The equation of Gauss for a S-S-M connection, for the Riemannian curvature tensor, R,
can be expressed as follows [22]

R̄(γ1, γ2, γ3, γ4) = R(γ1, γ2, γ3, γ4)− g(h̄(γ1, γ4), h̄(γ2, γ3)) + g(h̄(γ2, γ4), h̄(γ1, γ3)) (14)

for γ1, γ2, γ3, γ4 ∈ TM.
In their article [20], Sular and Oz̈gur investigated the warped products denoted as

M1 × f M2, where a S-S-M connection is defined on the manifold M1 × f M2, along with an
associated vector field, P. Here, M1 and M2 are Riemannian manifolds, and the warping
function, f , is a positive differentiable function defined on M1. We present several important
findings from [20] as a lemma, which will be relevant for our subsequent analysis.

Lemma 1. Let M1 × f M2 be a W-P manifold with S-S-M connection ∇̄, we have

(i) If the associated vector field P ∈ TM1, then

∇̄γ1 γ3 =
γ1 f

f
γ3 and ∇̄γ3 γ1 =

γ1 f
f

γ3 + π(γ1)γ3

(ii) If P ∈ TN2, then

∇̄γ1 γ3 =
γ1 f

f
γ3 and ∇γ3 γ1 =

γ1 f
f

γ3,
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where γ1 ∈ TM1, γ3 ∈ TM2, and π is the 1-form associated with the vector field P.

Let us examine the relationship between the curvature tensors, R and R̃, associated
with the warped product submanifold, M = M1 × f M2, of a Sasakian manifold, M̄, corre-
sponding to the induced S-S-M connection, ∇, and the induced Riemannian connection, ∇̃,
on M. Expressing this relationship, we have

R(γ1, γ2)γ3 =R̃(γ1, γ2)γ3 + g(γ3,∇γ1 P)γ2 − g(γ3,∇γ2 P)γ1

+ g(γ1, γ3)∇γ2 P − g(γ2, γ3)∇γ1 P

+ η(P)[g(γ1, γ3)γ2 − g(γ2, γ3)γ1]

+ [g(γ2, γ3)η(γ1)− g(γ1, γ3)η(γ2)]P

+ η(γ3)[η(γ2)γ1 − η(γ1)γ2],

(15)

for any vector field γ1, γ2, γ3 on M [20].
According to part (ii) of Lemma 3.2 in reference [20], for the warped product submani-

fold M = M1 × f M2, the following relationship holds

R̃(γ1, γ2)γ3 =
H f (γ1, γ2)

f
γ3, (16)

where γ1, γ2 ∈ TM1, γ3 ∈ TM2, respectively, and H f is the Hessian of the warping
function.

By taking into account Equations (15) and (16), we can infer the following

R(γ1, γ3)γ2 =
H f (γ1, γ2)

f
+

P f
f

g(γ1, γ2)γ3 + η(P)g(γ1, γ2)γ3 + g(γ2,∇γ1 P)γ3

− η(γ1)η(γ2)γ3,
(17)

for the vector fields γ1, γ2 ∈ TM1, γ3 ∈ TM2, and P ∈ TM1.
By substituting P = ξ into Equation (5), we introduce the S-S-M connection. As a

result, for a W-P submanifold, M = M1 × f M2, of the Riemannian manifold, M̄, we can
deduce the following relationship using part (i) of Lemma 1.

∇γ1 γ3 = γ1ln f γ3 (18)

and
∇γ3 γ1 = γ1ln f γ3 + η(γ1)γ3. (19)

In addition, Equation (21) with (7) yields

R(γ1, γ3)γ2 =
H f (γ1, γ2)

f
γ3 +

ξ f
f

g(γ1, γ2)γ3 + 2g(γ1, γ2)γ3 − 2η(γ1)η(γ2)γ3

− g(γ2, ϕγ1)γ3,
(20)

for ξ, γ1, γ2 ∈ TM1, and γ3 ∈ TM2.
Let us define the mean curvature vector, H(x), and its squared norm for a given point,

x, on the manifold, M, considering an orthonormal basis {e1, e2, . . . , en} of the tangent
space, Tx M, as follows

H(x) =
1
n

n

∑
i=1

h̄(ei, ei), ∥H∥2 =
1
n2

n

∑
i,j=1

g(h̄(ei, ei), h̄(ej, ej)).

Here, the dimension of M is denoted by n, and we can define certain properties based on
the mean curvature vector, H(x), and its squared norm. When h̄ = 0, the submanifold
is referred to as totally geodesic, and, if H = 0, it is said to be minimal. Additionally,
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if h̄(γ1, γ2) = g(γ1, γ2)H holds for all γ1, γ2 ∈ TM, the submanifold, M, is known as
totally umbilical.

Let us denote the scalar curvature of an m-dimensional Riemannian manifold, M̄, as
π̄(M̄). Its mathematical expression is given by

π̄(M̄) = ∑
1≤p<q≤m

κ̄pq,

where κ̄pq = κ̄(ep ∧ eq). In this study, we will adopt an equivalent formulation of the
aforementioned equation, which can be expressed as follows

2π̄(M̄) = ∑
1≤p<q≤m

κ̄pq.

Similarly, we can express the scalar curvature, π̄(Lx), of an L-plane as follows

π̄(Lx) = ∑
1≤p<q≤m

κ̄pq. (21)

Consider an orthonormal basis {e1, . . . , en} of the tangent space, Tx M. If er is an
element of the orthonormal basis {en+1, . . . , em} of the normal space, T⊥M, we can express
the relationship as follows

h̄r
pq = g(h̄(ep, eq), er) (22)

and

∥h̄∥2 =
n

∑
p,q=1

g(h̄(ep, eq), h̄(ep, eq)).

Consider the sectional curvatures, κpq and κ̄pq, associated with the plane sections gen-
erated by ep and eq at a point x in the n-dimensional manifold, M, and the m-dimensional
Riemannian space form, M̄(c), respectively. Applying the Gauss equation, we obtain the
following relationship

κpq = κ̄pq +
m

∑
r=n+1

(h̄r
pp h̄r

qq − (h̄r
pq)

2). (23)

Let us define the global tensor field for an orthonormal frame of vector fields {e1, . . . , en}
on the n-dimensional manifold, M, as

S̄(γ1, γ2) =
n

∑
i=1

{g(R̄(ei, γ1)γ2, ei)},

for all γ1, γ2 ∈ Tx Mn. The tensor mentioned above is known as the Ricci tensor. In the
case where we choose a specific vector, eu, from the orthonormal frame {e1, . . . , en} on the
n-dimensional manifold, M, denoted by χ, the Ricci curvature is defined as follows

Ric(χ) =
n

∑
p=1
p ̸=u

κ(ep ∧ eu). (24)

Let us denote the gradient of a scalar function, f , as ∇ f . The gradient is defined as follows

g(∇ f , γ) = γ f , (25)

for all γ ∈ TM.
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Consider an orthogonal basis {e1, e2, . . . , en} of the tangent space, TM, of an n-dimensional
Riemannian manifold, M. Then, Equation (25) yields the following result

∥∇ f ∥2 =
n

∑
i=1

(ei( f ))2.

The Laplacian of f is defined by

∆ f =
n

∑
i=1

{(∇ei ei) f − eiei f }.

The Hessian tensor, denoted as ∆ f , is a symmetric covariant tensor of rank 2. It is
defined for a differentiable function, f , as

∆ f = −traceH f ,

where H f is the Hessian of f .
For the warped product submanifolds of the type N1 × f N2 with a S-S-M connection,

using Formula (20) we can derive the following result

n1

∑
p=1

n2

∑
q=1

κ(ep ∧ eq) =
n2∆ f

f
+

ξ f
f

n1n2 + 2n1n2 − 2n2. (26)

3. Contact CR-Warped Product Submanifolds

In 1981, A. Bejancu [23] introduced the concept of semi-invariant submanifolds in
almost contact metric manifolds. An m-dimensional Riemannian submanifold, M, of a
S-M M̄ is classified as a semi-invariant submanifold if the vector field, ξ, is tangent to M
and there exists a differentiable distribution D : x 7→ Dx ⊂ Tx M on M, such that Dx is
invariant under the action of the structure vector field, ϕ. The orthogonal complementary
distribution D⊥

x to Dx on M is anti-invariant, meaning that ϕD⊥ ⊆ T⊥
x M, where Tx M and

T⊥
x M represent the tangent space and normal space at x ∈ M, respectively.

In a subsequent work by Hesigawa and Mihai [6], they considered a specific type of
submanifold known as a warped product submanifold of the form NT × f N⊥ in a Sasakian
manifold, M̄. Here, NT denotes an invariant submanifold, N⊥ represents an anti-invariant
submanifold, and ξ belongs to TNT . These submanifolds were referred to as contact
CR-submanifolds, and the authors provided some fundamental results related to them.

Our analysis commences by investigating a specific class of submanifolds known
as contact CR-w-p submanifolds in a S-M endowed with a S-S-M connection. These
submanifolds are of the form N⊥ × f NT , where N⊥ is an anti-invariant submanifold and
NT represents an invariant submanifold, and satisfying the condition ξ ∈ TNT .

Theorem 1. Let (M̄, ϕ, ξ, η, g) be a S-M with a S-S-M connection. Then there does not exist a
W-P submanifold of the type N⊥ × f NT , such that ξ ∈ TNT .

Proof. For any γ1, γ2 ∈ TNT and γ3 ∈ TN⊥, then by (19), the Gauss formula, and (2),
we have

γ3ln f g(γ1, γ2) = g(∇̄γ1 ϕγ3, ϕγ2)− g((∇γ1 ϕ)γ3, ϕγ3)− γ3ln f η(γ1)η(γ2)

= g(∇γ1 ϕγ3, ϕγ2)− γ3ln f η(γ1)η(γ2).
(27)

Equivalently

γ3ln f g(γ1, γ2) = ϕγ3ln f g(γ1, ϕγ2)− γ3ln f η(γ1)η(γ2). (28)
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By substituting ξ for both γ1 and γ2 in the preceding equation, we obtain γ3 ln f = 0. This
indicates that f must be a constant, thereby establishing the desired result.

In this study, we focus on analyzing warped product submanifolds of the form
M = NT × f N⊥ in a Sasakian manifold, M̄, where these submanifolds are equipped
with a semi-symmetric metric connection and ξ belongs to TNT . We refer to these specific
submanifolds as contact CR-warped product submanifolds. Furthermore, we denote the
invariant subspace of the normal bundle T⊥M as µ.

Now, we commence with the following preliminary findings

Lemma 2. Let M = NT × f N⊥ be a contact CR-W-P submanifold of a S-M M̄ endowed with a
S-S-M connection, then

(i) g(h̄(ϕγ1, γ3), ϕγ4) = γ1ln f g(γ3, γ4) + η(γ1)g(γ3, γ4),
(ii) g(h̄(γ1, γ2), ϕγ3) = 0,
(iii) ξln f = 0

∀ γ1, γ2 ∈ TNT and γ3, γ4 ∈ TN⊥, ξ ∈ TNT .

Proof. By employing the Gauss formula and Equation (6), we obtain the following expression

g(h̄(ϕγ1, γ3), ϕγ4) = g(∇̄γ3 ϕγ1, ϕγ4) = g(∇̄γ3 γ1, γ4).

Now, utilizing Formula (19), we obtain the following:

g(h̄(ϕγ1, γ3), ϕγ4) = g(∇γ3 γ1, γ4) = γ1ln f g(γ3, γ4) + η(γ1)g(γ3, γ4),

which is part (i). Again, using (6), (19), and the Gauss formula, part (iii) is proven straight-
forwardly. Now, using the formula ∇γ3 ξ = γ3 − η(γ3)− Pγ3 and applying Equation (19),
we have ξln f + η(ξ)γ3 = γ3 or ξln f = 0, which is part (iii).

Lemma 3. Let M = NT × f N⊥ be a contact CR-W-P submanifold of a S-M M̄ endowed with a
S-S-M connection, then

g(h̄(γ1, γ1), V) = −g(h̄(ϕγ1, ϕγ1), V), (29)

for all γ1 ∈ TM and V ∈ µ.

Proof. From the Gauss formula along with Equation (6), we have

∇γ1 ϕγ1 + h̄(γ1, ϕγ1)− ϕ∇γ1 γ1 − ϕh̄(γ1, γ1) = g(γ1, γ1)ξ − η(γ1)γ1 − η(γ1)ϕγ1, (30)

taking the inner product with ϕV ∈ µ, we find

g(h̄(γ1, ϕγ1), ϕV) = g(h̄(γ1, γ1), V), (31)

replacing γ1 with ϕγ1 and using Equation (1), we have

−g(h̄(ϕγ1, γ1), ϕV) = g(h̄(ϕγ1, ϕγ1), V. (32)

By considering Equations (31) and (32), we can deduce the following

g(h̄(γ1, γ1), V) = −g(h̄(ϕγ1, ϕγ1), V), (33)

which proves the assertion.

Based on Lemma 3, it is clear that the isometric immersion of Nn1
T × f Nn2

⊥ into a
Sasakian manifold is characterized as being D-minimal. This D-minimal property es-
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tablishes a valuable connection between the contact CR-warped product submanifold
NT × f N⊥ and the equation of Gauss.

Definition 1. An isometric immersion of the warped product N1 × f N2 into a Riemannian
manifold, M̄, is referred to as Ni totally geodesic if the partial second fundamental form, hi, is
identically zero. If the partial mean curvature vector, Hi, becomes zero for i = 1, 2, it is termed
Ni-minimal.

Consider a local orthonormal frame of vector fields on the contact CR-W-P submanifold
Mn = Nn1

T × f Nn2
⊥ given by {e1, . . . , eβ, eβ+1 = ϕe1, . . . , en1−1 = ϕeβ, en1 = ξ, en1+1, . . . , en}.

Here, {ξ, e1, . . . , en1} are tangent to NT , and {en1+1, . . . en} are tangent to N⊥. Additionally,
{e∗1 = ϕen1+1, . . . , e∗n = ϕen, e∗n+1, . . . , e∗m} forms a local orthonormal frame of the normal
space, T⊥M.

By considering Lemma 3, it is possible to observe

m

∑
r=n+1

n1

∑
i,j=1

g(h̄(ei, ej), er) = 0.

Hence, based on Lemma 3, it can be deduced that the trace of h̄ with respect to NT is zero.
Therefore, in light of Definition 1, we obtain the following significant result.

Theorem 2. Consider a contact CR-W-P submanifold Mn = Nn1
T × f Nn2

⊥ that is isometrically
immersed in a S-M admitting a S-S-M connection. It can be concluded that Mn possesses the
property of being D-minimal.

Therefore, it can be readily concluded that the following statement holds.

∥H∥2 =
1
n2

m

∑
r=n+1

(h̄r
n1+1n1+1 + · · ·+ h̄r

nn)
2,

where ∥H∥2 is the squared mean curvature.

4. Inequalities for Ricci curvature

This section focuses on deriving the Ricci curvature for a contact CR-W-P isometrically
immersed in an odd dimensional unit sphere within the context of the mean curvature
vector and warping function, f .

Theorem 3. Let M = Nn1
T × f Nn2

⊥ be a contact CR-W-P submanifold isometrically immersed in
an odd dimensional unit sphere, S2n+1(1), admitting a semi-symmetric metric connection. If for
each orthogonal unit vector field χ ∈ Tx M orthogonal to ξ, either tangent to NT or N⊥, then

(1) The Ricci curvature is subject to the following inequalities
(i) if χ ∈ TNT

Ric(χ) ≤ 1
4

n2∥H∥2− n2∆ f
f

+ (n − n1n2 + 2n2 − 1)− (1 + n1)
n

∑
i=n1+1

α(ei , ei)

− (1 + n2)
n1

∑
i=1

α(ei , ei)− (n − 2)α(e1, e1);

(34)

(ii) if χ ∈ TN⊥

Ric(χ) ≤ 1
4

n2∥H∥2− n2∆ f
f

+ (n − n1n2 + 2n2 − 1)− (1 + n1)
n

∑
i=n1+1

α(ei , ei)

− (1 + n2)
n1

∑
i=1

α(ei , ei)− (n − 2)α(en, en).

(35)
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(2) In the case where H(x) = 0 for all points x ∈ Mn, there exists a unit vector field, χ that
satisfies the equality condition of (1) if and only if Mn is a mixed T-G submanifold and χ
belongs to the relative null space, Nx, at x.

(3) In the equality case, we have the following

(a) The equality case of (34) holds true for all unit vector fields tangent to NT at each point
x ∈ Mn if and only if Mn is a mixed T-G submanifold and a D-T-G contact CR-W-P
submanifold in S2n+1.

(b) The equality case of (1) holds true for all unit tangent vectors to Mn at each x ∈ Mn

if and only if either Mn is T-G submanifold or Mn is a mixed T-G T-U and D− T-G
submanifold with dim N⊥ = 2.

Here n1 and n2 represent the dimensions of NT and N⊥, respectively.

Proof. Let us consider M = Nn1
T × f Nn2

⊥ as a contact CR-W-P submanifold of an odd dimen-
sional sphere S2n+1(1). By utilizing the Gauss equation, we can obtain the following expression

n2∥H∥2 = 2π(Mn) + ∥h̄∥2 − 2π̄(Mn). (36)

Let {e1, . . . , en1 , en1+1, . . . , en} be a set of orthonormal vector fields on Mn such that
the frame {e1, . . . , en1} is tangent to NT and {en1+1, . . . , en} is tangent to N⊥. So, the unit
tangent vector χ = eA ∈ {e1, . . . , en} can be expanded (36) as follows

n2∥H∥2 = 2π(Mn) +
1
2

m

∑
r=n+1

{(h̄r
11 + · · ·+ h̄r

nn − h̄r
AA)

2 + (h̄r
AA)

2}

−
m

∑
r=n+1

∑
1≤p ̸=q≤n

h̄r
pp h̄r

qq − 2π̄(Mn).

The aforementioned expression can be expanded in the following manner.

n2∥H∥2 = 2π(Mn) +
1
2

m

∑
r=n+1

{(h̄r
11 + · · ·+ h̄r

nn)
2

+ (2h̄r
AA − (h̄r

11 + · · ·+ h̄r
nn))

2}+ 2
m

∑
r=n+1

∑
1≤p<q≤n

(h̄r
pq)

2

− 2
m

∑
r=n+1

∑
1≤p<q≤n

h̄r
pp h̄r

qq − 2π̄(Mn).

In light of Lemma 3, the preceding expression can be written as follows.

n2∥H∥2 =
m

∑
r=n+1

{(h̄r
n1+1n1+1 + · · ·+ h̄r

nn)
2 + (2h̄r

AA − 1
2
(h̄r

n1+1n1+1 + · · ·+ h̄r
nn))

2}

+ 2π(Mn) +
m

∑
r=n+1

∑
1≤p<q≤n

(h̄r
pq)

2 −
m

∑
r=n+1

∑
1≤p<q≤n

h̄r
pp h̄r

qq +
m

∑
r=n+1

∑
a=1
a ̸=A

(h̄r
aA)

2

+
m

∑
r=n+1

∑
1≤p<q≤n

p,q ̸=A

(h̄r
pq)

2 −
m

∑
r=n+1

∑
1≤p<q≤n

p,q ̸=A

h̄r
pp h̄r

qq − 2π̄(Mn).

(37)
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According to Equation (23), we obtain the following

m

∑
r=n+1

∑
1≤p<q≤n

p,q ̸=A

(h̄r
pq)

2 −
m

∑
r=n+1

∑
1≤p<q≤n

p,q ̸=A

h̄r
pp h̄r

qq

= ∑
1≤p<q≤n

p,q ̸=A

κ̄pq − ∑
1≤p<q≤n

p,q ̸=A

κpq

(38)

By substituting the values from Equation (38) into Equation (37), we uncover the following

1
2

n2∥H∥2 =2π(Mn) +
1
2

m

∑
r=n+1

(2h̄r
AA − (h̄r

n1+1n1+1 + · · ·+ h̄r
nn))

2

+
m

∑
r=n+1

∑
1≤p<q≤n

(h̄r
pq)

2 −
m

∑
r=n+1

∑
1≤p<q≤n

h̄r
pp h̄r

qq − 2π̄(Mn)

+
m

∑
r=n+1

∑
a=1
a ̸=A

(h̄r
aA)

2 + ∑
1≤p<q≤n

p,q ̸=A

κ̄pq − ∑
1≤p<q≤n

p,q ̸=A

κpq.

(39)

For the submanifold Mn = Nn1
T × f Nn2

⊥ , we can define the scalar curvature of Mn

based on Equation (21) as follows:

π(Mn) = ∑
1≤p<q≤n

κ(ep ∧ eq)

=
n1

∑
i=1

n

∑
j=n1+1

κ(ei ∧ ej) + ∑
1≤i<k≤n1

κ(ei ∧ ek) + ∑
n1+1≤l<o≤n

κ(el ∧ eo)
(40)

By utilizing Equations (17), (21) and (26), we can derive the following expression:

π(Mn) =
n2∆ f

f
+ 2n1n2 − 2n2 + π(Nn1

T ) + π(Nn2
⊥ ) (41)

By combining Equation (41) with Equation (5) in Equation (39), we obtain the following

1
2

n2∥H∥2 =
n2∆ f

f
+ 2n1n2 − 2n2 + ∑

1≤p<q≤n
p,q ̸=A

κ̄pq + π̄(Nn1
T ) + π̄(Nn2

⊥ )

+
m

∑
r=n+1

{
∑

1≤p<q≤n
(h̄r

pq)
2 − ∑

1≤p<q≤n
p,q ̸=A

h̄r
pp h̄r

qq
}

+
m

∑
r=n+1

∑
a=1
a ̸=A

(h̄r
aA)

2 +
m

∑
r=n+1

∑
1≤i ̸=j≤n1

(h̄r
ii h̄

r
jj − (h̄r

ij)
2)

+
m

∑
r=n+1

∑
n1+1≤s ̸=t≤n

(h̄r
ss h̄r

tt − (h̄r
st)

2)

+
1
2

m

∑
r=n+1

(2h̄r
AA − (h̄r

n1+1n1+1 + · · ·+ h̄r
nn))

2

− {n(n − 1)− 2(n − 1)traceα}.

(42)

When considering χ = ea, we have two possible scenarios: either χ is tangent to the
submanifold Nn1

T or it is tangent to the fiber Nn2
⊥ .
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Case 1: Assuming that ea is tangent to Nn1
T , let us consider a unit tangent vector from the set

{e1, . . . , en1} and suppose χ = ea = e1. By using Equations (42) and (24), we can determine
the following

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

− 2n1n2 + 2n2 −
1
2

m

∑
r=n+1

(2h̄r
11 − (h̄r

n1+1n1+1 + . . . h̄r
nn))

2

−
m

∑
r=n+1

∑
1≤p<q≤n1

(h̄r
pq)

2 +
m

∑
r=n+1

[ ∑
1≤i<j≤n1

(h̄r
ij)

2 − ∑
1≤i<j≤n1

h̄r
ii h̄

r
jj]

+
m

∑
r=n+1

∑
n1+1≤s<t≤n

(h̄r
st)

2 +
m

∑
r=n+1

[ ∑
n1+1≤s<t≤n

(h̄r
ij)

2 − ∑
n1+1≤s<t≤n

h̄r
ss h̄r

tt]

+
m

∑
r=n+1

∑
2≤p<q≤n

h̄r
pp h̄r

qq + n(n − 1)− 2(n − 1)traceα

− ∑
2≤p<q≤n

κ̄pq − π̄(Nn1
T )− π̄(Nn2

⊥ ).

(43)

By combining Equations (5), (21) and (22), we obtain the following expression

∑
2≤p<q≤n

κ̄pq =
1
2
(n − 1)(n − 2)− (n − 2)

n

∑
i=2

α(ei, ei), (44)

π̄(Nn1
T ) =

1
2

n1(n1 − 1)− (n1 − 1)
n1

∑
i=1

α(ei, ei), (45)

π̄(Nn1
⊥ ) =

1
2

n2(n2 − 1)− (n2 − 1)
n

∑
i=n1+1

α(ei, ei). (46)

Substituting into Equation (43), we obtain

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ n − n1n2 + 2n2 − 1

− 1
2

m

∑
r=n+1

(2h̄r
11 − (h̄r

n1+1n1+1 + · · ·+ h̄r
nn))

2

−
m

∑
r=n+1

∑
1≤p<q≤n

(h̄r
pq)

2 +
m

∑
r=n+1

[ ∑
1≤i<j≤n1

(h̄r
ij)

2 +
m

∑
r=n+1

∑
n1+1≤s<t≤n

(h̄r
st)

2]

−
m

∑
r=n+1

[ ∑
1≤i<j≤n1

h̄r
ii h̄

r
jj + ∑

n1+1≤s<t≤n
h̄r

ss h̄r
tt]

+
m

∑
r=n+1

∑
2≤p<q≤n

h̄r
pp h̄r

qq − (1 + n1)
n2

∑
i=1

α(ei, ei)− (1 + n2)
n

∑
i=n1+1

α(ei, ei)

− (n − 2)α(e1, e1).

(47)

Moreover, we can express the seventh and eighth terms on the right-hand side of
Equation (47) as follows

m

∑
r=n+1

[ ∑
1≤i<j≤n1

(h̄r
ij)

2 + ∑
n1+1≤s<t≤n

(h̄r
st)

2]−
m

∑
r=n+1

∑
1≤p<q≤n

(h̄r
pq)

2

= −
m

∑
r=n+1

n1

∑
p=1

n

∑
q=n1+1

(h̄r
pq)

2.

Similarly, we obtain
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m

∑
r=n+1

[ ∑
1≤i<j≤n1

h̄r
ii h̄

r
jj + ∑

n1+1≤s ̸=t≤n
h̄r

ss h̄r
tt − ∑

2≤p<q≤n
h̄r

pp h̄r
qq]

=
m

∑
r=n+1

[
n1

∑
p=2

n

∑
q=n1+1

h̄r
pp h̄r

qq −
n1

∑
j=2

h̄r
11h̄r

jj].

By substituting the above two values into Equation (47), we obtain

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ (n − n1n2 + 2n2 − 1)

− 1
2

m

∑
r=n+1

(2h̄r
11 − (h̄r

n1+1n1+1 + . . . h̄r
nn))

2

−
m

∑
r=n+1

[
n1

∑
p=1

n

∑
q=n1+1

(h̄r
pq)

2 +
n1

∑
b=2

h̄r
11h̄r

bb −
n1

∑
p=2

n

∑
q=n1+1

h̄r
pp h̄r

qq].

− (1 + n1)
n

∑
i=n1+1

α(ei, ei)− (1 + n2)
n1

∑
i=1

α(ei, ei)− (n − 2)α(e1, e1)

(48)

Since Mn = Nn1
T × f Nn2

⊥ is Nn1
T -minimal then we can observe the following

m

∑
r=n+1

n1

∑
p=2

n

∑
q=n1+1

h̄r
pp h̄r

qq = −
m

∑
r=n+1

n

∑
q=n1+1

h̄r
11h̄r

qq (49)

and
m

∑
r=n+1

n1

∑
b=2

h̄r
11h̄r

bb = −
m

∑
r=n+1

(h̄r
11)

2. (50)

Furthermore, we can reach the following conclusion

1
2

m

∑
r=n+1

(2h̄r
11 − (h̄r

n1+1n1+1 + · · ·+ h̄r
nn))

2 +
m

∑
r=n+1

n

∑
q=n1+1

h̄r
11h̄r

qq

= 2
m

∑
r=n+1

(h̄r
11)

2 +
1
2

n2∥H∥2.

(51)

By substituting Equations (49) and (50) into Equation (48), and evaluating Equation (51),
we obtain the final expression:

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ (n + n1n2 + 2n2 − 1)

− (1 + n1)
n

∑
i=n1+1

α(ei, ei)− (1 + n2)
n2

∑
i=1

α(ei, ei)− (n − 2)α(e1, e1)

− 1
4

m

∑
r=n+1

n

∑
q=n1+1

(h̄r
qq)

2 −
m

∑
r=n+1

{(h̄r
11)

2 −
n

∑
q=n1+1

h̄r
11h̄r

qq

+
1
4
(h̄r

n1+1n1+1 + · · ·+ h̄r
nn)

2}.
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Moreover, by utilizing the fact that ∑m
r=n+1(h̄

r
n1+1n1+1 + · · ·+ h̄r

nn) = n2∥H∥2, we obtain

Ric(χ) ≤ 1
4

n2∥H∥2 − n2∆ f
f

+ (n + n1n2 + 2n2 − 1)

− (1 + n1)
n2

∑
i=1

α(ei, ei)− (1 + n2)
n2

∑
i=1

α(ei, ei)− (n − 2)α(e1, e1)

− 1
4

m

∑
r=n+1

(2hr
11 −

n

∑
q=n1+1

h̄r
qq)

2.

From the inequality mentioned earlier, we can deduce the inequality stated in Equation (34).
Case 2: Assuming that ea is tangent to Nn2

⊥ , we choose the unit vector from the set
{en1+1, . . . , en} and suppose it is en, i.e., χ = en. Then, using Equations (5), (21) and (22),
we obtain the following expressions

∑
1≤p<q≤n−1

κ̄pq =
1
2
((n − 1)(n − 2))− (n − 2)

n−1

∑
i=1

α(ei, ei). (52)

π̄(Nn1
T ) =

1
2
(n1(n1 − 1))− (n1 − 1)

n1

∑
i=1

α(ei, ei). (53)

π̄(Nn2
⊥ ) =

1
2
(n2(n2 − 1))− (n2 − 1)

n

∑
i=n1+1

α(ei, ei). (54)

Now, following a similar approach as in case 1, and utilizing Equation (52), we obtain

Ric(χ) ≤ 1
2

n2∥H∥2 − n2∆ f
f

− 1
2

m

∑
r=n+1

((h̄r
n1+1n1+1 + · · · h̄r

nn)− 2h̄r
nn)

2

−
m

∑
r=n+1

∑
1≤p<q≤n1

(h̄r
pq)

2 +
m

∑
r=n+1

[ ∑
1≤i<j≤n1

(h̄r
ij)

2 − ∑
1≤i<j≤n1

h̄r
ii h̄

r
jj]

+
m

∑
r=n+1

∑
n1+1≤s<t≤n

(h̄r
st)

2 +
m

∑
r=n+1

[ ∑
n1+1≤s<t≤n

(h̄r
ij)

2 − ∑
n1+1≤s<t≤n

h̄r
ss h̄r

tt]

+
m

∑
r=n+1

∑
1≤p<q≤n−1

h̄r
pp h̄r

qq + n − n1n2 + 2n2 − 1

− (1 + n2)
n1

∑
i=1

α(ei , ei)− (1 + n1)
n

∑
i=n1+1

α(ei , ei)− (n − 2)α(en, en).

(55)

By following similar steps as in case i, the above inequality can be expressed as

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ n − n1n2 + 2n2 − 1

− (1 + n2)
n1

∑
i=1

α(ei, ei)− (1 + n1)
n2

∑
i=n1+1

α(ei, ei)− (n − 2)α(en, en)

− 1
2

m

∑
r=n+1

((h̄r
n1+1n1+1 + · · · h̄r

nn)− 2h̄r
nn)

2

−
m

∑
r=n+1

[
n1

∑
p=1

n

∑
q=n1+1

(h̄r
pq)

2 +
n−1

∑
b=n1+1

h̄r
nn h̄r

bb −
n1

∑
p=1

n−1

∑
q=n1+1

h̄r
pp h̄r

qq]

(56)
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Observing Lemma 3, it can be seen that

m

∑
r=n+1

n1

∑
p=1

n−1

∑
q=n1+1

h̄r
pp h̄r

qq = 0. (57)

By utilizing this result in Equation (56), we obtain

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ n − n1n2 + 2n2 − 1

− 1
2

m

∑
r=n+1

((h̄r
n1+1n1+1 + . . . h̄r

nn)− 2h̄r
nn)

2

−
m

∑
r=n+1

n1

∑
p=1

n

∑
q=n1+1

(h̄r
pq)

2 −
m

∑
r=n+1

n−1

∑
b=n1+1

h̄r
nn h̄r

bb

− (1 + n2)
n1

∑
i=1

α(ei, ei)− (1 + n1)
n

∑
i=n1+1

α(ei, ei)− (n − 2)α(en, en).

(58)

The final term in the aforementioned inequality can be expressed as

−
m

∑
r=n+1

n−1

∑
b=n1+1

h̄r
nn h̄r

bb = −
m

∑
r=n+1

n

∑
b=n1+1

h̄r
nn h̄r

bb +
m

∑
r=n+1

(h̄r
nn)

2

Additionally, we can expand the fifth term on the right-hand side of Equation (58)
as follows

−1
2

m

∑
r=n+1

((h̄r
n1+1n1+1 + · · ·+ h̄r

nn)− 2h̄r
nn)

2 =

− 1
2

m

∑
r=n+1

(h̄r
n1+1n1+1 + · · ·+ h̄r

nn)
2

− 2
m

∑
r=n+1

(h̄r
nn)

2 +
m

∑
r=n+1

n

∑
j=n1+1

h̄r
nn h̄r

jj.

By substituting the last two values into Equation (58), we have

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ n − n1n2 + 2n2 − 1

− 1
2

m

∑
r=n+1

(h̄r
n1+1n1+1 + · · · h̄r

nn)
2 − 2

m

∑
r=n+1

(h̄r
nn)

2

+ 2
m

∑
r=n+1

n

∑
j=n1+1

h̄r
nn h̄r

jj −
m

∑
r=n+1

n1

∑
p=1

n

∑
q=n1+1

(h̄r
pq)

2

−
m

∑
r=n+1

n

∑
b=n1+1

h̄r
nn h̄r

bb +
m

∑
r=n+1

(h̄r
nn)

2

− (1 + n2)
n1

∑
i=1

α(ei, ei)− (1 + n1)
n

∑
i=n1+1

α(ei, ei)− (n − 2)α(en, en),
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or equivalently

Ric(χ) ≤1
2

n2∥H∥2 − n2∆ f
f

+ n − n1n2 + 2n2 − 1

− (1 + n2)
n1

∑
i=1

α(ei, ei)− (1 + n1)
n2

∑
i=n1+1

α(ei, ei)− (n − 2)α(en, en)

− 1
2

m

∑
r=n+1

(h̄r
n1+1n1+1 + · · · h̄r

nn)
2 −

m

∑
r=n+1

(h̄r
nn)

2

+
m

∑
r=n+1

n

∑
j=n1+1

h̄r
nn h̄r

jj −
m

∑
r=n+1

n1

∑
p=1

n

∑
q=n1+1

(h̄r
pq)

2

Applying similar techniques as in the proof of case 1, we reach the following expression

Ric(χ) ≤1
4

n2∥H∥2 − n2∆ f
f

+ n − n1n2 + 2n2 − 1

− (1 + n2)
n1

∑
i=1

α(ei, ei)− (1 + n1)
n

∑
i=n1+1

α(ei, ei)− (n − 2)α(en, en)

− 1
4

m

∑
r=n+1

(h̄r
nn − (h̄r

n1+1n1+1 + · · ·+ h̄r
nn))

2,

which gives the inequality (36).

Let us now investigate the equality cases of the inequality (34). Firstly, we redefine the
concept of the relative null space, Nx, of the submanifold, Mn, within the odd dimensional
sphere, S2n+1, at any given point, x ∈ Mn. The notion of the relative null space was
originally introduced by B. Y. Chen [9] and can be defined as follows

Nx = {X ∈ Tx Mn : h(X, Y) = 0, ∀Y ∈ Tx Mn}.

For a unit vector field, eA, tangent to Mn at point x, the equality in (34) holds true if
and only if

(i)
n1

∑
p=1

n

∑
q=n1+1

h̄r
pq = 0 (ii)

n

∑
b=1

n

∑
A=1
b ̸=A

h̄r
bA = 0 (iii) 2h̄r

AA =
n

∑
q=n1+1

h̄r
qq.

When r ∈ {n + 1, . . . , m} and condition (i) is satisfied, it indicates that Mn is a mixed
T-G contact CR-W-P submanifold. By combining statements (ii) and (iii) with the fact that
Mn is a contact CR-W-P submanifold, we can conclude that the unit vector field χ = eA
belongs to the relative null space, Nx. The converse of this statement is straightforward,
thus proving statement (2).

For a contact CR-W-P submanifold, the equality satisfies in (34) for all unit tangent
vectors belonging to NT at x if

(i)
n1

∑
p=1

n

∑
q=n1+1

h̄r
pq = 0 (ii)

n

∑
b=1

n1

∑
A=1
b ̸=A

h̄r
bA = 0 (iii) 2hr

pp =
n

∑
q=n1+1

h̄r
qq, (59)

where p ∈ {1, . . . , n1} and r ∈ {n + 1, . . . , m}. Considering that Mn is a contact CR-W-P
submanifold, the third condition implies that h̄r

pp = 0 for p ∈ {1, . . . , n1}. By incorporating
this information into condition (ii), we can assert that Mn is a D-T-G contact CR-W-
P submanifold in S2n+1(1), and its mixed T-G nature arises from condition (i). This
establishes statement (a) in (3).
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The equality sign in (34) holds identically for all unit tangent vector fields tangent to
N⊥ at x in the case of a contact CR-W-P submanifold if and only if

(i)
n1

∑
p=1

n

∑
q=n1+1

h̄r
pq = 0 (ii)

n

∑
b=1

n

∑
A=n1+1

b ̸=A

h̄r
bA = 0 (iii) 2hr

KK =
n

∑
q=n1+1

h̄r
qq, (60)

such that K ∈ {n1 + 1, . . . , n} and r ∈ {n + 1, . . . , m}. Two cases arise from condition (iii),
namely

h̄r
KK = 0, ∀K ∈ {n1 + 1, . . . , n} and r ∈ {n + 1, . . . , m} or dim N⊥ = 2.

If the first case of Equation (60) is satisfied, it can be easily concluded, based on condition
(ii), that Mn is a D⊥-T-G contact CR-W-P submanifold in S2n+1(1). This corresponds to the
first case of part (b) in statement (3).

Alternatively, if Mn is not a D⊥-T-G contact CR-warped product submanifold and
dim(N⊥) = 2, condition (ii) of Equation (60) implies that Mn is a D⊥-T-U contact CR-W-P
submanifold in S2n+1(1). This corresponds to the second case in part (b) of statement (3).
Thus, part (b) of statement (3) is confirmed.

To establish (c) using parts (a) and (b) of (3), we combine Equations (59) and (60).
In the first case of this part, let us assume that dim(N⊥) ̸= 2. Based on parts (a) and (b)
of (3), we can conclude that Mn is both a D-T-G and D⊥-T-G submanifold in S̄2n+1(1).
Consequently, Mn is a T-G submanifold in S2n+1(1).

In the case where the first case does not satisfy, we can conclude from parts (a) and
(b) that Mn is a mixed T-G and D-T-G submanifold of S2n+1(1) with dim(N⊥) = 2. Based
on condition (b), it is evident that Mn is a D⊥-T-U contact CR-W-P submanifold, and from
part (a), it is a D-T-G. This satisfies part (c) of the theorem. Thus, the theorem is proven.

5. Conclusions

This paper has delved into the study of contact CR-warped product submanifolds
within the framework of Sasakian space forms endowed with a semi-symmetric metric con-
nection. Through our comprehensive investigation, we have uncovered several important
results and made significant contributions to the understanding of these submanifolds.

One of the main achievements of this paper is the establishment of various key findings
regarding contact CR-warped product submanifolds. We have explored their geometric
properties, such as the characterization of their induced metric, and the determination
of the necessary and sufficient conditions for a submanifold to be contact CR-warped.
Additionally, we have investigated the behavior of the mean curvature vector and the
warping function on these submanifolds.

Moreover, we have derived an inequality that relates the Ricci curvature to the mean
curvature vector and the warping function. This inequality provides a valuable geometric
constraint on contact CR-warped product submanifolds in Sasakian space forms with a
semi-symmetric metric connection. It deepens our understanding of the interplay between
the intrinsic curvature of the submanifold and its extrinsic mean curvature vector.

The findings presented in this paper have implications for various areas of differential
geometry and mathematical physics. They contribute to the broader field of Riemannian
geometry, particularly in the study of Sasakian space forms and submanifold theory. Fur-
thermore, these results can potentially be applied in other mathematical and physical
contexts where contact CR-warped product submanifolds arise.

In conclusion, this paper expands our knowledge of contact CR-warped product
submanifolds in Sasakian space forms equipped with a semi-symmetric metric connection.
The insights gained from this research, along with the derived inequality, provide a solid
foundation for further investigations and applications in related fields. In future research,
we will explore how our results can be applied with soliton theory, submanifold theory,
and related fields presented in the papers [1,6,7,14,24–32] to obtain new results.
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