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Abstract: This paper addresses the robust stabilization problem of a cart–pole system. The controlled
dynamics of this interconnected system are deduced by following the analytic framework of La-
grangian mechanics, and the residual terms are formulated as a bias depending on the angle and
angular velocity. A geometric definition of Proportional–Integral–Derivative (PID) control algorithm
is proposed, and a Lyapunov function is explicitly constructed through two stages of variable change.
Local exponential stability of the stable equilibrium is proved, and a criterion for parameter tuning
is provided by ensuring an exponential decrease in the Lyapunov function. Enlarging the control
parameters to infinity allows for the extension of attraction region almost to the half circle. The
effectiveness of geometric PID controller and the local exponential stability of the resulting close
system are verified by simulating a numerical example.

Keywords: cart–pole system; inverted pendulum; geometric PID; interconnected system; under-actuated
system

1. Introduction

Stabilization of a cart–pendulum (cart–pole) system is of significant interest for both
practical applications in control engineering and scientific research of control theory [1,2]. At-
titude control of a spacecraft booster is precisely a stabilization problem of the cart–pendulum.
Balancing of a two-wheeled cart in robotic engineering also involves stabilizing an inverted
pendulum on a cart. Due to the nonlinear nature of the cart–pendulum system, it has been a
popular benchmark for the invention, validation and verification of many advanced nonlinear
control techniques, especially for the energy-based control [3–7]. As an under-actuated
system, the cart–pole system has two dimensions of freedom for motion, i.e., the pendu-
lum angle and cart position, but is actuated, in only one dimension, by forces applied to
the cart. This property has inspired the researchers to study the cart–pole system as an
interconnected or cascade system and use the energy-based method of Interconnection
and Damping Assignment Passivity-Based Control (IDA-PBC) to get the pending position
stabilized [4,5]. Another point of view for understanding the dynamics of a cart–pole
system is by following the framework of the Lagrangian mechanics. In this line, the energy-
based method of controlled Lagrangian is introduced to stabilize an inverted pendulum by
shaping the kinetic or potential energy such that some geometric structures of Lagrangian
system are matched [6,7]. In the present paper, we establish the controlled dynamics of a
cart–pendulum system in the analytic framework of Lagrangian mechanics, which allows
us to investigate the interactions between the pending pole and the tracking cart.

Among the various control techniques developed for a cart–pole system, more ad-
vanced approaches, such as energy-based control [3–7] or model predictive control [8],
are based on system model and are advantageous in providing more accurate control,
as simulation and computation of physical models are possible. More recent results are
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established on the data-driven technique of learning-based control. The algorithm of Deep
Reinforcement Learning (DRL) allows for online extraction of the system model [9,10] or
real-time identification of the optimal parameters [11,12] from the collected data. Therefore,
the DRL method has significant advantages in providing an adaptive controller by which
seeking optimal solutions and improving the robustness to time-varying disturbances are
possible. Although the learning-based control has relaxed, more or less, the requirement of
exact model knowledge, its training process relies heavily on a large amount of data. As an-
other model-free method, however, PID control has its strength in simplifying the structure
of the controller and reducing the requirement for information about the system model.
In the algorithm of PID control, the input commands are formed by combining a proportion,
a time derivative and a time integral of errors. Computing those actions is straightforward
in vector spaces. For a system defined in a non-Euclidean space, however, the classical
definition of PID control makes no mathematical sense and providing a rigorous and con-
sistent extension of the conventional one to more general settings requires further studies.
The work in [13] provided a geometric PD controller for simple mechanical systems evolv-
ing on Riemannian manifolds by using a negative proportion of the gradient of an error
function as the proportional action. In this line, a left-invariant definition of PID controller
was proposed for fully actuated systems evolving on Lie groups by identifying the integral
action in Lie algebra as an integration of PD commands along time [14,15]. A parallel work
in [16] focused on the extension of PID to more geometric settings, in which an intrinsic PID
controller is defined with all the input commands justified using the notation of covariant
derivative. We also attempted to generalize the capability of geometric PID control to
stabilize under-actuated systems like steering-controlled vehicles. This extension, however,
requires modification on the definition of integral action [17]. To our knowledge, this is the
first time confirming the effectiveness of geometric PID control law in robust stabilization
of under-actuated systems, i.e., stabilizing the variables in the under-actuated dimension of
an interconnected system, like a cart–pole system, despite the influence of residual terms
that come from the interactions between actuated and under-actuated dimensions.

Although the design of the geometric PID control has been studied for a decade,
the convergence analysis for geometric PID-controlled systems needs further studies. Two
aspects are worthy of deeper investigation. First, most results were developed by associat-
ing a feed-forward control with the geometric PID control [16,18]. The feed-forward action
still needs the exact information of system model. The work in [14] suggests the simplest
design only with PID inputs, while the feed-forward compensation is not necessary. In this
line, we are inspired to propose a modeling of a cart–pole system in which the residual
term is viewed as a bias to be countered by integral action rather than a term to be compen-
sated by feed-forward control. The convergence analysis for this geometric PID-controlled
system is not straightforward. The integral control must be ensured with the ability to
deal with both state-dependent and velocity-dependent biases. To our knowledge, using
integral action to compensate for the time-varying effects caused by residual terms in a
cart–pendulum system has not been studied in the existing literature. Second, regarding the
convergence, only Asymptotic Stability (AS) was established in previous works [14–16,18],
and the proof must be resolved in association with LaSalle’s invariance principle. We want
to establish a stronger result of Exponential Stability (ES) for a geometric PID-controlled
cart–pole system. Our goal is to provide an analytical framework in which integral action
is confirmed to be able to completely attenuate the effects of both state-dependent and
velocity-dependent biases.

The contributions of this paper are in following aspects:

• The controlled dynamics of a cart–pole system is presented in a form of Euler–Lagrangian
equations and the residual terms are viewed as state-dependent and velocity-dependent bi-
ases whose effects are not necessarily required to be compensated by feed-forward control.

• The process of controller design is simplified as defining a geometric PID control
algorithm for an inverted pendulum. The proposed control law allows for robust
stabilization of angles to an arbitrary value, as integral action is incorporated to



Symmetry 2024, 16, 94 3 of 17

suppress the effects caused by residual terms. The advantage of derivative control in
accelerating convergence speed and the strength of integral action in compensating
unknown biases are confirmed.

• A Lyapunov function is deduced by applying two stages of coordinate change. Condi-
tions for the tuning of controller parameters are justified by guaranteeing exponential
decrease in the established Lyapunov function. The attraction region is enlarged
almost to a half circle.

The remaining contents of this paper are outlined as follows: In Section 2, the mathe-
matical model of a cart–pole system is established and its governing equations of controlled
dynamics are derived. In Section 3, a geometric PID controller is proposed. The main
attention of the present paper is focused on providing a rigorous convergence analysis;
see Section 4 for detailed proof. Results of numerical simulation are reported and the
limitations are discussed in Section 5, followed by the conclusion in Section 6.

2. System Modeling

As shown in Figure 1, a cart–pole is an interconnected system with physical interaction
between a cart and a pole. One end of the rob is pivoted on the base of the cart, and the
other end is associated with a ball. The cart and ball are of mass M and m, respectively,
while the rob is assumed to be massless. We denote by θ the angle between the rob and
the vertical line, which needs to be stabilized. The cart is controlled by an external force
us. Because of the action by the gravity of the earth, it is difficult to keep the rob staying
in an upright direction, as θ = 0 is an unstable equilibrium point for a cart–pole system
of no control, and arbitrarily small deviation from this point will let the ball fall down.
Applying control in the horizontal direction to the cart, however, allows us to have the angle
stabilized to a desired equilibrium. In this section, an explicit expression for the governing
equation is deduced by following the analytical framework of Lagrangian mechanics [6].

Figure 1. Model of a cart–pole system.

Summing up the kinetic energy of ball and cart gives the total value of kinetic energy

T = 1
2 (M + m)ṡ2 − (ml cos θ)ṡθ̇ + 1

2 (ml2)θ̇2.

The potential energy only appears in the component of the ball

E = mgl cos θ.

Accordingly, the Lagrangian for a cart–pole system is obtained

L = T − E = 1
2 (M + m)ṡ2 − (ml cos θ)ṡθ̇ + 1

2 (ml2)θ̇2 − mgl cos θ.
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The resulting Euler–Lagrangian equations follow

d
dt

∂L
∂θ̇

− ∂L
∂θ = 0

d
dt

∂L
∂ṡ − ∂L

∂s = us.

Replacing the partial derivatives with explicit computations gives a more detailed repre-
sentation of Euler–Lagrangian equations

(ml2)θ̈ − (ml cos θ)s̈ − mgl sin θ = 0

(M + m)s̈ − (ml cos θ)θ̈ + (ml sin θ)θ̇2 = us,

whose solutions are

θ̈ = cos θ
l s̈ + g sin θ

l

s̈ = us−(ml sin θ)θ̇2+mg sin θ cos θ

M+m sin2 θ
.

By defining a new variable
η(θ) = cos θ

Ml+ml sin2 θ
, (1)

a more compact form for the dynamics of variable θ turns out to be

θ̈ = η(θ) · (us + Fb) (2)

where the residual term Fb comes from the action by gravity of the earth, and the interactions
between the cart and the pole

Fb = −(ml sin θ)θ̇2 + 1
2 mg sin(2θ) + g

l ·
sin θ
η(θ)

. (3)

Instead of compensating the influence of this residual term through feed-forward
control, we let it appear as a state-dependent and velocity-dependent bias in the system
model and attempt to obtain its effects attenuated by incorporating integral action in the
process of controller design.

3. Design of Geometric PID Controller

As shown in Figure 2, the system is actuated on the cart, and the feedback is based on
the measurements of angle and angular velocity on the pending pole. The geometric design
of PID control law is different from the conventional design in Euclidean spaces. First,
the measurements must be transformed, through some geometric computations, into a
geometric object of the gradient vector. Second, the proportional, integral, and derivative
inputs must be defined in vector form. Thus, the geometric PID controller is defined as

us = −kp sin θ − kdω + ki ui

u̇i = −kp sin θ − kdω,

where ω = θ̇ represents angular velocity, the proportional command Fp = −kp sin θ is
proportional to the gradient of error function ϕ(θ) = 1 − cos θ, and Fi = kiui is a time
integral of Fp and derivative commands Fd = −kdω. Submitting the control inputs into
Equation (2) results into a closed system

θ̇ = ω (4)

ω̇ = η(θ) · (−kp sin θ − kdω + kiui + Fb) (5)

u̇i = −kp sin θ − kdω. (6)
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The goal for controller design is settled as to stabilize the pair of states (θ, ω) to a
desired equilibrium of (θ⋆, 0). Without loss of generality, we take θ⋆ = 0 in the following
analysis, as the problem of stabilizing θ towards an arbitrary target point of θ⋆ ̸= 0 is
equivalent to that of driving θ̂ = θ − θ⋆ to θ̂ = 0. We do not include the requirements for
the specification of states (s, ṡ) in our controller design. It is clear that, when θ̈ = 0, there
exist a term −g tan θ in s̈, which only vanishes when θ = 0. This implies that, when the
target point θ⋆ ̸= 0, the cart will keep constantly accelerating such that the pole remains at
the equilibrium point.

Figure 2. Diagram of a geometric PID-controlled cart–pole system.

4. Convergence Analysis

In order to achieve the proof of exponential stability, the resulting close system needs a
representation in some renewed coordinate systems. Fortunately, it is possible to construct
the proper coordinates by justifying two stages of reasonable variable change. In the first
step, it is shown that there exists a negative proportion of |sin θ|2 in the time derivative of ϕ,
which implies the gradient-descent decline of an error function. The second-stage variable
change further ensures that the derivative input Fd and the integral action Fi exponentially
approach the proportional one Fp and the bias Fb, respectively. Provided the results of
two-stage coordinate change, it is straightforward to come up with a Lyapunov candidate
whose decrease proves the exponential stability.

4.1. First-Stage Variable Change

It is difficult to judge the stability of the resulting system in the original coordinate
(θ, ω). By choosing the new variables (θ, x, y), we update the coordinate system as

x = −kp sin θ − kdω (7)

y = kiui + Fb. (8)

Computing its inverse allows us to represent ω, ω̇, and u̇i in terms of x and y:

ω = −β sin θ − ρ x

ω̇ = η(θ) · (x + y)

u̇i = x

with β = kp/kd, ρ = 1/kd. With the help of this variable change, the original system is
turned into that described in the new coordinates:
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θ̇ = −β sin θ − ρ x

ẋ = −kdη(θ) · (x + y) + Ḟp

ẏ = kix + Ḟb.

By defining vectors v = [x; y], we obtain a system in linear form:

θ̇ = −β sin θ + bθ (9)

v̇ = A(θ)v + bv (10)

where the matrix A(θ) and the vectors bθ , bv are

A(θ) =

[
−kdη(θ) −kdη(θ)

ki 0

]
(11)

bθ = −ρx; bv =

[
Ḟp
Ḟb

]
. (12)

After performing the first step of variable change, the resulting representation in the
renewed coordinate system is obtained in the next proposition.

Proposition 1. Suppose that θ ∈ [−θ̄, θ̄] ⊂ (−π
2 , π

2 ) and |ω| ≤ H. Then, the geometric PID-
controlled system (4)–(6) has a representation of the form (9) and (10) under the coordinate change
(7) and (8). The norm of vectors bθ and bv is upper bounded by the values of | sin θ| and ∥v∥

|bθ | ≤ k0∥v∥ (13)

∥bv∥ ≤ k1| sin θ|+ k2∥v∥ (14)

with

k0 = ρ

k1 = (kp + µ)β

k2 = β + µρ + 2νη̄

and

µ = mlH2 + mg + g
ηl

(
1 + M+2m

ηlM2

)
ν = 2mlH

η = cos θ̄
Ml+ml sin2 θ̄

η̄ = 1
Ml .

Proof of Proposition 1. The above computations have established the updated representa-
tion of the geometric PID-controlled system in the renewed coordinates. We need to further
identify the upper bound for the norm of vectors bθ and bv. From their expressions in (12),
we have |bθ | = ρ|x| ≤ ρ∥v∥ = k0∥v∥ with k0 = ρ; and we also know that

∥bv∥ ≤ |Ḟp|+ |Ḟb|. (15)

The remaining task then turns out to be estimating the upper bounds of |Ḟp| and |Ḟb|.
Computing the derivative of Fp gives
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|Ḟp| = |(kpβ cos θ) · sin θ + (β cos θ) · x|
≤ |(kpβ cos θ) · sin θ|+ |(β cos θ) · x|
≤ kpβ| sin θ|+ β∥v∥. (16)

In order to obtain the estimate of |Ḟb|, we need to know the upper bounds of | ∂η(θ)
∂θ |, | ∂Fb

∂θ |,
| ∂Fb

∂ω |. With the expression of η(θ) in (1), we have

η(θ) ∈ [η, η̄] =
[

cos θ̄
(Ml+ml sin2 θ̄)

, 1
Ml

]
(17)

∣∣∣ ∂η(θ)
∂θ

∣∣∣ =
∣∣∣− sin θ(M+m sin2 θ)−m cos θ sin(2θ)

(M+m sin2 θ)2l

∣∣∣
≤ M+2m

M2l . (18)

Further, with the expression of Fb in (3), we obtain∣∣∣ ∂Fb
∂θ

∣∣∣ =
∣∣∣−mlω2 cos θ + mg cos(2θ) + 1

η · g cos θ
l − g sin θ

l · 1
η2

∂η(θ)
∂θ

∣∣∣
≤ mlH2 + mg + g

ηl

(
1 + M+2m

ηlM2

)
= µ∣∣∣ ∂Fb

∂ω

∣∣∣ = |−2mlω sin θ|
≤ 2mlH

= ν

where we have used the facts in (17) and (18) and the assumption on |ω| ≤ H. Now, we
are ready to obtain the upper bound for |Ḟb|

|Ḟb| = | ∂Fb
∂θ ω + ∂Fb

∂ω ω̇|

≤ | ∂Fb
∂θ | · |ω|+ | ∂Fb

∂ω | · |ω̇|

≤ | ∂Fb
∂θ | · (β|sin θ|+ ρ∥v∥) + | ∂Fb

∂ω | · (2η∥v∥)
≤ µβ|sin θ|+ (µρ + 2νη̄)∥v∥. (19)

Submitting the results from (16) and (19) into Equation (15) yields

∥bv∥ ≤ ∥bv1∥+ ∥bv2∥
≤ (kp + µ)β|sin θ|+ (β + µρ + 2νη̄)∥v∥
= k1|sin θ|+ k2∥v∥

where

bv1 =

[
kpβ cos θ sin θ

− ∂Fb
∂θ β sin θ

]
; bv2 =

[
β cos θx

− ∂Fb
∂θ ρx + ∂Fb

∂ω η(x + y)

]

and the values of k1, k2 are justified accordingly.

The results in the first step of coordinate change have shown the fact that there exists
a term −β| sin θ|2 in the time derivative of error function d

dt ϕ, which ensures a gradient-
descent decline of ϕ = 1 − cos θ. However, the term vT A(θ)v is not guaranteed to hold a
negative value for arbitrary non-zero vectors. Thus, a second-stage variable change must
be performed to obtain a reasonable coordinate system through a similar transformation.
i.e., ṽ = Pv and Ã = PA(θ)P−1, such that the term ṽT Ãṽ is ensured being definitely
negative for all the vectors ṽ ̸= 0.



Symmetry 2024, 16, 94 8 of 17

4.2. Second-Stage Variable Change

The second-stage process of variable change is to perform a similar transformation of
the matrix A(θ). We let ki = γkd and turn the matrix A(θ) in (11) into

A =

[
−kdη(θ) −kdη(θ)

γkd 0

]
This matrix has two eigenvalues

λ̃1 = −kdη(θ)λ1, λ̃2 = −kdη(θ)λ2 (20)

with λ1, λ2 ∈ R having explicit expressions

λ1,2 = 1
2 ±

√
1
4 − γ

η(θ)
, (21)

which, indeed, are two solutions of the following equation:

η(θ) · λ2 − η(θ) · λ + γ = 0.

The second-stage process of variable change is then defined as

x̃ = λ1x + y (22)

ỹ = λ2x + y (23)

or, in matrix form, as ṽ = P · v for ṽ = [x̃; ỹ]. The matrix P then follows

P =

[
λ1 1
λ2 1

]
.

We further obtain a transformation of the system (9) and (10) into that, described in terms
of ṽ, b̃θ and b̃ṽ

θ̇ = −β sin θ + b̃θ (24)
˙̃v = Ã(θ)ṽ + b̃ṽ (25)

where the matrix Ã and vectors b̃θ , b̃ṽ are

Ã = PA(θ)P−1 =

[
λ̃1

λ̃2

]
(26)

b̃θ = ρ
x̃−ỹ

λ1−λ2
; b̃ṽ = ṖP−1 · ṽ + P · bv. (27)

By performing the second step of variable change, the form of resulting system is
reported in the next proposition.

Proposition 2. Suppose that Proposition 1 holds and γ is settled such that 0 < m ≤ γ
η̄ < γ

η ≤
M < 1

4 . Then, there exists a variable change (22) and (23), such that the system (9) and (10) has a
representation of the form (24) and (25). The terms ṽT Ãṽ, |b̃θ | and ∥b̃ṽ∥ are bounded as follows:

ṽT Ãṽ ≤ −k̃A∥ṽ∥2 (28)

|b̃θ | ≤ k̃0∥ṽ∥ (29)

∥b̃ṽ∥ ≤ k̃1| sin θ|+ k̃2∥ṽ∥ (30)
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with

k̃A = kdη

(
1
2 −

√
1
4 − m

)
k̃0 = 2k0√

1−4M

k̃1 = 2k1

k̃2 = 4k2√
1−4M

+ 2
√

2(M+2m)H
ηlM(1−4M)

.

Proof of Proposition 2. By following the above computations, it is not difficult to obtain
the renewed representation of the geometric PID-controlled system after two stages of
variable change. The remaining task is to provide the estimate of upper bounds for ṽT Ãṽ,
b̃θ and b̃ṽ. By Equations (20) and (21), we know that

|λ̃| ≥ kdη

(
1
2 −

√
1
4 − m

)
.

Following Equation (26), we further obtain the result

ṽT Ãṽ ≤ −kdη

(
1
2 −

√
1
4 − m

)
∥ṽ∥2

= −k̃A∥ṽ∥2

by which k̃A in (28) is justified accordingly. By investigating the explicit solutions for λ
in (21), we know the facts

0 < 1
2 −

√
1
4 − m ≤ |λ| ≤ 1

2 +
√

1
4 − m < 1

|λ̇| =
∣∣∣∣± γ

η · η̇√
η2−4γη

∣∣∣∣ ≤ (M+2m)H
ηlM

√
1−4M

√
1 − 4M < |λ1 − λ2| =

∣∣∣∣√1 − 4γ
η(θ)

∣∣∣∣ < √
1 − 4m.

By following Gershgorin circle theorem, we are allowed to come up with the estimate of
upper bounds for ∥P∥, ∥P−1∥ and ∥Ṗ∥,

∥P∥ =
√

λmax(PT P) < 2

∥P−1∥ =
√

λmax((P−1)T P−1) < 2√
1−4M

∥Ṗ∥ =
√

λmax(ṖT Ṗ) <
√

2(M+2m)H
ηlM

√
1−4M

.

From (13) and (27), we know that

|b̃θ | = |bθ |
≤ k0∥v∥
≤ k0∥P−1∥ · ∥ṽ∥
≤ 2k0√

1−4M
∥ṽ∥

= k̃0∥ṽ∥.

The vector b̃v can be viewed as a combination of two terms b̃ṽ1 = P · bv1 and
b̃ṽ2 = P · bv2 + ṖP−1 · ṽ. With the result of (14) in Proposition 1, we have
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∥b̃ṽ1∥ ≤ ∥P∥ · k1| sin θ|
≤ 2k1| sin θ|
= k̃1| sin θ|

∥b̃ṽ2∥ ≤ ∥P∥ · k2∥v∥+ ∥ṖP−1∥ · ∥ṽ∥
≤ ∥P∥ · k2∥P−1∥ · ∥ṽ∥+ ∥Ṗ∥ · ∥P−1∥ · ∥ṽ∥

≤
(

4k2√
1−4M

+ 2
√

2(M+2m)H
ηlM(1−4M)

)
∥ṽ∥

= k̃2∥ṽ∥.

With the above results at hand, we can make a progress to reach (29) and (30) for the
upper bounds of ∥b̃θ∥ and ∥b̃ṽ∥ with the values of k̃0, k̃1 and k̃2 justified accordingly.

4.3. Local Exponential Stability

With the above results obtained through two stages of coordinate change, it is sufficient
to present the main results of this paper in the next theorem.

Theorem 1. Suppose that the control parameters are settled as identifying kp > 1/
√

1− 4M and
taking sufficiently large kd, ki with γ = ki/kd satisfying γ

η ∈ [m, M] ⊂ (0, 1/4), then the desired
stable equilibrium point (θ, ω) = (0, 0) of the system (4)–(6) is locally exponentially stable. Starting
from an arbitrarily specified initial point (θ(0), ω(0)) in the attraction region R0 = {(θ, ω)|ϕ(θ) ≤
a0 < 1, |ω| ≤ H0} with ui(0) = 0, and by declining the Lyapunov function,

V = αϕ + 1
2 ṽT ṽ (31)

the system’s states (θ, ω) are stabilized to the stable equilibrium point, while the bias Fb is countered
by the integral action kiui. Sufficiently large control parameters α → ∞ and kd, ki → ∞ allow us
to extend the attraction region R0 almost to the set of {(θ, ω)| − π

2 ≤ θ ≤ π
2 , ω ∈ R}.

Proof of Theorem 1. Computing the time derivative of (31) and replacing the terms θ̇ and
∥̇ṽ∥ with (24) and (25) leads to

V̇ = α sin θ · ω + ṽT · ˙̃v

= −αβ|sin θ|2 + α sin θ · b̃θ + ṽT Ãṽ + ṽT · b̃ṽ.

The results of (28)–(30) established in Proposition 2 allow us to obtain

V̇ ≤ −αβ|sin θ|2 + (αk̃0 + k̃1)|sin θ| · ∥ṽ∥+ (−k̃A + k̃2)∥ṽ∥2.

By defining z = [|sin θ|; ∥ṽ∥], we further have

V̇ ≤ zTW1z (32)

with the matrix

W1 =

[
−αβ αk̃0+k̃1

2
αk̃0+k̃1

2 −k̃A + k̃2.

]
By Gershgorin circle theorem, zTW1z < 0 requires

αβ > αk̃0+k̃1
2

k̃A > αk̃0+k̃1
2 + k̃2
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By replacing k̃A, k̃0, k̃1, k̃2 with explicit expressions, we rewrite the conditions as(
kp − 1√

1−4M

)
kα > (kp + µ) (33)(

1
2 −

√
1
4 − m

)
kdη > kα β+4(β+µρ+2νη̄)√

1−4M
+ (kp + µ)β + 2

√
2(M+2m)H

ηlM(1−4M)
(34)

with kα = α/kp. The above requirements are possible to be reached by taking appropriate
control parameters and setting a proper value for the weight α. Firstly, we set the propor-
tional action with a kp of large value such that kp > 1√

1−4M
. Once kp is specified, enlarging

the value of kα allows us to satisfy the condition (33). Next, given the fixed value of kp
and kα, we are allowed to let the condition (34) be satisfied by choosing a sufficiently large
value for kd.

Before proving the exponential stability, we first need to make sure that there exist
two positive matrices W2 and W3 such that

zTW2z ≤ V ≤ zTW3z. (35)

Now, we want to prove that ϕ is lower bounded by | sin θ|2. Actually, from the fact
that ϕ = | sin θ|2 = 0 at θ = 0, we can view the values of ϕ(θ) and | sin θ|2 for arbitrary θ as
path integrals along a curve parameterized by t ∈ [0, 1], with starting point θ = 0 at initial
time t = 0 and ending point θ at last time t = 1. As the path integrals are independent of
the specific curves, we take the special one whose velocity d

dt θ equals the gradient of error
function sin θ as the candidate path.

ϕ(θ) =
∫ 1

0

d
dt ϕ(θ(t)) · dt =

∫ 1

0
sin θ(t) · sin θ(t)dt =

∫ 1

0
| sin θ(t)|2 dt

| sin θ|2 =
∫ 1

0

d
dt | sin θ(t)|2 · dt =

∫ 1

0
2 cos θ(t) · |sin θ(t)|2dt.

As |cos θ(t)| ≤ 1, we further obtain

| sin θ|2 ≤ 2
∫ 1

0
| sin θ(t)|2dt = 2ϕ(θ).

We can take a sufficiently small w2 ≤ 1
2 such that

w2| sin θ|2 ≤ ϕ(θ).

As we know that 0 ≤ ϕ ≤ 1, we can make σ < 1 sufficiently close to 1, and take w3 = 1
1−σ

such that
ϕ(θ) ≤ w3| sin θ|2

is satisfied for any θ in an arbitrarily given attraction region. The matrices in (35) are settled
as W2 = diag{w2; w2} and W3 = diag{w3; w3}. The conditions (32) and (35) allow us to
conclude that the desired equilibrium point (θ, ω) = (0, 0) is exponentially stable [19].

Next, we prove the extension of the attraction region. We need to ensure that ϕ(θ)
does not reach a and |ω| does not exceed the value of H, i.e., ϕ(θ(t)) ≤ a < 1 and
|ω(t)| ≤ H are always satisfied for all t. Let R0 = {(θ, ω)|ϕ(θ) ≤ a0 < 1, |ω| ≤ H0} and
R1 = {(θ, ω)|ϕ(θ) ≤ a < 1, |ω| ≤ H}, then we need to prove that (θ(0), ω(0)) ∈ R0 and
ui(0) = 0 implies (θ(t), ω(t)) ∈ R1. As V̇(ξ) < 0 for all ξ ∈ [0, t) and |Fb(0)| ≤ D =∣∣∣mlH2

0 + mg + g
ηl

∣∣∣; we thus obtain the estimate of upper bound for V(t)
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V(t) = V(0) +
∫ t

0

d
dξ V(ξ)dξ

< V(0)

= αϕ(θ(0)) + 1
2∥ṽ(0)∥2

≤ α + 2
(
(kp + kdH0)

2 + D2
)

with

∥ṽ(0)∥ ≤ ∥P∥ · ∥v(0)∥

≤ 2
√
|x(0)|2 + |y(0)|2

= 2
√
| − kp sin θ(0)− kdω(0)|2 + |Fb(0)|2

≤ 2
√
(kp + kd H0)2 + D2.

We further obtain the value of H justified as follows

|ω(t)| ≤ β| sin θ|+ ρ|x(t)|
≤ β + ρ∥v(t)∥
≤ β + ρ∥P−1∥ · ∥ṽ(t)∥

≤ β + 2ρ√
1−4M

√
2V(t)

≤ β + 2ρ√
1−4M

√
2α + 4

(
(kp + kd H0)2 + D2

)
= H.

The nominal part v̇ = Av actually represents a physical model of damped oscillator.
Enlarging the parameter kd to infinity will increase the frequency of the oscillator to infinity,
and therefore allows us to reduce the period T to zero. Thus, it is possible to make the
value of ϕ(θ(t)) over a period t ∈ [t0, t0 + T] stay sufficiently close to that of ϕ(θ(t0)), i.e.,

ϕ(θ(t))− ϕ(θ(t0)) =
∫ t

t0

sin θ(ξ) · ω(ξ)dξ

≤ T · H.

Given an arbitrarily specified value of a0 < 1 (sufficiently close to 1), by making kd
sufficiently large, a real value of a satisfying a0 < a = a0 + T · H < 1 can be justified
such that ϕ(θ(t0)) ≤ a0 indicates ϕ(θ(t)) ≤ a for all t ∈ [t0, t0 + T]. Through a period,
the accumulated effects by the term −ρx in ω is averaged out, while the total effects by the
action of −β sin θ decreases the value of error function ϕ, i.e., ϕ(θ(t0 + T)) < ϕ(θ(t0)) ≤ a0.
Therefore, the condition ϕ(θ(t)) < a also remains valid for all t > t0 + T, and the angles
are ensured to be not exceeding the value of θ̄ = arccos(1 − a), which further determines
the value of η.

Now, it is sufficient to draw a conclusion on the extension of attraction region, i.e., en-
larging the value of control parameters to infinity allows for an extension of attraction
region R0 almost to the set of {(θ, ω)| − π

2 ≤ θ ≤ π
2 , ω ∈ R}.

5. Results and Discussion

In this section, the numerical results of a simulating example are reported, and the
limitations of the proposed design are discussed.

5.1. Results of Simulation

We verify the effectiveness of the proposed geometric PID control algorithm in robustly
and exponentially stabilizing an inverted pendulum by providing a numerical simulation
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of a cart–pole system. The setting for the system model, control parameters, and coefficient
of the Lyapunov function are presented in Table 1. The system is assumed to start from
an initial point of (θ(0), s(0)) = (π/6, 0) with zero velocity and without integral action,
i.e., (ω(0), ṡ(0), ui(0)) = (0, 0, 0).

Table 1. Parameter setting of simulated cart–pole system.

Notation Meaning Unit Value

M mass of cart kg 1
m mass of ball kg 0.1
l length of rob m 1
g gravity of the earth m/s2 9.8
kp weight of Fp – 80
kd weight of Fd – 40
ki weight of Fi – 4
β kp/kd – 2
γ ki/kd – 0.1
α weight of ϕ in V – 10

Figure 3 shows the evolution of angle, angular velocity, and η(θ). As time evolves,
the pair (θ, ω) is stabilized to a specified value of targeted equilibrium point, i.e.,
(θ⋆, ω) = (π/36, 0) in this case. Note that the cart is accelerating at this equilibrium,
as s̈ = −g tan(π/36) ̸= 0. As the angle evolves, the θ-dependent variable η(θ) varies,
but with all its values being ensured to stay in a positive interval.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.85

0.9

0.95

1

Figure 3. Evolution the angle θ, the angular velocity ω, and the variable η(θ) over time.
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Figure 4 shows the evolution of control commands and bias. After a very short time
of initial transient, the derivative input Fd = −kdω tends to the negative of proportional
input Fp = −kp sin θ, implying that ω is forced to hold the value of −β sin θ rapidly. This
behavior confirms the fact that the derivative control is able to track the gradient of an error
function. The benefit of using PD control is then obviously straightforward: forcing the
system to satisfy the constraint ω = −β sin θ leads into a gradient-descent decline of the
error function, i.e., ϕ̇ = −β| sin θ|2. Similarly, the integral part of actions Fi = kiui rapidly
approaches the opposite of the biased term Fb after a short time of initial transient. This
result indicates the advantages of integral control in dynamically rejecting the residual
terms, rather than only compensating for the effect caused by steady-state errors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-40

-20

0

20

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

Figure 4. Evolution of the control inputs Fp, Fd, Fi and the bias Fb over time.

Figure 5 provides the evolution of Lyapunov function along time. As its value de-
creases to zero, the values of error function ϕ and ∥ṽ∥ (or equivalently ∥v∥) approach zero.
In other words, the states of system (θ, ω) are driven to the stable equilibrium point (0, 0),
while the effects of biases Fb are exactly attenuated by the integral action Fi. The simulation
results have verified the effectiveness of the proposed geometric design of PID control
algorithm, i.e., achieving (at least locally) robust and exponential stabilization of an inverted
pendulum system. The requirement of feed-forward control is relaxed, as an integral term
is incorporated to deal with the influence of residual terms.
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Figure 5. Evolution of the Lyapunov function V over time.

5.2. Discussion of Limitations

There are two significant limitations to the analytical and simulating results in the
present paper. First, although the exponential stability was proved in convergence analysis
and was verified in simulations, its convergent speed is limited by β = kp/kd, which
is reduced to an infinitely small value when kd is enlarged sufficiently. Overcoming this
limitation requires a new framework of analysis, which might suggest a completely different
set of control parameters. Second, the cart–pole system consists of two one-dimensional
sub-systems of cart and pole. Restricting our attention to this single-dimensional case
simplifies both the convergence analysis and simulation experiment. It is worth future
interest to extend this result to more general settings for interconnected systems evolving
on nonlinear spaces of multiple dimensions, e.g., for an inverted spherical pendulum whose
configuration space involves a two-dimensional manifold [20] and for pendubots with
multiple linkages on the pendulum [21,22].

6. Conclusions

This paper proposes a geometric PID controller for robust and exponential stabilization
of a cart–pole system. The controlled dynamics are deduced by following an analytic
framework of Lagrangian mechanics, in which the interconnections are clearly presented.
Next, we formulate the residual term as a biased term depending on both angle and
angular velocity. A geometric PID control strategy is provided to stabilize the system’s
state to a desired equilibrium point despite the influence of biases. In the proposed
controller algorithm, the proportional part of actions is defined as a negative proportion
of the gradient of an error function, while the integral part is justified as an integration
of proportional-derivative commands along time. A Lyapunov metric is constructively
established by performing two stages of coordinate change, and local exponential stability
is proved for the closed system. Conditions for parameter tuning are obtained by ensuring
the exponential decline of the suggested Lyapunov candidate. Our next interest in future
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research is to accelerate the convergence speed and to consider more complicated cases of
multiple dimensions.
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