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Abstract: This paper presents a review of investigations into the vacuum expectation value of the
current density for a charged scalar field in spacetimes that hold toroidally compactified spatial
dimensions. As background geometries, the locally Minkowskian (LM), locally de Sitter (LdS), and
locally anti-de Sitter (LAdS) spacetimes are considered. Along compact dimensions, quasi-periodicity
conditions are imposed on the field operator and the presence of a constant gauge field is assumed.
The vacuum current has nonzero components along the compact dimensions only. Those components
are periodic functions of the magnetic flux enclosed in compact dimensions, with a period that is
equal to the flux quantum. For LdS and LAdS geometries, and for small values of the length of a
compact dimension, compared with the curvature radius, the leading term in the expansion of the
the vacuum current along that dimension coincides with that for LM bulk. In this limit, the dominant
contribution to the mode sum for the current density comes from the vacuum fluctuations with
wavelengths smaller to those of the curvature radius; additionally, the influence of the gravitational
field is weak. The effects of the gravitational field are essential for lengths of compact dimensions
that are larger than the curvature radius. In particular, instead of the exponential suppression of the
current density in LM bulk, one can obtain a power law decay in the LdS and LAdS spacetimes.

Keywords: vacuum currents; nontrivial topology; Casimir effect; de Sitter spacetime; anti-de Sitter
spacetime

1. Introduction

In a number of physical models, the dynamics of the system are formulated in back-
ground geometries that have compact dimensions. The examples include Kaluza–Klein
type models with extra dimensions, string theories with different types of compactifications
of six-dimensional internal sub-spaces, condensed matter systems like fullerenes, cylin-
drical nanotubes and toroidal loops. The periodicity conditions imposed on dynamical
variables along compact dimensions are sources of a number of interesting effects, such
as the topological generation of mass, various mechanisms for symmetry breaking, and
different kinds of instabilities (see, for example, [1–9]). In quantum field theory, nontrivial
spatial topology modifies the spectrum of the zero-point fluctuations of the fields; as a
consequence, the vacuum expectation values (VEVs) of physical observables are shifted by
an amount that depends on the geometrical characteristics of the compact space. This is
the analog of the Casimir effect (for reviews see [10–14]), where the conditions imposed on
constraining boundaries are replaced by periodicity conditions; this is generally known
as the topological Casimir effect. In Kaluza–Klein models, this effect yields an effective
potential for the lengths of compact dimensions and can serve as a compactification and
stabilization mechanism for internal sub-spaces (the Candelas–Weinberg mechanism [15]).

The most popular quantity in the investigations of the zero-temperature Casimir effect
is that of vacuum energy. This is an important global characteristic of the vacuum state;
additionally, it determines the vacuum forces that act onthe boundaries that constrain
the quantization volume. More detailed information is contained in local characteristics,
such as the vacuum expectation value (VEV) of the energy–momentum tensor. The latter
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is a source of the gravitational field in semi-classical Einstein equations and determines
the back-reaction of the quantum effects on the geometry of the spacetime. That VEV of
the energy–momentum tensor in the Casimir effect does not generally obey the energy
conditions in Hawking–Penrose singularity theorems; hence, it is an interesting source of
singularity-free solutions for the gravitational field. For charged fields, another important
local characteristic of the vacuum state is the expectation value of the current density. It is a
source of the electromagnetic field in Maxwell equations and should be taken into account
when considering the self-consistent dynamics of the electromagnetic field.

Unlike the energy–momentum tensor, in order to achieve nonzero vacuum currents,
the parity symmetry of the model should be broken. This can be performed by introducing
external fields or by imposing appropriate boundary or periodicity conditions (in models
with compact spatial dimensions). In particular, the vacuum currents for charged scalar
and fermionic fields in locally Minkowski spacetime with toroidally compactified spatial
dimensions and in the presence of constant gauge fields have been investigated in [16,17].
The parity symmetry in the corresponding models is broken by an external gauge field
or by quasi-periodic conditions along compact dimensions with nontrivial phases. The
results for a fermionic field in (2 + 1)-dimensional spacetime have been applied to carbon
nanotubes and nanoloops. Those structures are obtained from planar graphene sheets
through appropriate identifications along single or double spatial dimensions. In the long
wavelength approximation, the dynamics of the electronic subsystems in graphene are well
described through an effective Dirac model; here, the Fermi velocity of electrons appears
instead of the velocity of light (see, for example, [18,19]). The corresponding quantum
field theory lives in spaces with the R1 × S1 and S1 × S1 topologies for nanotubes and
nanoloops, respectively. The appearance of the vacuum currents along compact dimensions
can be understood as a kind of topological Casimir effect. The combined influence of
the boundary-induced and topological Casimir effects on the vacuum currents have been
studied in [20,21] for scalar and fermionic fields in the context of locally flat spacetime with
toral dimensions, while in the presence of planar boundaries.

The boundary conditions imposed on quantum fields serve as simplified models for
external fields; the Casimir effect can be considered to be a vacuum polarization that is
sourced by those conditions. Another type of vacuum polarization can be induced by
external gravitational fields. The combined effects of those two sources on the VEV of the
current density have been investigated in [22–24] for locally de Sitter (dS) and anti-de Sitter
(AdS) spacetimes with a part of the spatial dimensions compactified to a torus. The high
symmetry of these background geometries permits the discovery of exact expressions for
current densities in scalar and fermionic vacua. The effects of additional boundaries that
are parallel to the AdS boundary were studied in [25–28]. The corresponding applications
to higher-dimensional braneworld models with compact sub-spaces have been discussed.

The physical nature of the current densities considered in [16,17] is similar to that
for persistent currents in mesoscopic rings [29–34]. Those currents are among the most
interesting manifestations of the Aharonov–Bohm effect and appear as a result of phase
coherence of the charge carriers, extended over the whole mesoscopic ring. The persistent
currents have been studied extensively in the literature for electronic subsystems in different
condensed matter systems and for bosonic and fermionic atoms by making use of discrete or
continuum models (see, for example, [35–59] for theoretical and experimental investigations,
respectively, and the references therein). Their dependence on the geometry of ring is an
interesting direction of those investigations.

The present paper reviews the results of investigations of the vacuum current densities
for charged scalar fields in locally Minkowski, dS and AdS spacetimes with toroidal sub-
spaces. The paper is organized as follows. In Section 2, we present the general approach
that was taken in our evaluation of the current densities for a charged scalar-filled model
with compact dimensions. The application of the formalism in the locally Minkowskian
background geometry is considered in Section 3. The vacuum currents for locally dS
and AdS background spacetimes are studied in Sections 4 and 5. The features of current
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densities and the comparative analysis for the background geometries with zero, positive,
and negative curvatures are discussed in Section 6. The main results are summarized in
Section 7. In Appendix A, we present the properties of the functions appearing in the
expressions of the current densities.

2. General Formalism

Consider a charged scalar field φ(x) with the curvature coupling parameter ξ, in the
background of (D + 1)-dimensional spacetime, as described by the line element ds2 =
gµν(x)dxµdxν. Here, we use x = (x0 = t, x1, . . . , xD) for the notation of the spacetime
points. In the presence of a classical vector gauge field, Aµ(x), the corresponding action
has the form

S[φ] =
1
2

∫
dD+1x

√
|g|
[

gµν
(

Dµ φ
)
(Dν φ)† +

(
ξR + m2

)
φφ†

]
. (1)

where R is the Ricci scalar for the metric tensor gµν(x) and Dµ = ∇µ + ieAµ, with ∇µ being
the related covariant derivative operator. The most important special cases correspond to
the fields with minimal (ξ = 0) and conformal (ξ = ξD ≡ (D − 1)/(4D)) couplings. The
field equation obtained from (1) through the standard variational procedure reads(

gµνDµDν + ξR + m2
)

φ(x) = 0. (2)

We assume that a part of the coordinates corresponding to the sub-space (xp+1, xp+2,
. . . , xD) are compactified to circles of the lengths (Lp+1, Lp+2, . . . , LD), respectively, and
0 ≤ xl ≤ Ll , l = p + 1, . . . , D. In addition, the metric tensor is periodic along the following
compact dimensions:

gµν(t, x1, . . . , xp, . . . , xl + Ll , . . . , xD) = gµν(t, x1, . . . , xp, . . . , xl , . . . , xD), (3)

where p < l ≤ D. For the scalar and gauge fields, less trivial quasi-periodicity conditions
are imposed.

φ(t, x1, . . . , xp, . . . , xl + Ll , . . . , xD) = eiαl(x)φ(t, x1, . . . , xp, . . . , xl , . . . , xD),

Aµ(t, x1, . . . , xp, . . . , xl + Ll , . . . , xD) = Aµ(t, x1, . . . , xp, . . . , xl , . . . , xD)− (1/e)∇µαl(x), (4)

where the real functions, αl(x), l = p + 1, . . . , D, are periodic along the compact di-
mensions. With these conditions, the Lagrangian density in (1) is periodic in the sub-
space (xp+1, xp+2, . . . , xD). The gauge field is periodic up to a gauge transformation, and
these types of quasi-periodic conditions are referred as C-periodic boundary conditions
(see, for example, [60–62]).

We are interested in the VEV of the current density

jµ =
i
2

e
[
{Dµ φ, φ†} − {Dµ φ, φ†}†

]
, (5)

where the figure brackets stand for the anti-commutator. The VEVs of the field bilin-
ear combinations are expressed in terms of the Hadamard function, G(x, x′), defined as
the VEV

G(x, x′) =
〈
{φ(x), φ†(x′)}

〉
, (6)

where ⟨· · · ⟩ = ⟨0| · · · |0⟩—with |0⟩ being the vacuum state—stands for the VEV. In particu-
lar, for the VEV of the current density, we have

〈
jµ(x)

〉
=

ie
2

lim
x′→x

(
Dµ − g ν′

µ D∗
ν′

)
G(x, x′), (7)
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with g ν′
µ being the bi-vector of the parallel displacement. We recall that the vector

c̃µ = g ν′
µ cν′ is obtained using the parallel transport of cν from the point x′ to the point x

along the geodesic connecting those points.
The Hadamard function in (7) can be evaluated in two different ways: by solving

the corresponding differential equation obtained from the field equation or by using the
complete set {φ

(+)
σ (x), φ

(−)
σ (x)} of the mode functions for the field specified by the set of

quantum numbers σ. We will follow the second approach. For the field operator, one has
the expansion

φ(x) = ∑
σ

[
aσ φ

(+)
σ (x) + b†

σ φ
(−)
σ (x)

]
, (8)

where aσ and b†
σ are the annihilation and creation operators. The symbol ∑σ stands for

the summation over the discrete quantum numbers in the set σ and the integration over
the continuous ones. Substituting in the expression (6) for the Hadamard function and by
using the relations aσ|0⟩ = bσ|0⟩ = 0, we obtain the mode sum

G(x, x′) = ∑
σ

[
φ
(+)
σ (x)φ

(+)∗
σ (x′) + φ

(−)
σ (x)φ

(−)∗
σ (x′)

]
. (9)

With this sum, the formal expression for the VEV of the current density takes the
following form 〈

jµ
〉
= −e ∑

σ

Im
(

φ
(+)∗
σ Dµ φ

(+)
σ + φ

(−)∗
σ Dµ φ

(−)
σ

)
. (10)

The expression on the right-hand side is divergent; a regularization with the subse-
quent renormalization is required to obtain a finite result.

In the following sections, we apply the presented general formalism for special back-
ground geometries. Three cases will be considered: locally Minkowski spacetime (LM),
locally dS spacetime (LdS), and locally AdS spacetime (LAdS). For all these geometries,
the planar coordinates xq = (xp+1, . . . , xD) will be used in the compact sub-space. For
the classical gauge field, we will assume a simple configuration Aµ = const and, in the
periodicity conditions (4), the phases αl(x) = αl = const will be taken. Special cases
αl = 2π and αl = π correspond to the periodic and antiperiodic fields, respectively, and
have been widely considered in the literature. The constant gauge field is removed from
the field equation for the scalar field by the gauge transformation

(
φ, Aµ

)
→
(

φ′, A′
µ

)
,

given as
φ′(x) = φ(x)eieχ(x), A′

µ = Aµ − ∂µχ(x), (11)

with the function χ(x) = Aµxµ. For this function, one obtains A′
µ = 0 and the field equation

takes the form (
gµν∇µ∇ν + ξR + m2

)
φ′(x) = 0. (12)

The periodicity conditions for the new scalar field read

φ′(t, x1, . . . , xp, . . . , xl + Ll , . . . , xD) = eiα̃l φ′(t, x1, . . . , xp, . . . , xl , . . . , xD), (13)

with new phases
α̃l = αl + eAl Ll , (14)

for l = p + 1, . . . , D. The physics is invariant under the gauge transformation, and we
could expect that the components Aµ, µ = 0, 1, . . . , p, will not appear in the expressions for
physical quantities. This is not the case for the components of the vector potential along the
compact dimensions. They will appear in the VEVs through the new phases (14). This is an
Aharonov–Bohm-type effect for a constant gauge field in topologically nontrivial spaces.
The further consideration will be presented in terms of new fields,

(
φ′, A′

µ = 0
)

, omitting
the primes.
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3. Locally Minkowski Spacetime with Toral Dimensions

We start the consideration with LM spacetime having the spatial topology Rp × Tq,
q = D− p, where the q-dimensional torus Tq corresponds to the sub-space with the compact
coordinates xq = (xp+1, xp+2, . . . , xD). For this geometry, the metric in the Cartesian
coordinates is expressed as gµν = ηµν = diag(1,−1, . . . ,−1). With this metric tensor, one
has ∇µ = ∂µ. The topological Casimir effect in flat spacetimes with toral dimensions
has been widely considered in the literature (see [10,14,63–78] and references therein). As
characteristics of the ground state for quantum fields, the expectation values of the energy
density and the stresses were studied. The expectation value of the current density for
scalar and fermionic fields have been investigated in [16,17,20,21,79] at zero and finite
temperatures. In this section, we review the results for the VEV of the current density for a
charged scalar field.

For the geometry under consideration, the normalized scalar mode functions are
specified by the momentum k = (k1, k2, . . . , kD) and are given by

φ
(±)
k (x) = (2p+1πpVqωk)

−1/2e∓iωkt+kp ·xp+kq ·xq , (15)

where xp = (x1, . . . , xD) stands for the set of coordinates in the non-compact sub-space,
ωk =

√
k2 + m2 is the respective energy, and Vq = Lp+1 . . . LD. For the components of the

momentum along non-compact dimensions, kp = (k1, . . . , kp), we have kl ∈ (−∞,+∞),
l = 1, . . . , p, whereas the eigenvalues along the compact dimensions, kq = (kp+1, . . . , kD),
are discretized by the periodicity conditions (13):

kl =
2πnl + α̃l

Ll
, nl = 0,±1,±2, . . . , (16)

with l = p + 1, . . . , D. The integer part of the ratio α̃l/(2π) in the expressions of the VEVs
is absorbed by shifting the integer number nl in the corresponding summation and, hence,
we can take |α̃l | ≤ π without loss of generality. Note that one has

φ
(±)
k (t, x1, . . . , xp, . . . , xl − Ll , . . . , xD) = e−iα̃l φ

(±)
k (t, x1, . . . , xp, . . . , xl , . . . , xD), (17)

and hence for α̃l ̸= nπ, with n being an integer, the parity (P-) symmetry with respect to
the reflection xl → −xl is broken by the corresponding quasi-periodicity condition. As will
be seen below, the breaking of this inversion symmetry results in a nonzero component of
the current density along the lth compact dimension.

The Hadamard function is obtained from (9) with the modes (15). Because of the space-
time homogeneity the dependence on the coordinates appears in the form of differences
∆t = t − t′, ∆xp = xp − x′p, and ∆xq = xq − x′q. Inserting the modes (15) in (9), one obtains

G(x, x′) =
1

Vq

∫ dkp

(2π)p ∑
nq

eikp ·∆xp+ikq ·∆xq
cos(ωk∆t)

ωk
, (18)

where nq = (np+1, . . . , nD). In the gauge under consideration and for the geometry at hand,
Formula (7) for the current density takes the form

〈
jµ
〉
=

ie
2

lim
x′→x

(
∂µ − ∂µ′

)
G(x, x′). (19)

For µ = 0, 1, . . . , p the derivatives ∂µG(x, x′) and ∂µ′G(x, x′) are odd functions of
∆xµ and the charge density and the components of the current density along the non-
compact dimensions vanish,

〈
jµ
〉
= 0 for µ = 0, 1, . . . , p. Of course, we could expect this

outcome from the problem symmetry under the reflections xµ → −xµ along the respective
coordinates. In order to find the current density along the rth compact dimension, it is
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convenient to transform the corresponding summation over nr in (18). In order to do that,
we use a variant of the Abel–Plana formula [70,80]

2π

Lr

∞

∑
nr=−∞

g(kr) f (|kr|) = ∑
λ=±1

[∫ ∞

0
dzg(λz) f (z) + i

∫ ∞

0
dz g(iλz)

f (iz)− f (−iz)
ezLr+iλα̃r − 1

]
, (20)

with the functions g(z) = eiz∆xr
and f (z) = cos

(
∆t
√

z2 + ω2
p,q−1

)
/
√

z2 + ω2
p,q−1, where

ωp,q−1 =
√

k2
p + k2

q−1 + m2 and kq−1 = (kp+1, . . . , kr−1, kr+1, . . . , kD). By making use of

the expansion 1/(ey − 1) = ∑∞
l=1 e−ly, the integrals over z and then over kp are expressed

in terms of the Macdonald function Kν(x). Introducing the notation fν(x) = x−νKν(x),
we obtain

G(x, x′) =
2LrV−1

q

(2π)p/2+1

+∞

∑
nr=−∞

∑
nq−1

einr α̃r+ikq−1·∆xq−1 ω
p
nq−1 f p

2

(
ωnq−1

√
|∆xp|2 + (∆xr − nrLr)

2 − (∆t)2
)

, (21)

where nq−1 = (np+1, . . . , nr−1, nr+1, . . . , nD) and ω2
nq−1

= k2
q−1 + m2. The nr = 0 term here

corresponds to the Hadamard function in the geometry with spatial topology Rp+1 × Tq−1,
where the rth dimension is decompactified. The divergences in the coincidence limit x′ → x
are contained in that term only. The remaining part is induced by the compactification of
the coordinate xr and it is finite in the coincidence limit. The latter property is related to
the fact that the compactification to a circle does not change the local geometry; hence, the
structure of local divergences is also unchanged.

Plugging the Hadamard function (21) in (19) and noting that the term nr = 0 does not
contribute to the component of the current density along the rth compact dimension, for
the corresponding contravariant component, one finds

⟨jr⟩ = 21−p/2eL2
r

πp/2+1Vq

∞

∑
nr=1

nr sin(nr α̃r) ∑
nq−1

ω
p+2
nq−1 fp/2+1(nrLrωnq−1). (22)

The specific features of the vacuum current will be discussed below in Section 6. As
has been already mentioned, for α̃r = 0, π the problem is symmetric with respect to the
inversion xr → −xr and, as expected, the VEV ⟨jr⟩ vanishes. For those special values,
the contribution from the right-moving vacuum fluctuations with kr > 0 is canceled by
the contribution coming from the left-moving modes with kr < 0. For α̃r = 0, there is
also a zero mode with kr = 0; this does not contribute to the current density along the
rth dimension.

In the model with a single compact dimension xD, one has p = D − 1, ωnq−1 = m and
Formula (22) is reduced to〈

jD
〉
=

4emD+1LD

(2π)
D+1

2

∞

∑
n=1

n sin(nα̃D) f D+1
2
(mnLD). (23)

In particular, for a mass-less field, we obtain

〈
jD
〉
=

2eΓ
(

D+1
2

)
π

D+1
2 LD

D

∞

∑
n=1

sin(nα̃D)

nD . (24)

For odd values of D, the series is expressed in terms of the Bernoulli polynomials
Bn(x) (see, for example, [81]); we obtain

〈
jD
〉
=

(−1)
D+1

2 π
D
2 e

Γ
(

D
2 + 1

)
LD

D

BD

(
α̃D
2π

)
, (25)
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for 0 < α̃D < 2π. In particular, for D = 1 and D = 3 one finds〈
jD
〉

=
e

LD

(
1 − α̃D

π

)
, D = 1,〈

jD
〉

=
eα̃D

6L3
D

(
1 − α̃D

π

)(
2 − α̃D

π

)
, D = 3. (26)

For D ≥ 2, the current density is a continuous function of α̃D, whereas for D = 1, the
current density for a mass-less field is discontinuous at α̃D = 2πn with integer n.

We could directly start from the mode sum Formula (10) with Dµ = ∂µ. The substitu-
tion of the mode functions (15) leads to the following expression

⟨jr⟩ = e
Vq

∫ dkp

(2π)p ∑
nq

kr

ωk
=

eLr

Vq

∂

∂α̃r

∫ dkp

(2π)p ∑
nq

ωk. (27)

Introducing the generalized zeta function ζ(s) in accordance with

ζ(s) =
1

Vq

∫ dkp

(2π)p ∑
nq

ω−2s
k =

1
Vq

∫ dkp

(2π)p ∑
nq

(
k2

p + k2
q + m2

)−s
, (28)

the current density is written as

⟨jr⟩ = eLr
∂

∂α̃r
ζ(s)

∣∣∣∣
s=−1/2

, (29)

where |s=−1/2 is understood in the sense of the analytical continuation of the representa-
tion (28) (for applications of the zeta function technique in the investigations of the Casimir
effect see, for example, [14,82,83]). In order to realize the analytic continuation, we first
integrate over the momentum in the non-compact sub-space with the result

ζ(s) =
Γ(s − p/2)

2pπp/2VqΓ(s) ∑
nq

(
k2

q + m2
)p/2−s

. (30)

The application of the generalized Chowla–Selberg Formula [84] to the multiple series
in (30) gives

ζ(s) =
mD−2s

(4π)
D
2 Γ(s)

[
Γ
(

s − D
2

)
+ 2

D
2 +1−s

′
∑
nq

cos
(
nq · α̃q

)
f D

2 −s(mg(Lq, nq))

]
, (31)

where the prime on the summation sign means that the term with nq = (0, 0, . . . , 0) should
be excluded. Here, we have introduced the q-component vector α̃q = (α̃p+1, α̃p+2, . . . , α̃D)
and the notation

g(Lq, nq) =

(
D

∑
i=p+1

n2
i L2

i

)1/2

. (32)

The first term in the right-hand side of (31) corresponds to the geometry without
compact dimensions and it does not contribute to the current density. The last term in (31)
is finite at the physical point and can be directly used in (29) to obtain the following
expression for the current density:

⟨jr⟩ = 2emD+1Lr

(2π)
D+1

2

′
∑
nq

nr sin
(
nq · α̃q

)
f D+1

2
(mg(Lq, nq)). (33)
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In the special case of a single compact dimension xD, this result coincides with (23).
Note that, in the representation (33), we can make the replacement

nr sin
(
nq · α̃q

)
→ nr sin(nr α̃r) cos

(
nq−1 · α̃q−1

)
. (34)

The representation with this replacement is given in [16]. The equivalence of two
representations (22) and (33) follows from the relation

∑
nq−1

(
z2 + k2

q−1

) s+1
2 f s+1

2
(nrLr

√
z2 + k2

q−1) =
Vqzs+q

(2π)
q−1

2 Lr
∑

nq−1

cos(nq−1 · α̃q−1) f s+q
2
(zg(Lq, nq)), (35)

with s = p + 1 and z = m. This relation is proved in [70] by using the Poisson’s resumma-
tion formula. For a mass-less field, by using the asymptotic for the modified Bessel function
for small argument, one finds

⟨jr⟩ =
Γ
(

D+1
2

)
π

D+1
2

eLr

′
∑
nq

nr sin
(
nq · α̃q

)
gD+1(Lq, nq)

. (36)

For a single compact dimension, this formula coincides with (24). Properties of the
current density described by (22) and (36) will be discussed in Section 6 below.

4. Current Density in Locally dS Spacetime with Compact Dimensions

In this section, we consider (D + 1)-dimensional locally dS spacetime with a part of
spatial dimensions compactified to q-dimensional torus in planar (inflationary) coordinates.
It is the solution of the Einstein field equations with the positive cosmological constant
Λ as the only source of the (D + 1)-dimensional gravitation. The standard dS spacetime
(without compactification) is maximally symmetric and is one of the most popular back-
ground geometries in gravity and field theories. This has several motivations. First of
all, the high degree of symmetry allows us to have a relatively large number of exactly
solvable problems. The corresponding results shed light on the influence of the gravita-
tional field on various physical processes in more complicated curved backgrounds. In
accordance with the inflationary scenario, dS spacetime approximates the geometry of
the early Universe and the investigation of the respective effects is an important step in
understanding the dynamics of the Universe in the post-inflationary stage. In particular,
the quantum fluctuations of the fields in the early dS phase of the expansion serve as seeds
for large-scale structure formation in the Universe. This is currently the most popular mech-
anism for the formation of large-scale structures. Another motivation for the importance of
dS spacetime is conditioned by its role in the Λ CDM model for cosmological expansion.
In that model, the accelerated expansion of the Universe at the recent epoch is sourced
by a positive cosmological constant and dS spacetime appears as the future attractor of
Universe expansion.

The explicit way to see the symmetries of the dS spacetime is in its embedding as
a hyperboloid: (

Z0
)2

−
(

Z1
)2

− · · · −
(

ZD+1
)2

= −a2, (37)

in (D + 2)-dimensional Minkowski spacetime with the line element ds(M)2
D+2 =

(
dZ0)2 −(

dZ1)2 − · · · −
(
dZD+1)2. The parameter a in (37) determines the curvature radius of dS

spacetime. Different coordinate systems have been used to exclude an additional degree of
freedom by using the relation (37). For the following discussion of the current density, we
will use the planar coordinates (τ, x1, x2, . . . , xD) which are connected to the coordinates
in the embedding spacetime by the following relations (see, for example, [85] in the case
D = 3):
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Zi =
1

2τ

[
a2 + (−1)i

(
D

∑
l=1

(xl)2 − τ2

)]
, i = 0, 1,

Zl =
a
τ

xl−1, l = 2, . . . , D + 1. (38)

For the dS line element, this gives ds(dS)2
D+1 = gµν(x)dxµdxν, with the metric tensor

gµν(x) = (a/τ)2ηµν. (39)

In inflationary models, a part of dS spacetime with the conformal time coordinate in
the range −∞ < τ < 0 is employed. For the corresponding synchronous time coordinate t,
−∞ < t < +∞, one has t = −a ln |τ|/a and the line element is expressed as

ds(dS)2
D+1 = dt2 − exp

(
2t
α

) D

∑
i=1

(dxi)2. (40)

The metric (39) is the solution of Einstein’s equations with positive cosmological
constant Λ = D(D−1)

2a2 as the only source of the gravitational field.
The hyperbolic embedding (37) in the locally Minkowski spacetime with the line ele-

ment ds(M)2
D+2 works equally well for LdS spacetime with a q-dimensional toroidal sub-space

covered by the coordinates (xp+1, xp+2, . . . , xD). The coordinate xl , l = p + 1, . . . , D, varies
in the range 0 ≤ xl ≤ Ll . In this case, the sub-space with the coordinates (Zp+2, . . . , ZD+2)
is compactified to a torus. The length of the compact dimension Zl+1, l = p + 1, . . . , D, is
given by L(p)l = aLl/η = et/aLl , with η = |τ|. Note that L(p)l is the proper length of the
compact dimension xl in the LdS spacetime.

For LdS spacetime with the metric tensor (39) and compact sub-space covered by the
coordinates xq = (xp+1, xp+2, . . . , xD), the scalar mode functions can be presented in the

form φ
(+)
σ (x) = ηD/2gν(kη)eikp ·xp+ikq ·xq , where gν(y) is a cylinder function of the order

ν =

[
D2

4
− D(D + 1)ξ − a2m2

]1/2

. (41)

The eigenvalues of the momentum components along compact dimensions are given
by (16). Different choices of the function gν(y) correspond to different vacuum states
for a scalar field in dS spacetime. Here, we will investigate the current density in the
Bunch–Davies vacuum state [86].

4.1. Hadamard Function

For the Bunch–Davies vacuum state, the normalized scalar mode functions are speci-
fied by σ = k = (kp, kq) and are expressed as

{
φ
(+)
k (x)

φ
(−)
k (x)

}
=

(
a1−Dei(ν−ν∗)π/2

2p+2πp−1Vq

) 1
2

eikp ·xp+ikq ·xq ηD/2

{
H(1)

ν (kη)

H(2)
ν∗ (kη)

}
, (42)

where H(1,2)
ν (y) are the Hankel functions and the star stands for the complex conjugate.

Note that, depending on the curvature coupling parameter and on the mass of the field
quanta, the order of the Hankel functions can be either non-negative real or purely imagi-
nary. With the modes (42), the mode sum for the Hadamard function reads

G(x, x′) =
(ηη′)

D
2 ei π

2 (ν−ν∗)

2p+2πp−1VqaD−1

∫
dkp ∑

nq

eikp ·∆xp+ikq ·∆xq [H(1)
ν (kη)H(2)

ν∗ (kη′) + H(1)
ν (kη′)H(2)

ν∗ (kη)]. (43)
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Applying to the sum over nr the summation Formula (20) and assuming that Re ν < 1,
one finds the representation

G(x, x′) =
4(ηη′)

D
2 Lr

(2π)
p+3

2 VqaD−1

∫ ∞

0
dλ λ

[
I−ν(ηλ)Kν(η

′λ) + Kν(ηλ)Iν(η
′λ)
]
∑
nq

einrαr

×eikq−1·∆xq−1
(

λ2 + k2
q−1

) p−1
2 f p−1

2
(
√

λ2 + k2
q−1

√
|∆xp|2 + (∆xr − nrLr)

2), (44)

where Iν(y) and Kν(y) are the modified Bessel functions. Similar to the case of the
Minkowski bulk, the contribution coming from the term nr = 0 gives the Hadamard
function for the geometry where the rth coordinate is decompactified (spatial topology
Rp+1 × Tq−1). The effects of the compactification of that coordinate are included in the part
with nr ̸= 0.

For a conformally coupled mass-less field, we have ν = 1/2 and

I−ν(ηλ)Kν(η
′λ) + Kν(ηλ)Iν(η

′λ) =
cosh(λ∆η)

λ
√

ηη′ . (45)

With this function, the integral over z in (44) is evaluated by using the formula
from [87], and we obtain

G(x, x′) =
(

ηη′

a2

) D−1
2

GM(x, x′), (46)

where the Minkowskian Hadamard function GM(x, x′) is given by (21) with m = 0. For a
conformally coupled mass-less field, this is the standard relation between two conformally
related geometries.

4.2. Vacuum Current

For the components of the current density along non-compact dimensions xµ,
µ = 1, 2, . . . , p, one has ∂µG(x, x′) ∝ gµα∆xα and the corresponding expectation values
vanish. By using the properties of the modified Bessel functions, we can see that

lim
x′→x

(∂0 − ∂′0)

{(
ηη′) D

2
[
I−ν(ηλ)Kν(η

′λ) + Kν(ηλ)Iν(η
′λ)
]}

= 0, (47)

and, hence, the charge density vanishes as well. In order to find the component of the
current density along the rth compact dimension, we use the representation (44) for the
Hadamard function in combination with (7), where Dµ = ∂µ. In (44), the derivative of the
term nr = 0 with respect to xr is an odd function of ∆xr and vanishes in the coincidence
limit. As has been mentioned before, that term corresponds to the Hadamard function in
the geometry with non-compactified xr and the corresponding current density vanishes
by the symmetry. The part in (44), induced by the compactification of the direction xr (the
terms with nr ̸= 0), is finite in the coincidence limit and that limit can be directly taken
in the expression for the VEV. This gives the following expression for the contravariant
component [22]:

⟨jr⟩ =
8ea(η/a)D+2

(2π)
p+3

2 Vq

L2
r

∫ ∞

0
dλ λ[I−ν(ηλ) + Iν(ηλ)]Kν(ηλ)

×
∞

∑
nr=1

nr sin(nr α̃r) ∑
nq−1

(
λ2 + k2

q−1

) p+1
2 f p+1

2
(nrLr

√
λ2 + k2

q−1). (48)

An alternative representation for the current density is obtained through Formula (35)
with s = p. This gives
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⟨jr⟩ = 4eLr

(2π)
D
2 +1aD+1

∫ ∞

0
du uD+1[I−ν(u) + Iν(u)]Kν(u)∑

nq

nr sin(nq · α̃q) f D
2
(ug(Lq, nq)/η). (49)

The integral in the right-hand side is evaluated by using the formula

∫ ∞

0
dz z

D
2 +1[Iν(z) + I−ν(z)]Kν(z)K D

2
(bz) =

√
2π

4
b

D
2 p−

D+1
2

ν− 1
2

(
b2

2
− 1
)

, (50)

where we use the notation

p−µ
α (u) = Γ(µ − α)Γ(µ + α + 1)

P−µ
α (u)

(u2 − 1)
µ
2

, (51)

with Pµ
ν (u) being the associated Legendre function of the first kind. The expression of

the function p−µ
α (u) in terms of the hypergeometric function is given in Appendix A. The

result (50) is obtained from the integral involving the product Iν(z)Kν(z)K D
2
(bz) and given

in [87]. That integral is expressed in terms of the sum of two hypergeometric functions.
The contribution of the second function is canceled in evaluating the integral (50). Then,
we express the hypergeometric function in terms of the associated Legendre functions. By
taking into account (50) in (49), the current density is expressed as

⟨jr⟩ = eLr

(2π)
D+1

2 aD+1
∑
nq

nr sin(nq · α̃q)p−
D+1

2
ν− 1

2

(
g2(Lq, nq)

2η2 − 1

)
. (52)

In both Formulas (49) and (52), we can make the replacement (34). Note that one has

the property p−
D+1

2
ν− 1

2
(u) = p−

D+1
2

−ν− 1
2
(u) and the expression on the right-hand side is real for

both the real and the purely imaginary values of ν.

5. AdS Spacetime with Compact Dimensions

Now we turn to the LAdS spacetime with a part of the spatial dimensions compactified
to a torus. This obeys the (D + 1)-dimensional Einstein equations with the negative
cosmological constant Λ. The usual AdS spacetime is maximally symmetric and appears as
the ground state in supergravity and in string theories. That was the reason for the early
interest in AdS physics. The interest in those investigations was further increased as a
result of two exciting developments in modern theoretical physics. The first one, dubbed
as AdS/CFT correspondence (see, for example, [88–91]), establishes a duality between
supergravity and string theory on the AdS bulk and conformal field theory (CFT) on its
boundary. This duality is a unique way to investigate strong coupling effect in one theory
by mapping it onto the dual theory. A number of examples can be found in the literature,
including those with applications in condensed matter physics. The second development,
with the AdS spacetime as a background geometry, corresponds to braneworld models
of the Randall–Sundrum type [92], with large extra dimensions. In the corresponding
setup, the standard model fields are localized in a four-dimensional hypersurface (brane)
in the context of a higher-dimensional AdS spacetime. The braneworld models provide a
geometrical solution to the hierarchy problem between the electroweak and Planck energy
scales and naturally arise in the string/M theory context. They present a novel setting in
considerations of various phenomenological and cosmological issues, in particular, the
generation of a cosmological constant localized on the brane.

By the analogy of the dS bulk, it is convenient to visualize the AdS spacetime as a
hyperboloid (

Z0
)2

−
D

∑
i=1

(
Zi
)2

+
(

ZD+1
)2

= −a2, (53)



Symmetry 2024, 16, 92 12 of 29

where the line element of the embedding (D + 2)-dimensional flat spacetime is given by
ds2

D+2 =
(
dZ0)2 −∑D

i=1
(
dZi)2

+
(
dZD+1)2. The Poincaré coordinates (t, x1 = z, x2, . . . , xD)

are introduced by the relations

Zi =
1
2z

[
a2 + (−1)i

(
D

∑
l=1

(xl)2 − t2

)]
, i = 0, 1,

Zl =
a
z

xl , ZD+1 =
a
z

t, l = 2, . . . , D. (54)

In those coordinates, the metric tensor of the AdS spacetime is expressed as

gµν =
a2

z2 ηµν, (55)

with 0 ≤ z < ∞. The hypersurfaces z = 0 and z = ∞ present the AdS boundary and
the horizon, respectively. The proper distance along the direction x1 is measured by the
coordinate y = a ln(z/a), −∞ < y < +∞; in terms of this, the line element is written as

ds2 = exp
(
−2y

a

)[
dt2 −

D

∑
l=2

(dxl)2

]
− dy2. (56)

Here, we consider the LAdS geometry with the coordinates (xp+1, xp+2, . . . , xD) com-
pactified to a torus, as described in Section 2. It can be embedded as a hyperboloid (53) in the
spacetime with coordinates (Z0, Z1, . . . , ZD+1), where the coordinate Zl , l = p + 1, . . . , D
is compactified to a circle with the length L(p)l = aLl/z = e−y/aLl . The latter is the proper
length for the compact dimension in LAdS. It is exponentially small near the horizon.

The scalar mode functions in the coordinates corresponding to the metric tensor (55)
and obeying the periodicity conditions (13) are written in the factorized form
φ
(±)
σ (x) = e∓iωt+ikp−1xp−1+kqxq f (z), with xp−1 = (x2, . . . , xp), kp−1 = (k2, . . . , kp). The

equation for the function f (z) is obtained from the field equation. The corresponding solu-
tion is presented as zD/2[c1 Jν+(λz) + c2Yν+(λz)], where Jν(λz) and Yν(λz) are the Bessel
and Neumann functions, λ2 = ω2 − k2

p−1 − k2
q, and

ν+ =

[
D2

4
− D(D + 1)ξ + a2m2

]1/2

. (57)

For the stability of the Poincaré vacuum, the parameter ν+ should be real [93–95]. For
ν+ ≥ 1 from the normalizability condition, it follows that c2 = 0 in the linear combination
of the cylinder functions. For 0 ≤ ν+ < 1, the modes with c2 ̸= 0 are normalizable. In this
case, one of the coefficients in the linear combination is determined from the normalization
condition and the second one is fixed by the boundary condition on the AdS boundary.
This general class of allowed boundary conditions was discussed in [96,97]. Here, we
will consider the special case of the Dirichlet boundary condition, for which c2 = 0 and
f (z) = c1zD/2 Jν+(λz). The normalized mode functions are expressed as

φ
(±)
σ (x) =

(
π−pa1−Dλ

2p+1ωVq

) 1
2

z
D
2 eikp−1xp−1+ikqxq∓iωt Jν+(λz). (58)

The modes are specified by the set σ = (λ, kp−1, kq) with 0 ≤ λ < ∞, and the energy

is given by ω =
√

λ2 + k2
p−1 + k2

q.
With the mode functions (58), the Hadamard function takes the form
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G(x, x′) =
a1−D(zz′)

D
2

(2π)p−1Vq
∑
nq

∫
dkp−1 eikp−1·∆xp−1+ikq ·∆xq

∫ ∞

0
dλ

λ

ω
Jν+(λz)Jν+(λz′) cos(ω∆t). (59)

Similar to the cases of the locally Minkowski and dS geometries, we apply the series
over nr, the summation Formula (20), to determine the representation

G(x, x′) =
2(zz′)

D
2 Lr

(2π)
p+1

2 VqaD−1
∑
nq

eikq−1·∆xq−1+inr α̃r
∫ ∞

0
dλ λJν+(λz)Jν+(λz′)

(
λ2 + k2

q−1

) p−1
2

× f p−1
2

(√
λ2 + k2

q−1

√
|∆xp−1|2 + (∆xr − nrLr)

2 − (∆t)2
)

. (60)

The term with nr = 0 in this representation corresponds to the Hadamard function in
the geometry where the rth dimension is decompactified.

Another representation for the function (59) is obtained in [23] by using an integral
representation for the ratio cos(ω∆t)/ω. The integral over λ is expressed in terms of
the modified Bessel function. Integrating over the components of the momentum along
non-compact dimensions and applying the Poisson resummation formula to the series, the
Hadamard function is expressed as

G(x, x′) =
a1−D

(2π)D/2 ∑
nq

eif̃f·nq

∫ ∞

0
dx xD/2−1 Iν(x)e−vnq x, (61)

where

vnq = 1 +
1

2zz′

[
(∆z)2 + (∆xp−1)

2 +
D

∑
i=p+1

(
∆xi − Lini

)2
− (∆t)2

]
, (62)

and ∆z = z − z′. By using the result from [87] for the integral in (61), the following
representation is obtained:

G(x, x′) =
2a1−D

(2π)
D+1

2
∑
nq

eif̃f·nq q
D−1

2
ν+− 1

2
(vnq), (63)

where the function qµ
α(x) is expressed in terms of the associated Legendre function of

the second kind, Qµ
α(x) (for the expression in terms of the hypergeometric function, see

Appendix A):

qµ

ν− 1
2
(x) =

e−iπµQµ

ν− 1
2
(x)

(x2 − 1)
µ
2

. (64)

The contribution in (63), corresponding to the term nq = 0, presents the Hadamard
function in AdS spacetime with Poincaré coordinates −∞ < xµ < +∞ for µ = 2, 3, . . . , D.
The divergences in the coincidence limit are contained in that part. The topological con-
tribution with nq ̸= 0 is finite in that limit and can be directly used in evaluating the
current density.

As before, the charge density and the components of the current density along non-
compact dimensions vanish: ⟨jµ⟩ = 0 for µ = 0, 1, . . . , p. Combining Formulas (7) and (60),
for the component along the rth dimension, we find

⟨jr⟩ = 4ezD+2L2
r

(2π)
p+1

2 aD+1Vq

∞

∑
nr=1

nr sin(nr α̃r) ∑
nq−1

∫ ∞

0
dλ λJ2

ν+(λz)
(

λ2 + k2
q−1

) p+1
2 f p+1

2

(
nrLr

√
λ2 + k2

q−1

)
. (65)

By applying Formula (35) with s = p to the series over nq−1, one obtains
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⟨jr⟩ = 4ezD+2Lr

(2π)
D
2 aD+1

∞

∑
nr=1

nr sin(nr α̃r) ∑
nq−1

cos(nq−1 · α̃q−1)
∫ ∞

0
dλ λD+1 J2

ν+(λz) f D
2
(λg(Lq, nq)). (66)

The integral in (66) is expressed in terms of the function (64) [98] (note that there is a
misprint in the similar integral given in [87]) and the current density is presented in the
form [23]

⟨jr⟩ = 4eLr

(2π)
D+1

2 aD+1

∞

∑
nr=1

nr sin(α̃rnr) ∑
nq−1

cos(nq−1 · α̃q−1)q
D+1

2
ν+− 1

2

(
1 +

g2(Lq, nq)

2z2

)
. (67)

This representation could be directly obtained using the Hadamard function in the
form (63) and the relation ∂xqµ

α(x) = −qµ+1
α (x) for the function (64).

6. Features of the Current Density
6.1. General Features

The physical component of the charge density is given by
〈

jr
(p)

〉
=
√
|grr|⟨jr⟩. It

determines the charge flux through the spatial hypersurface xr = const, expressed as nr⟨jr⟩,
with nr =

√
|grr| being the corresponding normal. The expressions obtained above for the

rth component of the current density can be combined as

〈
jr(p)
〉
=

2eL(p)r

(2π)
D+1

2 aD+1
∑
nq

nr sin
(
nq · α̃q

)
FD(am, g(L(p)q/a, nq)), (68)

where we have defined the function

FD(am, x) = (am)D+1 f D+1
2
(amx), for LM,

FD(am, x) =

√
2
π

∫ ∞

0
du uD+1Z(u) f D

2
(ux), for LdS, LAdS, (69)

with

Z(u) = [I−ν(u) + Iν(u)]Kν(u), for LdS,

Z(u) = π J2
ν+(u), for LAdS. (70)

Alternative expressions for locally dS and AdS geometries are obtained from (52)
and (67):

FD(am, x) =
1
2

p−
D+1

2
ν− 1

2

(
x2/2 − 1

)
, for LdS,

FD(am, x) = q
D+1

2
ν+− 1

2

(
x2/2 + 1

)
, for LAdS. (71)

For even values of the spatial dimension D, the functions (71) are expressed in terms
of elementary functions. The corresponding representations are given by Formulas (A4)
and (A5). In an odd number of spatial dimensions, the expressions for the functions (71), in
terms of the Legendre functions Pν− 1

2
(u) and Qν+− 1

2
(u), are given by (A6).

In asymptotic analysis for some limiting cases, it is more convenient to use the repre-
sentations (22), (48) and (65). For LdS and LAdS geometries, the corresponding formulas
can be combined by using (70):
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〈
jr(p)
〉

=
8ea−p−2L2

(p)r

(2π)
p+3

2 V(p)
q

∞

∑
nr=1

nr sin(nr α̃r) ∑
nq−1

∫ ∞

0
du uZ(u)

×
(

u2 + a2k(p)2
q−1

) p+1
2 f p+1

2
(nrL(p)r/a

√
u2 + a2k(p)2

q−1 ). (72)

with the notation

k(p)2
q−1 =

D

∑
i=p+1, ̸=r

(
2πni + α̃i

L(p)i

)2

. (73)

Note that the vector k(p)
q−1 is the physical momentum in the compact sub-space with

the set of coordinates (xp+1, . . . , xr−1, xr+1, . . . , xD).
First of all, we see that the current density along the rth dimension is an even periodic

function of the parameters α̃i, i ̸= r, with the period 2π and an odd periodic function of α̃r
with the same period. This corresponds to the periodicity with respect to the magnetic flux,
with the period equal to the flux quantum. From Formula (68), it follows that the physical
component nr⟨jr⟩ depends on the lengths of compact dimensions and on the coordinates
through the ratios L(p)i/a, i = p + 1, . . . , D. They present the proper lengths of compact
dimensions measured in units of the curvature radius. This feature is related to the maximal
symmetry of the dS and AdS spacetimes.

The numerical examples below will be given for models with a single compact dimen-
sion xD having the length L = LD. In Figure 1, we present the dependence of the respective
current density, multiplied by LD

(p)/e, as a function of the parameter α̃D/(2π) and of the
proper length of the compact dimension L(p) = L(p)D in the LM spacetime with D = 4. In
the numerical evaluation, we have taken ma = 0.5. In the LM bulk, the current density
does not depend on the curvature coupling parameter and L(p) = L. As follows from (24),

for a mass-less field, the dimensionless combination LD
(p)

〈
jD
(p)

〉
/e does not depend on L(p).

Figure 1. The current density in the D = 4 LM spacetime versus the parameter α̃D/(2π) and the
proper length of the compact dimension (in units of a). The graph is plotted for ma = 0.5.

The current densities for the D = 4 LdS and LAdS background geometries and for
ma = 0.5 are plotted in Figures 2 and 3. The left and right panels on both figures correspond
to conformally and minimally coupled fields.
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Figure 2. The current density in the D = 4 LdS spacetime, multiplied by LD
(p)/e, versus the parameter

α̃D/(2π) and the proper length of the compact dimension for ma = 0.5. The left and right panels
correspond to conformally and minimally coupled fields, respectively.

Figure 3. The same as in Figure 2 for the LAdS bulk.

6.2. Conformal Coupling and Minkowskian Limit

Let us consider special cases of general formulas. For a conformally coupled mass-less
field, one has ξ = ξD and ν = ν+ = 1/2. The current density for the Minkowskian case
does not depend on the curvature coupling parameter; from (33), we obtain

⟨jr⟩LM = eLr

Γ
(

D+1
2

)
π

D+1
2

∑
nq

nr sin
(
nq · α̃q

)
gD+1(Lq, nq)

. (74)

The corresponding functions FD(am, x) for dS and AdS geometries are obtained
from (69) by taking into account that [I−ν(u) + Iν(u)]Kν(u) = 1/u for ν = 1/2 and
Jν+(u) =

√
2/πu sin u for ν+ = 1/2. The integrals are evaluated using the formulas

from [87] and we obtain

⟨jr⟩LdS =
(η

a

)D+1
⟨jr⟩LM,

⟨jr⟩LAdS =
( z

a

)D+1
⟨jr⟩(1)LM, (75)

where
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⟨jr⟩(1)LM = eLr

Γ
(

D+1
2

)
π

D+1
2

∑
nq

nr sin
(
nq · α̃q

) 1
gD+1(Lq, nq)

− 1(
4z2 + g2(Lq, nq)

) D+1
2

. (76)

The result (75) for the dS bulk was expected from the conformal relation between
the problems in the Minkowski and dS geometries with the same range of the spatial
coordinates and between the Bunch–Davies and Minkowski vacua. For the AdS bulk, the
contribution of the first term in the square brackets of (76) will give the Minkowskian
current density multiplied by the conformal factor (z/a)D+1. The presence of the part
coming from the second term in the square brackets is related to the boundary condition
on the AdS boundary at z = 0. Because of that condition, the problem on the AdS bulk for
a conformally coupled mass-less field is conformally related to the corresponding problem
in the Minkowski bulk with an additional boundary at z = 0, with the Dirichlet boundary
condition for the field. The VEV (76) is the current density for a conformally coupled
mass-less field in the region 0 < z < ∞ of the locally Minkowski bulk with Dirichlet
boundary at z = 0.

In Figure 4, for a mass-less field, we have plotted the dependence of the ratios〈
jD〉

LAdS/
〈

jD〉
LM and

〈
jD〉

LdS/
〈

jD〉
LM on the proper length L(p) = L(p)D of a single

compact dimension (in units of the curvature radius a). It is assumed that the compact
dimension has the same proper length in LAdS, LdS, and LM spacetimes. The left and
right panels correspond to conformally and minimally coupled fields, respectively, and
the numbers near the curves present the values of the respective spatial dimension. For a
conformally coupled field,

〈
jD〉

LdS/
〈

jD〉
LM = 1; only the case of the LAdS bulk is depicted

on the left panel. The full and dashed curves on the right panel correspond to the LAdS
and LdS geometries, respectively. As seen from the graphs, for mass-less fields, the decay
of the current density—as a function of the proper length of the compact dimension—is
stronger in the LAdS spacetime (compared to the case of the LM bulk). For a minimally
coupled field in the LdS geometry, the fall-off of the current density is stronger in the LM
spacetime. For small values of the proper length, compared to the curvature radius, the
effect of the gravitational field is weak and the ratio

〈
jD〉/〈jD〉

LM tends to 1. All these
features will be confirmed below by asymptotic analysis.

2
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Figure 4. The left panel presents the ratio of the current densities for a conformally coupled mass-less
scalar field in LAdS and LM spacetimes, with a single compact dimension of the proper length
L(p) = L(p)D, versus the ratio L(p)/a. On the right panel, the ratio

〈
jD〉/〈jD〉

LM is plotted for a
minimally coupled mass-less scalar field in LAdS (full curves,

〈
jD〉 = 〈

jD〉
LAdS) and LdS (dashed

curves,
〈

jD〉 = 〈jD〉
LdS). The numbers near the curves present the corresponding spatial dimension.

The different behaviors for the LAdS and LdS geometries in the regions of large compact dimensions
will be clarified below using asymptotic analysis.



Symmetry 2024, 16, 92 18 of 29

Now, let us check the Minkowskian limit for dS and AdS geometries. As seen from
(40) and (56), it is obtained taking a → ∞ for fixed spacetime coordinates (t, x1, . . . , xD)
and (t, y, x2, . . . , xD) for the dS and AdS cases, respectively. For a large curvature radius,
one has ν ≈ iam, η ≈ a − t in LdS bulk and ν+ ≈ am, z ≈ a + y for LAdS. In the case of
LAdS, we need the asymptotic expression of the function q(D+1)/2

ν+−1/2

(
u2/2 + 1

)
for ν+ ≫ 1

and u ≪ 1. That expression is obtained using the uniform asymptotic expression of the
associated Legendre function of the second kind for large degree and fixed order, given
in [99]. With that asymptotic, it can be checked that, in the limit under consideration

q
D+1

2
ν+−1/2

(
1 +

g2(L(p)q, nq)

2a2

)
≈ (am)D+1 f D+1

2

(
mg(Lq, nq)

)
, (77)

confirming the transition to the Minkowskian result. In the case of LdS, it is convenient
to use the representation (69) for the function FD(am, x). In the limit at hand, ν ≈ iam,
am ≫ 1. The corresponding uniform asymptotic expansions for the functions I±ν(u) and
Kν(u) can be found, for example, in [100,101]. From those expansions, it can be seen that
the dominant contribution to the integral in the expression for FD(am, x) comes from the
region u > am, where

[Iν(u) + I−ν(u)]Kν(u) ∼
1√

u2 − a2m2
. (78)

with ν ≈ iam. The respective integral is evaluated by using the formula

∫ ∞

0
du
(

u2 + b2
)µ

fµ(c
√

u2 + b2) =

√
π

2
b2µ+1 fµ+ 1

2
(cb), (79)

and we see that, for the leading order

FD(am, x) ≈ (ma)D+1 f D+1
2
(max), (80)

which coincides with the Minkowskian result.

6.3. Large and Small Proper Lengths of Compact Dimensions

For small values of the proper length of the rth compact dimension, L(p)r ≪ a, 1/m,
we first consider the contribution in (68) of the terms for which at least one of ni, i ̸= r is
different from zero. For that part, the dominant contribution to the series over nr comes
from the terms with large values |nr|; we replace the corresponding summation with the
integration. The corresponding integral involving the product of the sin and Macdonald
functions is evaluated by using the formula from [98] and is expressed in terms of the
Macdonald function with much disagreement. By using the corresponding asymptotic,
we see that the contribution of the term for which at least one of ni, i ̸= r is not zero, is
suppressed by the factor exp[−g(L(p)q−1/a, nq−1)α̃ra/L(p)r], where

g2(L(p)q−1/a, nq−1) =
D

∑
i=p+1, ̸=r

n2
i

L2
i

a2 . (81)

For the contribution of the terms with ni = 0, i ̸= r, in (68), the argument x of the
function FD(am, x) is small. By using the corresponding asymptotic for the Macdonald
function, we see that, in the case of LM bulk

FD(am, x) ≈ 2
D−1

2

xD+1 Γ
(

D + 1
2

)
, x ≪ 1. (82)
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In the cases of the LdS and LAdS geometries, we note that the main contribution to
the integrals in (69) comes from the region with large values of u. By using the respective
approximations for the functions [I−ν(u) + Iν(u)]Kν(u) and J2

ν+(u) and evaluating the inte-
grals, we can see that the corresponding asymptotics are given by the same expression (82).
Hence, in the limit L(p)r ≪ a, 1/m, the dominant contribution to the current density comes
from the modes with ni = 0, i ̸= r, and to the leading order

〈
jr(p)
〉
≈

2eΓ
(

D+1
2

)
π

D+1
2 LD

(p)r

∞

∑
nr=1

sin(nr α̃r)

nD
r

. (83)

The expression in the right-hand side presents the current density for a mass-less
scalar field in the LM spacetime with spatial topology RD−1 × S1, with a single compact
dimension xr with length Lr = L(p)r. For small values of L(p)r, the dominant contribution
to the VEVs comes from the vacuum fluctuations with small values of the wavelength
(compared to the curvature radius) and the effects of gravity are weak.

It is expected that the effects of gravity on the vacuum currents will be essential for
proper lengths of compact dimensions of the order of or larger than the curvature radius.
We start a consideration of the large values of the lengths with the LM case, assuming
that Lr is much larger than the other length scales of the model. From Formula (22), it
follows that the dominant contribution comes from the modes with ni = 0, i ̸= r, for which

ωnq−1 = ω0r =
√

k(0)2nq−1 + m2 with

k(0)2nq−1 = ∑D
l=p+1, ̸=r α̃2

l /L2
l . (84)

The behavior of the current density is essentially different depending whether ω0r is
zero or not. In the first case, the leading term in the current density is given as

⟨jr⟩LM ≈
2eΓ( p

2 + 1)

π
p
2 +1Lp

r Vq

∞

∑
nr=1

sin(nr α̃r)

np+1
r

. (85)

Through a comparison with (83), we see that the right-hand side of (85), multiplied by
Vq−1 = Vq/Lr, presents the current density for a mass-less scalar field in (p+ 2)-dimensional
LM spacetime with a spatial topology of Rp × S1, with a single compact dimension of xr.
For ω0r ̸= 0, the dominant contribution to the current density is induced by the mode with
nr = 1 and, to the leading order,

⟨jr⟩LM ≈
2e sin(α̃r)ω

p+1
2

0r

(2π)
p+1

2 L
p−1

2
r Vq

e−Lrω0r . (86)

In particular, for the model with a single compact dimension xD one has p = D − 1
and the asymptotic (86) takes the form

〈
jD
〉

LM
≈ 2e sin(α̃D)m

D
2

(2πLD)
D
2

e−mLD , (87)

where mLD ≫ 1.
For LdS and LAdS geometries and for large values of the proper length L(p)r it is more

convenient to use the representations (48) and (65). The dominant contribution comes from
the term in the summation with nq−1 = 0 (nl = 0 for l ̸= r) and from the integration region
near the lower limit. Two cases should be considered separately. The first one corresponds
to the phases α̃i = 0, i ̸= r. With these values and for LAdS and LdS bulks in the case of
ν > 0, the leading order term is expressed as
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⟨jr(p)⟩ ≈
4ea1+2µBD(am)

π
p+1

2 V(p)
q Lp+1+2µ

(p)r

Γ
(

p + 3
2

+ µ

) ∞

∑
nr=1

sin(nr α̃r)

np+2+2µ
r

, (88)

where

µ =

{
−ν, for LdS
ν+, for LAdS

, (89)

and

BD(am) =

{
Γ(ν)/(2π), for LdS

1/Γ(ν+ + 1), for LAdS
. (90)

For LdS geometry and for imaginary values of ν, ν = i|ν|, by similar calculations, the
leading term is presented as

〈
jr(p)
〉
≈ 4eC(ma)ηD+1

π
p+3

2 VqaDLp+1
r

∞

∑
nr=1

sin(nr α̃r)

np+2
r

cos[2|ν| ln(nrLr/η) + ϕ0], (91)

where the coefficient C(ma) > 0 and the phase ϕ0 are defined by the following relation

Γ(i|ν|)Γ
(

p + 3
2

− i|ν|
)
= C(ma)eiϕ0 . (92)

In this case, the current density exhibits an oscillatory behavior with the amplitude,
decaying as 1/Lp+1

(p)r . Comparing (88) and (91) with (86), we see that the gravitational field
essentially modifies the asymptotic behavior of the current density for large values of the
proper length L(p)r: one has a power law decay in LdS and LAdS geometries instead of
exponential suppression for the LM bulk.

In particular, Formulas (88) and (91) with p = D − 1 describe the behavior of the
current density for large values of L(p)D in models with a single compact dimension xD.
In that special case, the asymptotic of the Minkowskian current density for a massive
field is described by (87). In order to display the essential difference of the large L(p)r
asymptotics for LdS and LAdS from that in the LM geometry, in Figures 5 and 6, we
present the ratios

〈
jD〉/〈jD〉

LM for D = 4 LdS and LAdS spacetimes; here, there is a single
compact dimension of the proper length L(p) = L(p)D, as functions of ma and L(p)/a for
fixed α̃D = 2π/5. The ratios are evaluated for the same values of the proper lengths in the
LM, LdS, and LAdS spacetimes and all the quantities are measured in units of a.

If at least one of the phases α̃i, i ̸= r, is different from zero and the proper length
L(p)r is large, we use the asymptotic expression of the Macdonald function for major
discussions. For the LAdS geometry and LdS geometry with positive values of ν, the
leading contribution to the series over nr comes from the term nr = 1, and we obtain

⟨jr(p)⟩ ≈
2ea1+2µBD(am) sin(α̃r)

2
p
2 +µπ

p
2 V(p)

q Lp+1+2µ

(p)r

(Lr|k(0)
q−1|)

p
2 +1+µe−Lr |k(0)

q−1|, (93)

where, as before, µ = −ν and µ = ν+ for LdS and LAdS. In the case of LdS bulk and
imaginary ν, the leading order term takes the form

〈
jr(p)
〉
≈ 4eηD+1 sin(α̃r)

(2π)
p+1

2 aDVqLp+1
r

(Lr|k(0)
q−1|)

p
2 +1e−|k(0)

q−1|Lr√
2|ν| sinh(π|ν|)

cos
[
|ν| ln

(
|k(0)

q−1|
Lr

2

)
− arg(Γ(i|ν|))

]
. (94)

In the case of LdS, the different asymptotic behavior for positive and imaginary values
of ν is related to different asymptotics of the function [Iν(x) + I−ν(x)]Kν(x) for small
arguments. For the LdS geometry and ν = 0 for the leading contribution, we obtain
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〈
jr(p)
〉
≈ 4e sin(α̃r)ηD+1

(2π)
p
2 +1aDVqLp+1

r

(|k(0)
q−1|Lr)

p
2 +1e−|k(0)

q−1|Lr ln
(
|k(0)

q−1|Lr

)
. (95)

Now, let us consider the asymptotics with respect to the length of the lth dimension
with l ̸= r. For large values Ll compared with the other length scales and for L(p)l/a ≫ 1,
the leading contribution to (68) comes from the term with nl = 0. As expected, this leading
term coincides with the current density in the geometry where the lth dimension is decom-
pactified. The corrections induced by the respective compactification are suppressed by the
factor e−mLl (1/LD+1

l for a mass-less field) in the LM bulk and by the factor 1/LD+2+2µ
l for

LdS and LAdS geometries, where µ is given by (89).

Figure 5. The ratio of the current densities in the D = 4 LdS and LM spacetimes with the same proper
lengths of the single compact dimension versus the mass and the proper length (in units of a). The
left and right panels correspond to conformally and minimally coupled fields; the graphs are plotted
for α̃D = 2π/5.

Figure 6. The same as in Figure 5 for the LAdS spacetime.



Symmetry 2024, 16, 92 22 of 29

In the opposite limit of small values of Ll , it is more convenient to use the representa-
tions (22) and (72). The behavior of the current density is essentially different for the cases
α̃l = 0 and α̃l ̸= 0. In the first case, the dominant contribution to the summation over nq−1
comes from the modes with nl = 0. For the LM bulk, the leading term in the expansion of
L(p)l

〈
jr
(p)

〉
coincides with the current density in D-dimensional LM spacetime, which is

obtained from the initial (D + 1)-dimensional spacetime, excluding the lth dimension. The
same is the case for the LdS and LAdS bulks with the difference that, in the leading terms of
the expansion for L(p)l

〈
jr
(p)

〉
, the parameters ν and ν+ are defined for (D + 1)-dimensional

spacetime; in contrast, in the formula for the D-dimensional current density
〈

jr
(p)

〉
, the

corresponding expressions for ν and ν+ are obtained from (41) and (57) through the re-
placement D → D − 1. For small values of Ll and α̃l ̸= 0, the contribution of the modes
with nr = 1 and nl = 0 dominates in (22) and (72). In the remaining summations over ni,
i ̸= r, l, the main contribution comes from large values ni and we replace the corresponding
series through integrations. In this way, it can be seen that the current density

〈
jr
(p)

〉
is

suppressed by the factor exp(−Lr|α̃l |/Ll).

6.4. Fermionic Currents

In the discussion above, we have considered the current densities for a charged scalar
field. Similar investigations for the massive Dirac field ψ(x) in general number of spatial
dimensions, obeying the quasi-periodicity conditions

ψ(t, x1, . . . , xp, . . . , xl + Ll , . . . , xD) = eiαl ψ(t, x1, . . . , xp, . . . , xl , . . . , xD), (96)

with constant phases αl , are presented in [17,22,24] for LM, LdS, and LAdS geometries,
respectively. The formulas from these references for the fermionic current density along the
rth compact dimension are presented in the combined form

〈
jr(p)
〉
(f)

= −
NeL(p)r

(2π)
D+1

2 aD+1
∑
nq

nr sin
(
nq · α̃q

)
F(f)

D (am, g(L(p)q/a, nq)), (97)

with the same notations as in (68). Here, N = 2[
D+1

2 ] ([x] stands for the integer part of x) is
the number of spinor components for the Dirac field, realizing the irreducible representation
of the Clifford algebra. The functions F(f)

D (am, x) in (97) are defined by

F(f)
D (am, x) = FD(am, x), for LM,

F(f)
D (am, x) =

1
2

Re
[

p−
D+1

2
iαm

(
x2/2 − 1

)]
, for LdS,

F(f)
D (am, x) =

1
2

[
q

D+1
2

am

(
x2/2 + 1

)
+ q

D+1
2

am−1

(
x2/2 + 1

)]
, for LAdS. (98)

The replacement 2πα̃l → −α̃l in the expression for LM bulk, compared to the one given
in [17], is related to different notations of the constants in the quasi-periodicity conditions
(see also the comment in [24]). The applications of (97), with D = 2, in cylindrical nanotubes,
described in terms of the effective Dirac theory, have been discussed in [17,24].

As can be seen in (98), assuming the same masses and phases in the periodicity
conditions for scalar and Dirac fields, the relation ⟨jl⟩(f)LM = −(N/2)⟨jl⟩LM is obtained for
the corresponding current densities in LM bulk. In particular, in supersymmetric models
with the same number of scalar and spinor degrees of freedom, the total vacuum current
vanishes. That is not the case for the LdS and LAdS geometries. In an even number of
spatial dimensions D, the Clifford algebra has two non-equivalent representations with
two different sets of the Dirac matrices. As was discussed in [24], the vacuum current
densities coincide for the fields, realizing those representations if the corresponding masses
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and the periodicity conditions are the same. More details of the properties for fermionic
currents in LM, LdS, and LAdS geometries with toroidal compact dimensions will be
reviewed elsewhere.

7. Conclusions

In the present paper, we have discussed the features of the vacuum currents in field–
theoretical models formulated in the context of spacetimes with compact dimensions. Three
cases of background geometries are considered: LM, LdS, and LAdS. In the decompactifica-
tion limit, they correspond to maximally symmetric solutions of Einstein field equations in
(D + 1)-dimensional spacetime with zero, positive, and negative cosmological constants,
respectively. The toroidal compactification of a part of spatial dimensions does not change
the local geometrical characteristics; additionally, the high symmetry allowed us to find the
closed analytic expressions for the vacuum currents along the compact dimensions. For an
external gauge field, we have taken the simplest configuration with a constant gauge field.
However, the corresponding magnetic field is zero; this is because the nontrivial topology
respective vector potential gives rise to an Aharonov–Bohm-like effect on the vacuum
characteristics. Through a gauge transformation, the gauge field potential is reinterpreted
in terms of the phases in the periodicity conditions on the field operator along the compact
dimensions. The quasi-periodicity conditions with nontrivial phases break the reflection
symmetry in the respective directions; as a consequence, the contributions of the left- and
right-moving modes of the vacuum fluctuations in the quantum field do not compensate
for each other. As a result, a net current appears that is the analog of the persistent currents
in the mesoscopic metallic rings.

The combined expression for the current density along the rth compact dimension,
valid for all three background geometries, is given by the Formula (68). The information on
specific geometry is encoded in the function FD(am, x), defined by (69). The component
of the current density

〈
jr
(p)

〉
is an odd periodic function of the phase α̃r with the period

2π and an even periodic function of the remaining phases α̃l , l ̸= r, with the same period.
This periodicity is also interpreted as periodicity in terms of the magnetic flux enclosed
by compact dimensions. In this interpretation, the period is equal to the flux quantum.
For curved backgrounds, the current density depends on the lengths of the compact
dimensions and on the coordinates (temporal τ and spatial z coordinates for LdS and
LAdS, respectively) in the form of the proper lengths L(p)l . This feature is a consequence
of the maximal symmetry of the dS and AdS spacetimes. For a conformally coupled
mass-less scalar field, the current densities in the LM and LdS spacetimes are connected
by the standard relation (75). For LAdS geometry, one has a conformal relation with the
current density in LM spacetime (given by (76)), with an additions planar boundary that is
perpendicular to one of the non-compact dimensions. The boundary in the LM spacetime
with the Dirichlet boundary condition on the scalar field operator is the conformal image
of the AdS boundary.

For LdS and LAdS bulks and for small values of the length of the compact dimension,
the mode sum of the component of the current density along that dimension is dominated
by the contribution of the vacuum fluctuations with wavelengths that are smaller than
the curvature radius. The influence of the gravitational field on those modes is weak; the
leading term in the respective expansion, given by (83), coincides with that for the LM
bulk, with the length of the compact dimension replaced by the proper lengths for the
LdS and LAdS geometries. The leading term presents the current density for a mass-less
field in (D + 1)-dimensional LM spacetime with a single compact dimension of the length
L(p)r. For small values of the length of the lth compact dimension, the behavior of the
current density along the rth dimension, r ̸= l, essentially differs for zero and nonzero
values of the phase |α̃l | ≤ 1/2. In the first case, α̃l = 0—the dominant contribution to
the current density

〈
jr
(p)

〉
—comes from the zero mode nl = 0 and the leading term in the

expansion of the product L(p)l

〈
jr
(p)

〉
coincides with the corresponding current density in
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D-dimensional spacetime with spatial coordinates (x1, . . . , xl−1, xl+1, . . . , xD). For α̃l ̸= 0,
the zero mode with respect to the lth dimension is absent and the component

〈
jr
(p)

〉
decays

like exp(−|α̃l |Lr/Ll).
The effect of the spacetime curvature on the current density is essential for lengths of

compact dimensions of the order or larger compared with the curvature radius. For large
values of the length of the rth compact dimension, the asymptotic of the current

〈
jr
(p)

〉
is

completely different for the cases ω0r = 0 and ω0r ̸= 0 with ω0r =
√

k(0)2nq−1 + m2 and k(0)2nq−1 ,
defined by (84). For ω0r = 0, corresponding to a mass-less field with zero phases α̃l , l ̸= r,
the leading term for the LM bulk is given by (85). Multiplied by Vq/Lr, that expression
gives the current density for a mass-less field in (p + 2)-dimensional LM spacetime with
a single compact dimension xr. For ω0r ̸= 0, the large Lr asymptotic is described by (86)
and the current density in the LM bulk is exponentially suppressed. For the LdS and
LAdS background geometries and for α̃l = 0, l ̸= r, the leading term in the large L(p)r
asymptotic is given by the right-hand side of (88), with ν > 0 for the LdS bulk. This shows
that the gravitational field essentially changes the behavior of the current density for large
lengths of compact dimensions: instead of the exponential suppression in the LM bulk for
a massive field, for the LdS and LAdS geometries, the fall-off of the current density follows
a power law. For the LdS background and for imaginary values of the parameter ν, the
behavior of the current density is described by (94). In this case, the decay with respect to
Lr is oscillatory, with the amplitude decreasing as 1/Lp+1

r . In the case when at least one of
the phases α̃l = 0, l ̸= r, differs from zero, the asymptotic behavior of the current density〈

jr
(p)

〉
is given by (93) for LAdS and for LdS in the range ν > 0 with an exponential decay.

For LdS bulk and imaginary ν, the decay is oscillatory (see (94)).
The current density along compact dimensions is a source of magnetic fields that

has components in the non-compact sub-space. In spatial dimensions D > 3, the mag-
netic field is a spatial tensor of rank D − 2, which can be found by solving Maxwell’s
(D + 1)-dimensional semi-classical equations with the VEV of the current density as a
source. That would be an interesting application of the results described in the present
paper. Note that several mechanisms for the generation of the seeds for cosmological
magnetic fields in higher-dimensional models have been discussed in the literature (see,
for example, [102,103]).
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Appendix A. Properties of the Functions in the Expressions for the Currents

We have seen that the vacuum currents along compact dimensions in LdS and LAdS
geometries are expressed in terms of the functions (51) and (64). Here, the properties of
those functions are considered. First of all, we note that they are expressed in terms of the
hypergeometric function as

p−µ

ν− 1
2
(u) =

Γ(µ + 1
2 − ν)Γ(µ + 1

2 + ν)

2µΓ(µ + 1)
F
(

µ +
1
2
− ν, µ +

1
2
+ ν; µ + 1;

1 − u
2

)
,

qµ

ν− 1
2
(u) =

√
πΓ(µ + ν + 1

2 )

2ν+ 1
2 Γ(ν + 1)uµ+ν+ 1

2
F

(
µ + ν + 3

2
2

,
µ + ν + 1

2
2

; ν + 1;
1
u2

)
. (A1)
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By using the recurrence relations for the associated Legendre functions, one can see
that ∂u p−µ

α (u) = −p−µ−1
α (u) and ∂uqµ

α(u) = −qµ+1
α (u). From here, we obtain the relations

p−µ−n
α (u) = (−1)n∂n

u p−µ
α (u), qµ+n

α (u) = (−1)n∂n
uqµ

α(u), (A2)

with n = 1, 2, . . ..
In the physical problems under consideration, depending on the spatial dimension,

the order µ for the functions p−µ
α (u) and qµ

α(u) is a positive integer or half-integer. By
making use of (A2), these functions are expressed in terms of p0

α(u) and q0
α(u) or p−1/2

α (u)
and q1/2

α (u). Employing the corresponding expressions for the functions P−1/2
α (u) and

Q1/2
α (u) from [81], one obtains

p−1/2
ν−1/2(cosh ζ) =

√
2π sinh(νζ)

sin(πν) sinh ζ
,

p−1/2
ν−1/2(cos θ) =

√
2π sin(νθ)

sin(πν) sin θ
,

q1/2
ν−1/2(cosh ζ) =

√
π

2
e−νζ

sinh ζ
. (A3)

Combining these expressions with the relations (A2) for even values of the spatial
dimension D, we obtain

FD(am, x) =
√

π

2
(−1)

D
2

(
∂ξ

sinh ξ

) D
2 e−ν+ξ

sinh ξ
, x = 2 sinh(ξ/2), (A4)

in LAdS geometry and

FD(am, x) =
(−1)

D
2
√

π/2
sin(πν)

(
∂ξ

sinh ξ

) D
2 sinh(νξ)

sinh ξ
, x = 2 cosh(ξ/2),

FD(am, x) =

√
π/2

sin(πν)

(
∂θ

sin θ

) D
2 sin(νθ)

sin θ
, x = 2 cos(θ/2), (A5)

for LdS bulk. For odd values of D, one has

FD(am, x) =
1
2
(−1)

D+1
2 Γ
(

1
2
− ν

)
Γ
(

ν +
1
2

)
∂

D+1
2

u Pν− 1
2
(u), for LdS,

FD(am, x) = (−1)
D+1

2 ∂
D+1

2
u Qν+− 1

2
(u), for LAdS, (A6)

where u = x2/2 − 1 for LdS and u = x2/2 + 1 for LAdS.
In order to find the behavior of the functions p−µ

ν−1/2(u) and qµ
ν−1/2(u) for large values

of u, we use the corresponding asymptotics for the associated Legendre functions (see, for
example, [99]). The leading order terms read

p−µ

ν− 1
2
(u) ∼ 2ν− 1

2
√

π

Γ(ν)Γ
(

µ + 1
2 − ν

)
uµ−ν+ 1

2
, Re ν > 0, µ + ν ̸= −1,−2, . . . ,

p−µ

− 1
2
(u) ∼

√
2
π

Γ
(

µ +
1
2

)
ln u

uµ+ 1
2

, µ ̸= −1
2

,−3
2

, . . . ,

qµ

ν− 1
2
(u) ∼

√
πΓ
(

µ + ν + 1
2

)
2ν+ 1

2 Γ(ν + 1)uµ+ν+ 1
2

, ν ̸= −3
2

,−5
2

, . . . (A7)
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The asymptotic for p−µ

ν− 1
2
(u) in the case of purely imaginary values of ν, ν = i|ν|, is

obtained using the relation [99]

P−µ

i|ν|− 1
2
(u) = ie−iµπi

Qµ

i|ν|− 1
2
(u)− Qµ

−i|ν|− 1
2
(u)

sinh(|ν|π)|Γ
(

µ + 1
2 + i|ν|

)
|2

, (A8)

and the corresponding asymptotic for Qµ

i|ν|− 1
2
(u). This gives

p−µ

i|ν|− 1
2
(u) ∼

√
2/π

uµ+ 1
2

Re

[
Γ
(

µ +
1
2
− i|ν|

)
Γ(i|ν|)
(2u)i|ν|

]
. (A9)

These asymptotic formulas have been used in the main text to study the behavior of
the current density in asymptotic regions of the parameters.
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