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Abstract: Ear recognition has made good progress as an emerging biometric technology. However,
the recognition performance, generalization ability, and feature robustness of ear recognition systems
based on hand-crafted features are relatively poor. With the development of deep learning, these
problems have been partly overcome. However, the recognition performance of existing ear recogni-
tion systems still needs to be improved when facing unconstrained ear databases in realistic scenarios.
Another critical problem is that most systems with ear feature template databases are vulnerable to
software attacks that disclose users’ privacy and even bring down the system. This paper proposes a
software-attack-proof ear recognition system using deep feature learning and blockchain protection to
address the problem that the recognition performance of existing systems is generally poor in the face
of unconstrained ear databases in realistic scenarios. First, we propose an accommodative DropBlock
(AccDrop) to generate drop masks with adaptive shapes. It has an advantage over DropBlock in
coping with unconstrained ear databases. Second, we introduce a simple and parameterless attention
module that uses 3D weights to refine the ear features output from the convolutional layer. To protect
the security of the ear feature template database and the user’s privacy, we use Merkle tree nodes to
store the ear feature templates, ensuring the determinism of the root node in the smart contract. We
achieve Rank-1 (R1) recognition accuracies of 83.87% and 96.52% on the AWE and EARVN1.0 ear
databases, which outperform most advanced ear recognition systems.

Keywords: ear recognition; deep learning; accommodative DropBlock (AccDrop); attention module;
smart contracts

1. Introduction

Ear recognition is a biometric technology that has emerged in recent years since ears,
similar to fingerprints [1], irises [2], and faces [3], contain many specific and unique fea-
tures [4] that can be used to identify a person [5]. The process of ear image acquisition is
not dependent on the subject’s cooperation and is non-invasive and non-contact. Capturing
ear images from a distance covertly [6] is undoubtedly an attractive option favored for
surveillance and security as well as other applications. Ear images extracted from side
headshots or video clips can also be used in ear recognition systems. Studies have shown
that age can impact biometric performance [7,8]. For example, fingerprints are subject
to wear and tear with age, and wrinkles appear on a person’s face, which can affect the
system identification accuracy. By contrast, the most crucial characteristic of the human
ear is that it does not age too significantly [9]. The shape of the ear is essentially set at
birth and uniformly distributed in color, changing significantly only before age eight and
after age 70, and this change is measurable. It is challenging for cybercriminals to replicate
it [10]. In addition, ear biometric systems have been used in several fields, such as remote
voting, authentication, attendance control, finance, and other transactions that require
authorization. In automatic identification systems, the ear image can complement different
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biometric patterns to provide identity cues if other biometric information is unreliable or
corrupted. Early ear recognition systems used hand-crafted features for recognition. These
systems had four main drawbacks: (1) most did not use a baseline ear database for system
performance testing; (2) no standard performance evaluation metrics were used; (3) the
ear database used for recognition was obtained in a constrained environment, resulting in
poor system generalization and poor performance on unconstrained ear databases; and
(4) recognition performance lags behind that of systems based on deep feature learning.
Recent years have witnessed the development of deep learning [11–13], and the technique
has been used in ear recognition. Ear recognition systems based on deep learning have
excellent performance and are popular among researchers. Ear recognition systems have
performed well in the last decade but face many challenges. Most ear recognition systems
are vulnerable to software attacks [14], especially attacks against ear feature template
databases. Such attacks can paralyze the entire ear recognition system and compromise the
user’s privacy. The stolen ear template data can be used illegally, adversely affecting indi-
viduals, businesses, and society. Blockchain is considered one of this era’s most disruptive
technologies [15,16]. The properties supported by blockchain technology, such as universal
access, availability, accountability, and invariance [17], can be perfectly applied to protect a
database of ear signature templates. Therefore, we propose an ear identification system
using deep feature learning and blockchain protection against software attacks. The system
protects users’ privacy and prevents software attacks on the ear feature template database
while providing superior recognition performance.

Our contributions can be summarized as follows: (1) We propose the accommoda-
tive DropBlock (AccDrop), which has advantages over DropBlock [18] in dealing with
unconstrained ear databases. It can generate drop masks with adaptive shapes, which
effectively improves the generally poor recognition performance of existing ear recognition
systems when facing unconstrained ear databases in realistic scenarios. (2) We introduce a
simple and parameter-free attention module [19] to infer the 3D attention weights of the
ear feature maps output from the convolutional layer, enabling the ear recognition system
to learn more critical feature regions. (3) We use Merkle tree [20] nodes to store the ear
feature templates, ensuring the determinism of the root node in the smart contract and
protecting the security of the ear feature template database and the user’s privacy. (4) We
conduct extensive experiments on two of the most exemplary unconstrained ear databases
to further confirm the reliability of the proposed ear recognition system. The experimental
results show that our system’s recognition performance and generalization capability are
more competitive than most state-of-the-art ear recognition systems.

The remainder of this paper is organized as follows: A brief review of related work
is presented in Section 2. Section 3 describes our proposed method in detail. In Section 4,
we evaluate the performance of the proposed method on two representative public un-
constrained ear datasets, derive experimental results, and perform a correlation analysis.
Finally, we conclude the whole paper in Section 5.

2. Related Work

Early researchers performed human ear recognition based on hand-made features,
mainly geometric, holistic, local, and hybrid methods. Geometric methods: The computa-
tional process of geometric methods is relatively simple and mainly involves analyzing
and extracting the geometric features of an ear image. Edge detection is the most common
pre-processing operation of geometric methods. Edge information can provide geometric
statistics for ear recognition and describe the ear’s geometric features. Since the geometric
method relies only on information related to the geometric features of the ear structure, it
is robust to methods that do not produce geometric deformations, e.g., scaling, rotation, etc.
However, geometric methods also have significant drawbacks in that the discriminative
categorical feature information presented in the ear image is ignored. Many geometric
methods have been proposed in the literature: Ref. [21] used information based on wrinkles
and ear shape as well as outer ear point feature information for recognition, Ref. [22] pro-
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posed a discrete geometric algorithm using open contour representation for ear biometrics,
and Ref. [23] demonstrated that the geometric properties of ear subparts, such as earlobe
shape, ear size, etc., have a significant impact on recognition. The reliance on edge detectors
dramatically limits the development of geometric methods in the field of ear recognition.
The edge detectors reduce feature robustness when subjected to noise and illumination
changes. Holistic approach: The holistic approach treats the ear as a whole and globally
encodes the entire ear structure. This method significantly degrades the feature extraction
performance in the presence of significant differences in ear image angles and illumination,
so it is usually necessary to apply normalization techniques as pre-processing operations to
reduce the impact of these factors on performance before feature extraction. Ref. [24] pro-
posed a (holistic) ear recognition method based on force-field transformation and kernel
fisher discriminant analysis in zero space. This technique uses ear pixels as particles of
force field source, extracts ear features by force field transformation, and is effective with
good robustness for multi-angle ear recognition. The subspace projection technique is also
widely used in ear recognition. With this technique, the ear image is represented as a linear
combination of weights in the form of basis vectors in pixel space. Examples of such tech-
niques are proposed in the literature, including principal component analysis (PCA) [25,26],
enhanced local linear embedding (ELLE) [27], and non-negative matrix decomposition
(NMF) [28]. Another overall technique for ear recognition is to operate in the frequency
domain. Ref. [5] represents the ear image in the frequency domain using a generic Fourier
descriptor, which shows good stability for ear image rotation. Local approach: this ap-
proach mainly uses the local features of an ear image for recognition and has achieved
competitive results in the field of ear recognition. Ref. [29] extracts key point locations
employing scale-invariant feature transform (SIFT) and then calculates descriptors for each
key point detected. The advantage of this technique is that the extracted descriptors can be
partially matched and therefore show some robustness to partial regional occlusions of the
ear. The disadvantage is that there is a risk of ignoring discriminative global ear feature
information. Ref. [30] extracts local grayscale phase information based on Gabor filters and
then uses local features for recognition. This technique uses local descriptors to form the ear
image representation and encode the global structure of the image, with the disadvantage
that it is less robust to occlusions. Hybrid approach: a method to improve recognition
performance by mixing multiple technical representations. Ref. [31] proposed a method
that combines principal component analysis (PCA) and wavelets. Ref. [32] introduced a
hybrid method based on the Haar transform and local binary patterns (LBP). Ref. [33] fused
a Gabor filter and local binary patterns (LBP) for ear recognition. The hybrid method is
competitive in ear recognition. Because it is a mixture of multiple technical representations,
the method is much more computationally intensive than simple local or holistic methods.

Some ear recognition methods based on hand-crafted features show near-perfect recog-
nition performance on constrained datasets. However, their performance on unconstrained
datasets is poor compared to in-depth feature-learning-based methods. Deep learning has
developed rapidly in recent years, and many human ear recognition methods based on
deep feature learning have been proposed and achieved excellent recognition performance.
In [34], a deep convolutional neural network model was designed to perform ear recogni-
tion. The system’s robustness was verified by evaluating it on a constrained ear dataset. The
disadvantages are that the authors do not use standard performance evaluation parameters,
and the database used has a slight variation in the internal ear images, which does not
reflect the generalization ability of the proposed system. A two-path convolutional neural
network model was proposed in [35]. The network focuses on discriminative image regions
by pooling the information related to patches, ensuring good recognition performance. The
disadvantage is that only one ear database is used to evaluate the system’s performance.
Ref. [36] used the NASNet network model for ear recognition. An optimized network is
provided by reducing the number of operations and the number of learnable parameters to
achieve excellent recognition performance.
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Ear recognition systems have evolved rapidly in the last decade but face many chal-
lenges [37,38]. Almost all ear recognition systems are vulnerable to software attacks [14] or
physical attacks [39]. In recent years, researchers have made some progress in ear recog-
nition systems against physical attacks and proposed some anti-fraud methods. Ref. [40]
collected a database of ear presentation attack detection, including three types of fake
ear attacks—display attacks, print attacks, and video attacks—and used image quality
assessment techniques to extract ear features of interest. Ref. [41] proposed a three-level
fusion-based ear anti-spoofing system based on image quality assessment techniques. The
system performance was evaluated using printed photo attack images, and the results
showed that the system could distinguish well between real and fake ear images. Ref. [42]
proposed a light-field ear artifact database containing images from multiple types of attack
devices, such as cell phones, laptops, and tablets. The problem of detecting ear presentation
attacks was solved, and promising results were reported. Software attacks, especially at-
tacks on ear feature template databases, can disrupt the working process of ear recognition
systems and harm users’ privacy. However, there is still a gap in the existing literature
and a relative lack of techniques to prevent software attacks on ear recognition systems.
Properties such as invariance and accountability [17] supported by blockchain technology
meet the need for ear feature template database protection.

This paper proposes an ear identification system against software attacks using deep
feature learning and blockchain protection. We evaluate the system performance on two
representative unconstrained ear databases, AWE [43–45] and EARVN1.0 [46], respectively.
Our proposed AccDrop can generate drop masks with adaptive shapes for ear images,
which effectively improves the recognition performance of the ear recognition system when
facing unconstrained ear databases in realistic scenarios. To address the problem of large
intra- and inter-class variation in unconstrained ear databases, we introduce an attention
mechanism at the back end of the convolutional layer of the feature extraction network
to refine the ear features output from the convolutional layer using 3D weights, without
increasing the parameters and the computational effort of the network. To ensure the
determinism of the root node in the smart contract, we use Merkle tree nodes to store the
ear feature templates to further protect personal privacy and ensure the stability of the ear
feature template database.

3. The Proposed Approach

Our proposed ear identification system against software attacks using deep feature
learning and blockchain protection is shown in Figure 1. As shown in the figure, the
system consists of four phases: input, feature extraction, matching, and decision-making.
Among them, the matching phase is vulnerable to software attacks, and tampering with
the template in the database and intercepting the channel between the database and the
matcher are common types of software attacks. Therefore, we introduce a public blockchain
when exchanging the ear feature template database and use Merkle tree blockchain storage
technology to enhance the protection of the ear feature templates, which significantly
improves the security of the ear recognition system. Merkle tree is a binary data structure
using recursive construction, in which each node contains a cryptographic hash of its child
node content. Since the root node counts the information of all the child nodes except
the root node, any tampering with the content of the child nodes will cause the root node
value to change. Arranging the data in the form of a Merkle tree can ensure the integrity
of the root node data in the smart contract and achieve the purpose of securely storing
the content of the ear feature template. In the feature extraction phase of the human
ear recognition system, we use a deep-feature-learning-based approach for ear feature
extraction. The details of the network architecture for this phase are shown in Figure 2. It
consists of five convolutional layers, five attention modules, three pooling layers, three
fully connected layers, and an AccDrop module. Each convolutional layer is followed by a
batch normalization layer and a Relu activation layer to increase the stability of ear feature
learning and mitigate the network gradient disappearance and overfitting phenomena.
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The attention module processes the low-level detail ear feature maps output from all
convolutional layers in the network to obtain further detailed ear feature maps. The first
convolutional layer with a step size of 4 pixels performs convolutional operations on the
input ear image of size 224 × 224 using 64 kernels of size 11 × 11. The spatial dimensions
of the feature map are reduced to half of the original size using a maximum pooling layer
with a window size of 3 × 3 and a step size of two pixels. The output of the first pooling
layer is used as the input of the second convolutional layer, filtered using 192 kernels of size
5 × 5. The third and fourth convolutional layers both have 384 kernels of size 3 × 3. The
fifth convolutional layer has 256 kernels of size 3 × 3. The last max-pooling layer outputs
the high-level distinguishing feature information necessary for ear classification and then
generates drop masks with adaptive shapes via an AccDrop. ReLU nonlinearity is applied
to the output of the fully connected layers, and the neurons in each fully connected layer
are connected to all neurons in the previous layer. In the following sections, we present the
AccDrop mentioned in the network and the details of the attention module.
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3.1. Accommodative DropBlock

Overparameterization of network models often leads to overfitting problems, and
regularization methods can alleviate this problem. Dropout [47] is a commonly used regu-
larization method that is very effective for fully connected layers. DropBlock is a structural
form of regularization method that drops cells together in adjacent regions of the feature
map. However, it will affect the feature learning ability of the network. In order to improve
the recognition performance, our proposed AccDrop is a regularization method that can
enhance the spatial dimensional feature representation to learn discriminative ear features
effectively. DropBlock is a standard regularization method that tends to remove some prac-
tical feature information for basic training, resulting in poor recognition results, as shown
in Figure 3. Our proposed AccDrop is a structured regularization method that can learn
discriminative ear features, which can effectively mitigate the drawbacks of DropBlock.
AccDrop first randomly selects the feature blocks in the ear feature map. Subsequently, a
drop operation is performed on the top-zth percentile elements, and the selected feature
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blocks generate drop masks with adaptive shapes. The top-zth percentile elements for
the discard operation are selected based on the values in the ear feature map. The image
pixel values in the feature map are continuous and neighboring pixels have similar values.
Therefore, AccDrop tends to encourage the network to consider inconspicuous valid ear
features when the top-zth percentile elements are removed. Figure 4 shows the three stages
of AccDrop. The AccDrop algorithm is shown in Algorithm 1. It has four parameters:
block_size, γ, drop_prob, and z. Block_size is the size of the mask block. γ controls the
number of activation units to be deleted, and the calculation of γ can be found in [18].
Drop_prob is the probability of retaining a unit in a traditional dropout. Z indicates a
discard operation for the top-zth percentile element in the block to be deleted.
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Algorithm 1: Accommodative DropBlock

Input: Feature map F(n) for the current layer, block_size, γ, drop_prob, z
Output: The next layer of features F(n+1)

1: Randomly sample mask M: Mp,q ∼ Bernoulli(γ)
2: For each Mp,q, we create a square block centered at Mp,q and of size block_size × block_size.
Set the top-zth percentile elements of each square block to zero and the rest to one.

3: The mean F(n) and Variance σ2 of feature values are: F(n) = 1
N

N
∑

i=1
F(n)

i ,

σ2 = 1
N−1

N
∑

i=1

(
F(n)

i − F(n)
)2

. Z—Score Normalization: F′(n)
i =

F(n)
i −F(n)

σ

4: Apply the mask: F′(n)
i = F′(n)

i × M

5: Scaling of output features: F(n+1) = F′(n)
i × count(M)/count_ones(M)
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of the feature map together to drop out. However, it will affect the feature learning ability of the 
network, resulting in some meaningful feature information being lost. The proposed AccDrop gen-
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formation and allows it to effectively learn discriminative ear features in the face of an uncon-
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Figure 3. (a) Image of the input network; (b) Dropout; (c) DropBlock; and (d) proposed AccDrop.
The regions marked using purple squares are activation units with semantic information, and black
pentagram markers represent dropout operations. The elements at adjacent locations in the ear
feature map share semantic information spatially. The elements adjacent to the dropped activation
units still retain the semantic information at that location, causing the dropout to easily ignore spatial
features. DropBlock is a structured regularization method that puts the units in adjacent regions of the
feature map together to drop out. However, it will affect the feature learning ability of the network,
resulting in some meaningful feature information being lost. The proposed AccDrop generates drop
masks with adaptive shapes, which makes the model pay more attention to spatial information and
allows it to effectively learn discriminative ear features in the face of an unconstrained ear database
in realistic scenarios.
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3.2. Attention Module

The channel-based and spatial domains are currently the two most dominant attention
mechanisms in computer vision. It is worth noting that the combination of the channel
domain and spatial domain facilitates feature selection during information processing.
Since the ear images in the dataset used in this paper have large inter- and intra-class
differences, invalid features such as occlusion, background, etc., in the ear images can
interfere with recognition performance. Therefore, we introduce a simple and parameter-
free attention mechanism at the back end of the convolutional layer of the feature extraction
network to refine the ear features output from the convolutional layer using 3D weights, so
that the ear recognition system can learn the ear neurons of interest. The structure diagram
is shown in Figure 5. The importance of each neuron is different, and the assigned weights
should be unique. Among them, the neurons with higher importance show significant
spatial inhibition effects. The linear difference between other neurons and the target neuron
is derived by defining the energy function for each neuron, as shown in Equation (1).

et(wt, bt, y, xi) =
1

M − 1

M−1

∑
i=1

(y0 − x̂i)
2 +

(
yt − t̂

)2 (1)

All values in Equation (1) are scalars. t̂ = wtt + bt and x̂i = wtxi + bt are linear
transformations of t and xi, respectively, where t is the target neuron in a single channel of
the input feature X ∈ RC×H×W and xi is the other neurons in a single channel of the input
feature X ∈ RC×H×W . wt and bt are weight and bias transformations. M = H × W is the
number of neurons on that channel and i is the index in the spatial dimension. Equation (1)
reaches a minimum when all other x̂i is equal to y0 and t̂ is equal to yt, where y0 and yt
do not have the same value. Minimizing this equation is equivalent to finding the linear
separability between all other neurons in the same channel and the target neuron t. For
simplicity, we add a regularizer to Equation (1) and use the binary notation for yt and y0
(i.e., 1 and −1). The energy function is finally expressed as Equation (2).

et(wt, bt, y, xi) = (1 − (wtt + bt))
2 + λwt

2 +
1

M − 1

M−1

∑
i=1

(−1 − (wtxi + bt))
2 (2)
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Figure 5. This attention mechanism allows the direct estimation of 3D weights to refine the ear
features further. The same color indicates using a single scalar for each point on the ear feature. X is
the input feature, H is the height of the input data, C is the number of channels, and W is the input
data width.

The energy functions are M on each channel. Using an iterative solver, such as SGD,
to compute all these functions can be complicated. It is worth noting that Equation (2) has
fast closed-form solutions for wt and bt, which can be obtained from Equations (3) and (4)
as follows:

wt = − 2(t − ut)

2σt2 + 2λ + (t − ut)
2 (3)

bt = −1
2

wt(ut + t) (4)

σt
2 = 1

M−1 ∑M−1
i (xi − µt)

2
and µt =

1
M−1 ∑M−1

i=1 xi denote the calculation of the vari-
ance and mean of all neurons excluding t in that channel, respectively, which can signifi-
cantly reduce the computational cost by avoiding the repeated calculation of µ and σ at
each location. We calculate the minimum energy using Equation (5).

e∗t =
4
(
λ + σ̂2)

2λ + 2σ̂2 + (t − û)2 (5)

where µ̂ = 1
M ∑M

i=1 xi and σ̂t
2 = 1

M ∑M
i=1 (xi − µ̂)

2
. From Equation (5), if the energy e∗t is

lower, it indicates that the difference between the neuron t and the surrounding neurons is
greater, and the neuron is more important. The importance of each neuron can be expressed
using 1

e∗t
. We use the scaling operator for feature refinement and finally derive an energy

function as shown in Equation (6).

X̃ = X ⊙ sigmoid
(

1
E

)
(6)

where E groups all e∗t in spatial dimensions and channels. Excessively large values in E can
be restricted by sigmoid.

4. Experiments and Results
4.1. Datasets and Experiment Setup
4.1.1. Dataset Introduction

The Annotated Web Ears (AWE) [43–45] ear database consists of 100 subjects with
10 ear images per subject, for a total of 1000 ear images, and was provided by Ljubljana
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University. The ear images are challenged by occlusions caused by hair and ear ornaments
as well as by angular variations. The EARVN1.0 [46] unconstrained ear database contains
28,412 images from 164 subjects and is a large unconstrained ear database. These images
are highly variable in terms of angle, scale, resolution, and lighting. Most of the ear images
face challenges due to hair, background, and ornament occlusion. We randomly selected
three subjects from each database and selected 10 ear images from each presentation subject,
as shown in Figure 6.
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variations in angle, resolution, and brightness, and had the challenge of being obscured by jewelry
and hair.

4.1.2. Data Augmentation

In deep learning network training, the more sufficient samples are trained, the stronger
the generalization of the network model and the higher the robustness. Data augmentation
can solve the sample imbalance problem, increase the noise data, improve the robustness
of the model, increase the amount of data for training, improve the generalization ability of
the model, and to some extent, solve the overfitting problem. We enhanced the training
data with image processing techniques such as histogram equalization, cropping, and
brightness increase. The augmented ear images are shown in Figure 7.

4.1.3. Parameter Initialization and Evaluation Metrics

The experiments in this paper are conducted with NVIDIA Tesla V100 SXM2 16G
servers as hardware support and are based on the Pytorch open-source framework. This
server was released by NVIDIA Corporation in Santa Clara, CA, USA. We set up a learning
rate descent method with cosine annealing. The optimizer for this experiment is stochastic
gradient descent (SGD), and the momentum, weight recession, and batch size are set to 0.9,
0.0001, and 32, respectively. The number of training iterations for all experiments is set to
500 rounds. Finally, we evaluate the performance of the proposed ear recognition system
using Rank-1 (R1) recognition rate, Rank-5 (R5) recognition rate, and cumulative matching
feature (CMC) curves.
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rotation, limited contrast adapted histogram equalization, and color histogram equalization.

4.2. Analysis of block_size

Block_size is an essential parameter in AccDrop that affects recognition performance.
In this experiment, we refer to the base network without inserting the AccDrop and
attention module as EARNet, and the network with only the AccDrop inserted as AD-
EARNet. Neighborhood noise can easily interfere with contextual information and thus
affect recognition performance. Figures 8 and 9 show the recognition performance of the
AWE and EARVN1.0 ear databases under different block_size. To evaluate the recognition
performance, we set the block_size to 3, 5, 7, 9, and 11. It can be observed that the
recognition performance of AD-EARNet is better than that of EARNet. The best recognition
performance is achieved when block_size = 7. Therefore, we set the block_size to 7 in all
subsequent experiments. As block_size increases from 3 to 7, more contextual information
can be taken into account, and the recognition performance improves. However, too large
a mask block can lead to continuous blank areas, making the network training less stable.
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4.3. The Impact of drop_prob

The parameter drop_prob indicates the probability of retaining a unit in dropout,
which is also an essential parameter in AccDrop. In the experiments, drop_prob varies
from 0.75 to 0.95. Figures 10 and 11 illustrate the effect of drop_prob on the recognition
performance of the two ear databases, AWE and EARVN1.0. It can be seen that the
recognition performance of AD-EARNet is consistently better than that of EARNet. When
drop_prob = 0.9, the best recognition rates are achieved for R1 and R5. When drop_prob
is small, it will impact the feature learning process. When drop_prob is too large, it will
destroy the stability of network learning. Therefore, drop_prob was chosen to be 0.9 in the
later experiments.
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4.4. Analysis of z

The parameter z is crucial in AccDrop, indicating that the mask block’s top zth per-
centile elements are dropped. Figures 12 and 13 illustrate the effect of z on the recognition
performance of the AWE and EARVN1.0 ear databases. We set z to 35, 40, 45, and 50 to
evaluate the recognition performance. It can be observed that when z is set to 40, the best
recognition rates are achieved for R1 and R5. When setting a largerz, too many valuable fea-
tures are discarded, causing the network to learn interference features such as background.
When z is too small, it means that the network discards a small number of features, which
can lead to the occurrence of network overfitting. So, in the following experiments, we set
z = 40.

Symmetry 2024, 16, 85 14 of 23 
 

 

 
Figure 12. Relationship between R1, R5 recognition rate, and z of the AWE database. 

 
Figure 13. Relationship between R1, R5 recognition rate, and z of the EARVN1.0 database. 

4.5. Comparison with Other Commonly Used Regularization Methods 
In this experiment, we refer to the network applying the DropBlock regularization 

method as DB-EARNet. Experimental results show that our proposed AccDrop facilitates 
ear recognition. We chose Dropout and DropBlock to compare with AccDrop. As shown 
in Figure 14 and Table 1, the recognition performance of our proposed AccDrop is superior 
to both Dropout and DropBlock. Among the three regularization methods, Dropout is the 
least effective. Since the adjacent position elements in the ear feature map share semantic 
information spatially, although a cell is dropped, the elements adjacent to it can still retain 
the semantic information of that position, and the information can still circulate in the 
convolutional network. DropBlock is a structural form of regularization method that 
drops the cells together in adjacent regions of the feature map. However, it will affect the 
feature learning ability of the network to some extent. AccDrop generates drop masks 
with adaptive shapes, which can effectively learn discriminative ear features in the face of 
an unconstrained ear database in realistic scenarios. 

Figure 12. Relationship between R1, R5 recognition rate, and z of the AWE database.

Symmetry 2024, 16, 85 14 of 23 
 

 

 
Figure 12. Relationship between R1, R5 recognition rate, and z of the AWE database. 

 
Figure 13. Relationship between R1, R5 recognition rate, and z of the EARVN1.0 database. 

4.5. Comparison with Other Commonly Used Regularization Methods 
In this experiment, we refer to the network applying the DropBlock regularization 

method as DB-EARNet. Experimental results show that our proposed AccDrop facilitates 
ear recognition. We chose Dropout and DropBlock to compare with AccDrop. As shown 
in Figure 14 and Table 1, the recognition performance of our proposed AccDrop is superior 
to both Dropout and DropBlock. Among the three regularization methods, Dropout is the 
least effective. Since the adjacent position elements in the ear feature map share semantic 
information spatially, although a cell is dropped, the elements adjacent to it can still retain 
the semantic information of that position, and the information can still circulate in the 
convolutional network. DropBlock is a structural form of regularization method that 
drops the cells together in adjacent regions of the feature map. However, it will affect the 
feature learning ability of the network to some extent. AccDrop generates drop masks 
with adaptive shapes, which can effectively learn discriminative ear features in the face of 
an unconstrained ear database in realistic scenarios. 

Figure 13. Relationship between R1, R5 recognition rate, and z of the EARVN1.0 database.



Symmetry 2024, 16, 85 14 of 22

4.5. Comparison with Other Commonly Used Regularization Methods

In this experiment, we refer to the network applying the DropBlock regularization
method as DB-EARNet. Experimental results show that our proposed AccDrop facilitates
ear recognition. We chose Dropout and DropBlock to compare with AccDrop. As shown in
Figure 14 and Table 1, the recognition performance of our proposed AccDrop is superior to
both Dropout and DropBlock. Among the three regularization methods, Dropout is the
least effective. Since the adjacent position elements in the ear feature map share semantic
information spatially, although a cell is dropped, the elements adjacent to it can still retain
the semantic information of that position, and the information can still circulate in the
convolutional network. DropBlock is a structural form of regularization method that
drops the cells together in adjacent regions of the feature map. However, it will affect the
feature learning ability of the network to some extent. AccDrop generates drop masks with
adaptive shapes, which can effectively learn discriminative ear features in the face of an
unconstrained ear database in realistic scenarios.
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performance of the system.

Table 1. We compare the quantitative performance metrics (R1, R5) when different regularization
methods are used.

Model
AWE EARVN1.0

R1 (%) R5 (%) R1 (%) R5 (%)

EARNet 82.57 93.61 95.01 98.71
DB-EARNet 82.87 93.63 95.40 98.78
AD-EARNet 83.30 93.69 95.74 98.86

4.6. The Impact of λ

The parameter λ is the critical parameter in SimAM, and its details can be found
in [19]. In the experiments described in this paper, we refer to the network with only
the attention module inserted as AM-EARNet. We set the parameter λ to vary from 10−6

to 10−1. Figures 15 and 16 show the effect of λ on the recognition performance of both
AWE and EARVN1.0 ear databases. From the figures, we can conclude that SimAM can
significantly improve the recognition performance by using a wide range of λ (ranging
from 10−6 to 10−1). When λ is set to 10−4, the best recognition rates are achieved for R1 as
well as R5. Therefore, we set λ = 10−4 in the later experiments.
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4.7. Ablation Experiment

In this subsection, we verify the effects of the accommodative DropBlock (AccDrop)
and attention module on the model recognition performance by ablation experiments. The
specific experimental results are shown in Table 2. From the experimental results, we can
see that inserting AccDrop or the attention module alone will improve the recognition
performance of the model by a small margin. However, the model performance is optimized
only when AccDrop and the attention module are inserted into EARNet at the same time.
Figure 17 shows the CMC curves of the ablation experiment on different ear databases.

Table 2. We compared the quantitative performance metrics (R1, R5) under different ablation
experiments.

Model
AWE EARVN1.0

R1 (%) R5 (%) R1 (%) R5 (%)

EARNet 82.57 93.61 95.01 98.71
AM-EARNet 83.26 93.69 95.69 98.83
AD-EARNet 83.30 93.69 95.74 98.86

Proposed 83.87 93.74 96.52 99.12
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4.8. Analysis of the Role of Blockchain Protection

We tampered with the ear feature template to verify the system’s security. We
measured the impact of tampering on the proposed network (classified as whether the
blockchain protects it or not). Figure 18 shows the CMC curves of the AWE and EARVN1.0
databases before and after template tampering on the proposed network. When the pro-
posed network is not protected by blockchain, the recognition performance is significantly
degraded after template tampering. Since the blockchain prevents template tampering, the
network protected by the blockchain maintains the same recognition performance as the
network that has not been tampered with, fully demonstrating the combined advantages
of the blockchain in the ear recognition system. Table 3 shows the Rank-1 recognition rate
of two databases using the proposed ear recognition system (divided into whether they are
protected by blockchain or not).
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Figure 18. CMC curves of the AWE and EARVN1.0 databases before and after template tampering
with two ear identification systems (divided into whether they are protected by blockchain or not).

4.9. Visual Explanations

One method often used for visual interpretation is the gradient-weighted class ac-
tivation map (GradCAM) [48]. It can provide a category-distinct interpretation of ear
recognition, locating regions of interest in the ear image that embody semantic information
about category gradients, further helping us to understand the predictions made by dif-
ferent models. We list some prediction cases where the Proposed and Proposed (secured)
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models made correct predictions for the subjects and the EARNet and Attacked models
made incorrect predictions for the subjects. Figure 19 (AWE) and Figure 20 (EARVN1.0)
show the original image of the ear, EARNet localization results, Proposed localization re-
sults, Attacked localization results, and localization results of the Proposed (secured) model.
Based on the results, we can see that the geometry of the ear is the most crucial region, and
ignoring invalid features such as hair, accessories, etc., will lead to correct predictions.

Table 3. Rank-1 recognition rate of the two ear recognition systems (divided into whether they are
blockchain protected) before and after ear feature template tampering.

Dataset

Rank-1 Recognition Rate (%)

Before Template Tampering After Template Tampering

Proposed Proposed
(Secured) Proposed Proposed

(Secured)

AWE 83.87 83.87 2.46 83.87
EARVN1.0 96.52 96.52 4.37 96.52Symmetry 2024, 16, 85 18 of 23 
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AWE database to localize the region of interest and further help us understand the predictions made 
by different models. The visualization results of different models are shown in each subplot from 
left to right as the original image, EARNet model, Proposed model, Attacked model, and Proposed 
(secured) model. (a) EARNet only focuses on the middle part of the ear contour and ignores the top 
and bottom parts of the ear contour. Attacked only focuses on the earlobe and stud, which leads to 
incorrect predictions. (b) EARNet does not pay enough attention to the ear contour features in the 
upper part. Attacked focuses on earlobes and ear ornaments. (c) EARNet ignores the bulk ear con-
tour features and only focuses on local ear features. Attacked focuses on local hair interference fea-
tures. (d) Both EARNet and Attacked focus on hair interference features. (e) EARNet pays excessive 
attention to hair interference features. Attacked pays attention to hair and facial features. (f) EARNet 
focuses only on earplug and earlobe features. Attacked ignores the ear features in the middle and 
lower parts. 

Figure 19. GradCAM visually interprets the ear category distinctions of different models on the AWE
database to localize the region of interest and further help us understand the predictions made by
different models. The visualization results of different models are shown in each subplot from left to
right as the original image, EARNet model, Proposed model, Attacked model, and Proposed (secured)
model. (a) EARNet only focuses on the middle part of the ear contour and ignores the top and bottom
parts of the ear contour. Attacked only focuses on the earlobe and stud, which leads to incorrect
predictions. (b) EARNet does not pay enough attention to the ear contour features in the upper part.
Attacked focuses on earlobes and ear ornaments. (c) EARNet ignores the bulk ear contour features
and only focuses on local ear features. Attacked focuses on local hair interference features. (d) Both
EARNet and Attacked focus on hair interference features. (e) EARNet pays excessive attention to hair
interference features. Attacked pays attention to hair and facial features. (f) EARNet focuses only on
earplug and earlobe features. Attacked ignores the ear features in the middle and lower parts.
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plot from left to right as the original image, EARNet model, Proposed model, Attacked model, and 
Proposed (secured) model. (a) EARNet focuses only on local ear contour features. Attacked focuses 
on invalid features such as earpieces and backgrounds. (b) EARNet focuses on earphones and face 
features. Attacked only focuses on background interference features. (c) EARNet is disturbed by 
earphone features. Attacked is disturbed by background features. (d) EARNet ignores the upper 
and lower ear contour features. Attacked is disturbed by features such as hair as well as background. 
(e) Both EARNet and Attacked are disturbed by invalid features such as the background. EARNet 
even ignores the upper and lower parts of ear features. (f) Both EARNet and Attacked ignore some 
ear features. 

4.10. Compared with Other Methods 
We compared our method with existing ear recognition techniques based on Rank-1 

and Rank-5 recognition accuracy in Table 4. From the comparison results in Table 4, it is 
clear that our proposed method has the best recognition performance. 

Table 4. The proposed method is compared with other representative methods based on the quan-
titative performance metrics Rank-1 and Rank-5 recognition accuracy. 

Dataset Method R1 (%) R5 (%) 

AWE 

Hassaballah et al. [49] 49.60 - 
Emersic et al. [44] 49.60 - 
Dodge et al. [50] 56.35 74.80 
Dodge et al. [50] 68.50 83.00 
Dodge et al. [50] 80.03 93.48 
Zhang et al. [51] 50.00 70.00 

Emersic et al. [52] 62.00 80.35 

Figure 20. GradCAM visually interprets the ear category distinction of the different models on the
EARVN1.0 database to localize the region of interest and further help us understand the predictions
made by the different models. The visualization results of different models are shown in each subplot
from left to right as the original image, EARNet model, Proposed model, Attacked model, and
Proposed (secured) model. (a) EARNet focuses only on local ear contour features. Attacked focuses
on invalid features such as earpieces and backgrounds. (b) EARNet focuses on earphones and face
features. Attacked only focuses on background interference features. (c) EARNet is disturbed by
earphone features. Attacked is disturbed by background features. (d) EARNet ignores the upper and
lower ear contour features. Attacked is disturbed by features such as hair as well as background.
(e) Both EARNet and Attacked are disturbed by invalid features such as the background. EARNet
even ignores the upper and lower parts of ear features. (f) Both EARNet and Attacked ignore some
ear features.

4.10. Compared with Other Methods

We compared our method with existing ear recognition techniques based on Rank-1
and Rank-5 recognition accuracy in Table 4. From the comparison results in Table 4, it is
clear that our proposed method has the best recognition performance.

Table 4. The proposed method is compared with other representative methods based on the quantita-
tive performance metrics Rank-1 and Rank-5 recognition accuracy.

Dataset Method R1 (%) R5 (%)

AWE

Hassaballah et al. [49] 49.60 -
Emersic et al. [44] 49.60 -
Dodge et al. [50] 56.35 74.80
Dodge et al. [50] 68.50 83.00
Dodge et al. [50] 80.03 93.48
Zhang et al. [51] 50.00 70.00

Emersic et al. [52] 62.00 80.35
Khaldi et al. [53] 50.53 76.35
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Table 4. Cont.

Dataset Method R1 (%) R5 (%)

AWE

Hassaballah et al. [54] 54.10 -
Khaldi et al. [55] 48.48 -
Khaldi et al. [56] 51.25 -

Alshazly et al. [57] 67.25 84.00
Omara et al. [58] 78.13 -
Kacar et al. [59] 47.80 72.10

Chowdhury et al. [60] 50.50 70.00
Hansley et al. [61] 75.60 90.60

Aiadi et al. [62] 82.50 -
Xue bin et al. [63] 83.52 93.71

Proposed (secured) 83.87 93.74

EARVN1.0

Ramos-Cooper et al. [64] 92.58 97.88
Alshazly et al. [65] 93.45 98.42
Xue bin et al. [63] 96.10 99.28

Proposed (secured) 96.52 99.12

5. Conclusions

This paper proposes an ear recognition system against software attacks using deep
feature learning and blockchain protection. Our proposed AccDrop generates drop masks
with adaptive shapes for ear images and does not discard fixed-sized ear regions, effec-
tively improving the recognition performance of the ear recognition system in the face of
unconstrained ear databases in realistic scenarios. We use the attention mechanism to infer
the 3D attention weights of the output feature maps of the convolutional layer, which not
only does not increase the parameters and computation of the network but also enables
the network to learn more discriminative neurons. We introduce a public blockchain when
exchanging the ear feature template database. The use of Merkle tree blockchain storage
technology to enhance the protection of ear feature templates dramatically improves the
security of the ear recognition system and protects users’ privacy. We evaluated the model
on representative AWE and EARVN 1.0 unconstrained ear databases and achieved Rank-1
(R1) recognition accuracies of 83.87% and 96.52%, respectively, significantly better than
most existing ear recognition systems. Finally, the Grad-CAM technique was used to
visualize and interpret our model. From the visualization results, our model can effectively
learn more discriminative ear features. In the future, we will continue to optimize the ear
feature extraction stage method to further improve the system’s recognition performance
on unconstrained ear databases, which will significantly help surveillance security and
financial security.
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