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Abstract: In this paper will be considered a three-dimensional autonomous quadratic polynomial
system of first-order differential equations with three real parameters, the so-called T-system. This
system is symmetric relative to the Oz-axis and represents a special type of the generalized Lorenz
system. The approach of this work will consist of the study of the nonlinear dynamics of this system
through the Kosambi–Cartan–Chern (KCC) geometric theory. More exactly, we will focus on the
associated system of second-order differential equations (SODE) from the point of view of Jacobi
stability by determining the five invariants of the KCC theory. These invariants determine the internal
geometrical characteristics of the system, and particularly, the deviation curvature tensor is decisive
for Jacobi stability. Furthermore, we will look for necessary and sufficient conditions that the system
parameters must satisfy in order to have Jacobi stability for every equilibrium point.

Keywords: T-system; the deviation curvature tensor; Jacobi stability; KCC geometric theory

1. Introduction

In the present work, the Jacobi stability of T-system through the use of the Kosambi-
Cartan–Chern (KCC) geometric theory will be investigated. In order to reach the Jacobi
stability requirements, we will compute the five invariants of KCC theory that express the
intrinsic geometric properties of the T-system, especially the tensor of deviation curvature,
which characterizes the Jacobi stability of the T-system at each equilibrium point.

The T-system was introduced by G. Tigan in [1–3], and although it looks like the
Lorenz system, this system is not topologically equivalent to the Lorenz system, nor to
other Lorenz-type system. For this reason alone, this system and its nonlinear dynamics
are of interest, and it deserves to be addressed by any methods and by any tools. From
the linear stability (classical or Lyapunov) point of view, the nonlinear dynamics and the
local and global behaviour of this new chaotic system and its very interesting properties
have been recently studied, as follows. Local and global stability analysis was performed
in [4], the existence of heteroclinic orbits and the horseshoe chaos by the heteroclinic
Shilnikov method was investigated in [3,5,6], and bifurcations with delayed feedback were
investigated in [7]. Moreover, the coexistence of chaotic butterfly attractors and unstable
limit cycles for T-system was deeply studied in [8], and pitchfork and Hopf bifurcations
of this system were approached in [9]. Also, many properties of the global dynamics of
this system were obtained in [8], by using techniques with invariant algebraic surfaces and
first integrals [10]. Moreover, a fractional-order version of a T-system was introduced and
studied in [11].

Although the T-system has a simple analytical form, its dynamics is very complex,
even having a chaotic behavior, including the coexistence of isolated unstable periodic
orbits with a chaotic attractor [8]. Chaotic behaviors, with the presence of a strange attractor,
were first discovered for the following famous dynamical systems: Lorentz [12], Chua [13],
Lü and Chen [14], Chen and Ueta [15]. Another chaotic modified Lorenz system close to the
T-system with a completely different dynamics was studied in [16,17]. All these systems
have an analytical form very close to the T-system, but with a different complex dynamics.
A geometric approach to the Jacobi stability of these systems was recently studied in [18–21].
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In the present work, by using the geometric tools of Kosambi–Cartan–Chern theory, the
Jacobi stability of the T-system and its geometric associated objects are investigated for the
first time.

The study of this type of chaotic dynamical system is of essential significance in
practical applications, because approaches to chaos have not only focused on finding new
chaotic systems or investigating chaos control and chaos synchronization, but also on
analyzing local and global behavior of these dynamical systems, behavior that is crucial to
understand what chaos means. Generally speaking, in a dynamical system mathematical
approach, the catastrophe theory is closely related to the bifurcations theory, because any
changes in a chaotic regime or any transition from (or to) a chaotic regime is made by some
bifurcation of the dynamical system. So, the study of the nonlinear dynamics and the Jacobi
stability of the T-system through the Kosambi–Cartan–Chern (KCC) geometric theory
represents a step forward in the investigation of the complex dynamics of this system, with
possible applications in catastrophe theory and other research fields. Moreover, in the
whole region with Jacobi stability, we have no bifurcations, and therefore no catastrophic
events [22,23].

By the transformation of the system with three first-order differential equations into a
system with two second-order differential equations, we will study the local nonlinear dy-
namics of the T-system from the Jacobi stability point of view, by using the KCC geometric
theory. The own geometric characteristics of the T-system will be determined by finding the
corresponding geometric objects, i.e., the tensor of zero-connection curvature Zi

j, the non-

linear connection Ni
j , the Berwald connection Gi

jl , and the five KCC geometric invariants:

the external force εi—the first invariant; the tensor of deviation curvature Pi
j —the second

invariant; the tensor of torsion Pi
jk—the third invariant; the tensor of Riemann–Christoffel

curvature Pi
jkl—the fourth invariant; the tensor of Douglas Di

jkl—the fifth invariant. For
the purpose of obtaining the necessary and sufficient conditions for the Jacobi stability
near every equilibrium point, the tensor of deviation curvature will be found at every
equilibrium point. In addition, a comparison of classical (or linear) Lyapunov stability with
Jacobi stability will be made, including diagrams related to system parameter values.

This approach of Jacobi stability appears as a prolongation of the geometric stability
approach of the geodesic flow, from a Riemann or Finsler manifold to a differentiable
manifold without any metric [24–29]. More precisely, the concept of Jacobi stability plays
the role of proof of the resilience of a dynamical system defined by a system of second-order
differential equations (semi-spray or SODE), where this resilience reflects the adaptability
and the preservation of the system’s basic behavior to changes in internal parameters and
to influences from outside circumstances. Through the Kosambi–Cartan–Chern theory, i.e.,
from the perspective of the concept of Jacobi stability, the dynamics of various dynamical
systems has recently been approached in [18–21,25,26,30–37]. Therefore, the local behavior
of the system is revealed through the use of geometric objects corresponding to the system
of second-order differential equations (SODE), because this SODE is derived from the
system of first-order differential equations [38–40].

The principal target of the KCC theory is to investigate the deviation of the neighboring
trajectories, and this will provide us the opportunity to measure the allowed perturba-
tion close to the equilibrium points of the SODE. Initially, this approach consisted of the
investigation of the variation equations (or Jacobi field equations) associated with the
differential manifold structure. In particular, P. L. Antonelli, R. Ingarden, and M. Mat-
sumoto started the investigation of the geometric stability of the geodesics given through a
Riemannian or a Finslerian metric by deviating the geodesics and by the use of the KCC
covariant derivative associated to the differential system in variations [24–26]. So, the
second Kosambi–Cartan–Chern (KCC) invariant resulted from the covariant form of the
differential system in variations. This geometric invariant is called the deviation curvature
tensor, and is essential to the approach of Jacobi stability, both for geodesics and for the
trajectories associated to a system of second-order differential equations (SODE). In differ-
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ential geometry theory, a second-order differential equations system (SODE) is also called
semi-spray. Once we have given a semi-spray, we can associate a nonlinear connection
on the differential manifold, and conversely, by giving a nonlinear connection, we can
associate a semi-spray. In conclusion, starting with any SODE (or semi-spray), we can con-
struct a geometry on the base manifold by using the geometric associated objects [27,41–43].
Moreover, all these geometrical objects are invariant with respect to any local coordinates
change, i.e., they are tensors that can fulfilled the symmetry conditions or skew-symmetry
conditions, or not, according to the type of the second-order differential equations system.

It is known that the origins of the KCC theory are in the works of D. D. Kosambi [38],
E. Cartan [39], and S. S. Chern [40]. So, the acronym KCC (Kosambi–Cartan–Chern) is very
clear, and this consistent geometric theory can be applied with success in a lot of research
fields, e.g., biology, chemistry, physics and engineering [18–21,30,44]. Furthermore, recent
and valuable approaches to KCC theory in cosmology and gravity can be found in [45,46].
More exactly, in [32], C.G. Boehmer, T. Harko, and S.V. Sabau performed a comprehensive
analysis of Jacobi stability and its relationship with the linear stability of dynamical systems
representing phenomena from astrophysics and gravity. For the present study, the novelty
is the use of the geometric instruments of KCC theory in order to obtain new information
about the local dynamics of T-system. More precisely, in this work, the Jacobi stability
around to an equilibrium point was obtained for some parameters values. Bearing in mind
that Jacobi stability near an equilibrium point involves this equilibrium point being a stable
or unstable focus, it results in Hopf bifurcations, and even isolated periodic orbits, being
able to occur. Moreover, if the conditions for Jacobi stability are fulfilled at an equilibrium
point, then any chaotic behavior for the T-system near this equilibrium point is not possible.

Following an introductory section, Section 2 deals with a short description of the
T-system, together with the basic known facts about the local and global stability of the
T-system. In Section 3, the T-system will be reformulated as an equivalent system of
second-order differential equations (SODE), and the five geometrical invariants of the
system will be determined. The main results related to the Jacobi stability of the T-system
will be presented in Section 4. More precisely, the necessary and sufficient conditions
to meet the Jacobi stability of the system near every equilibrium point will be obtained.
Moreover, in order to understand the connection between Jacobi stability and classical
(linear or Lyapunov) stability, we will present a diagram which illustrate the dependence
of the Jacobi stability for the T-system relative to the parameters of the system. Moreover,
at the ending of Section 4, the deviation equations around every equilibrium point and the
deviation vector curvature will be presented. In the last section, conclusions and possible
next research will be pointed out.

At the end, in Appendix A, an enlightening description of the basic definitions and
principal instruments of the Kosambi–Cartan–Chern geometric theory will be presented,
with an accent on the five invariants of this theory and the definition of Jacobi stability. The
sum over repeated cross-indexes will be used.

2. Preliminary Results

The T-system is a three-dimensional autonomous system of first-order differential
equations with three real parameters a, b, c, defined by

ẋ = a(y − x),
ẏ = (c − a)x − axz,
ż = −bz + xy.

(1)

If a = 0, the system becomes linear, and we have no interest from the dynamical
behaviour perspective. Also, for b = 0, this system has an infinite number of non-hyperbolic
equilibrium points, i.e., the entire Oz-axis [1–3,9]. Therefore, for the next considerations,
we will assume that a ̸= 0 and b ̸= 0.
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If
b(c − a)

a
> 0, then the T-system (1) has three equilibrium points: O(0, 0, 0),

E1

(√
b(c−a)

a ,
√

b(c−a)
a , c−a

a

)
and E2

(
−
√

b(c−a)
a ,−

√
b(c−a)

a , c−a
a

)
.

Otherwise, for
b(c − a)

a
≤ 0, the T-system has only one equilibrium point, the trivial

equilibrium, the origin O(0, 0, 0).
Due to the fact that it is not certain that we can analytically solve this first-order

differential system, it remains only to find information about the dynamics of this system
by means of the qualitative theory of dynamical systems.

Let us remark that the T-system is invariant relative to the transformation (x, y, z) 7→
(−x − y, z), i.e., the integral curves of the system are symmetrical with respect to Oz-
axis. So, if the system has the integral curve γ1(t) = (x(t), y(t), z(t)), then it has too the
integral curve γ2(t) = (−x(t),−y(t), z(t)) and the two integral curves γ1(t) and γ2(t)
are symmetric with respect to Oz-axis. Moreover, the equilibrium points E1 and E2 are
symmetric relative to Oz-axis and the dynamics around the E1 and E2 have the same
characteristics [9].

The Jacobi matrix at the point (x, y, z) is

A =

 −a a 0
c − a − az 0 −ax

y x −b

.

For the trivial equilibrium O(0, 0, 0) we obtain

A =

 −a a 0
c − a 0 0

0 0 −b

,

with eigenvalues λ1 = −b, λ2 + λ3 = −a, λ2λ3 = −a(c − a).
Consequently, if a > 0, b > 0 and c ≤ a, then O(0, 0, 0) is an attractor or an asymptoti-

cally stable equilibrium point. Otherwise, if b < 0 or a < 0 or (a > 0 and c > a), then the
origin O(0, 0, 0) is a saddle point, i.e., an unstable equilibrium point. For a = c, the origin is
a non-hyperbolic equilibrium point because there is an eigenvalue equal to zero.

If
b(c − a)

a
> 0, then the Jacobi matrix at E1

(√
b(c−a)

a ,
√

b(c−a)
a , c−a

a

)
is:

A =

 −a a 0
c − a − azo 0 −ax0

y0 x0 −b

,

where x0 = y0 =
√

b(c−a)
a , z0 = c−a

a . The characteristic polynomial at E1 is

P(λ) = λ3 + (a + b)λ2 + bcλ + 2ab(c − a).

Of course, for the equilibrium point E2

(
−
√

b(c−a)
a ,−

√
b(c−a)

a , c−a
a

)
, similar results appear.

If we remember the Routh–Hurwitz criterion, then we will be able to state that the
characteristic polynomial P(λ) = λ3 + a2λ2 + a1λ + a0 has all roots in the open left half
plane (which means λi < 0 or Re λi < 0, for all i) if and only if a2 > 0, a0 > 0 and
a2a1 > a0. Therefore, the equilibrium points E1 and E2 are asymptotically stable if and only
if a + b > 0, ab(c − a) > 0, and b(2a2 + bc − ac) > 0. Because E1 and E2 exist if and only if
ab(c − a) > 0, it results in the equilibrium points E1 and E2 being asymptotically stable if
and only if a + b > 0 and b(2a2 + bc − ac) > 0.
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Therefore, we can conclude that it is very hard to determine the behavior of the T-
system around the equilibrium points, due to the fact that there are a lot of parameters that
appear in calculations. For more details and comprehensive studies, see [1–3,5,7–9].

Next, we collected the results obtained for local classical stability in the Table 1.

Table 1. The equilibrium points for T-system.

Case Conditions Equilibrium Point Type

1
b(c − a)

a
≤ 0 O is the only one equilibrium point

O is asymptotically stable iff a > 0, b > 0 and c ≤ a
or O is unstable iff b < 0 or a < 0 or (a > 0 and c > a).

2
b(c − a)

a
> 0 O, E1, E2 are three equilibrium points,

O is asymptotically stable iff a > 0, b > 0 and c < a
or O is unstable iff b < 0 or a < 0 or (a > 0 and c > a)

and E1,2 is asymptotically stable iff a + b > 0 and b(2a2 + bc − ac) > 0,
otherwise E1,2 is unstable.

Next, we are interested in investigating the Jacobi stability of T-system by the use of
the geometrical methods of the Kosambi–Cartan–Chern (KCC) theory. So, to clarify the
behavior of the T-system, we will concentrate on the investigation of Jacobi stability, and we
will present the characteristics of the associated geometric objects and their relationships
with the local dynamics of the T-system.

3. SODE Formulation of the T-System

Let us consider the T-system (1) with three real parameters, a, b, c, a ̸= 0:
ẋ = a(y − x),
ẏ = (c − a)x − axz,
ż = −bz + xy.

By substituting

y =
1
a

ẋ + x

from the first equation to the second equation, we obtain

ẍ + aẋ + a2xz − a(c − a)x = 0 .

Further, by replacing y = 1
a ẋ + x in the third equation and taking the derivative with

respect to time t, we have

z̈ + bż − 1
a
(ẋ)2 − xẋ − (c − a)x2 + ax2z = 0 .

Using the repeated crossed indices rule from differential geometry, the next notations
for the variables will be adopted:

x = x1, ẋ = y1, z = x2, ż = y2.

Consequently, we can write the previous two second-order differential equations as the
following second-order system of differential equations (SODE):{

ẍ1 + ay1 + a2x1x2 − a(c − a)x1 = 0,
ẍ2 + by2 − 1

a (y
1)2 − x1y1 − (c − a)(x1)2 + a(x1)2x2 = 0,

(2)
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where y = 1
a y1 + x1. The last system can be written as{

d2x1

dt2 + ay1 + a2x1x2 − a(c − a)x1 = 0,
d2x2

dt2 + by2 − 1
a (y

1)2 − x1y1 − (c − a)(x1)2 + a(x1)2x2 = 0,
(3)

where dxi

dt = yi, i = 1, 2.
By using the formalism of Kosambi–Cartan–Chern (KCC) theory (see Appendix A),

the above system of second-order differential Equation (3) can be viewed as a SODE (or
semi-spray), i.e., {

d2x1

dt2 + 2G1(x1, x2, y1, y2) = 0,
d2x2

dt2 + 2G2(x1, x2, y1, y2) = 0,
(4)

where dxi

dt = yi, i = 1, 2 and

G1(xi, yi) = 1
2
[
ay1 + a2x1x2 − a(c − a)x1],

G2(xi, yi) = 1
2

[
by2 − 1

a (y
1)2 − x1y1 − (c − a)(x1)2 + a(x1)2x2

]
.

The coefficients of the zero-connection curvature tensor Zi
j = 2 ∂Gi

∂xj are: Z1
1 = a2x2−

a(c − a), Z1
2 = a2x1, Z2

1 = −y1 + 2
(
ax2 − c + a

)
x1, Z2

2 = a
(

x1)2.

Because N1
1 = ∂G1

∂y1 = 1
2 a, N1

2 = ∂G1

∂y2 = 0, N2
1 = ∂G2

∂y1 = − 1
a y1 − 1

2 x1, N2
2 = ∂G2

∂y2 = 1
2 b,

the coefficients Ni
j of the nonlinear connection is given in the next matrix

N =

( 1
2 a 0

− 1
a y1 − 1

2 x1 1
2 b

)
.

Then the Berwald connection has the coefficients Gi
jk =

∂Ni
j

∂yk and all these coefficients

are equal to zero, with one exception, G2
11 =

∂N2
1

∂y1 = − 1
a .

The coefficients of the first invariant of KCC theory are

εi = −
(

Ni
j y

j − 2Gi
)

,

or, more exactly,
ε1 = 1

2 ay1 + a2x1x2 − a(c − a)x1,
ε2 = 1

2 by2 − 1
2 x1y1 +

(
ax2 − c + a

)(
x1)2.

(5)

Let us note that there is not any real scalar λ such that εi = λGi for i = 1, 2, or
∂Gi

∂yj yj = (2 − λ)Gi for i = 1, 2, i.e., there is no homogeneity property relative to yi for the

functions Gi.
Since

Gi
jl =

{
− 1

a , if j = 1, l = 1, i = 2
0 , in rest

and by using (A10),

Pi
j = −2

∂Gi

∂xj − 2GlGi
jl + yl

∂Ni
j

∂xl + Ni
l Nl

j ,

we obtain the coefficients of the second invariant of KCC geometric theory, the deviation
curvature tensor of the T-system (3):
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P1
1 = −a2x2 + a(c − a) + 1

4 a2,
P1

2 = −a2x1,

P2
1 =

(
1 − b

2a

)
y1 − ax1x2 +

4c − 5a − b
4

x1,

P2
2 = −a

(
x1)2

+ 1
4 b2.

(6)

Taking into account that the trace and the determinant of the deviation curvature matrix

P =

(
P1

1 P1
2

P2
1 P2

2

)
are trace (P) = P1

1 + P2
2 and det (P) = P1

1 P2
2 − P2

1 P1
2 , and by following Appendix A, we

obtain the basic result:

Theorem 1. All roots of the characteristic polynomial of P are negative or have negative real parts
(which means the Jacobi stability occurs) if and only if

P1
1 + P2

2 < 0 and P1
1 P2

2 − P2
1 P1

2 > 0 .

According to Appendix A, Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
, Pi

jkl =
∂Pi

jk

∂yl , Di
jkl =

∂Gi
jk

∂yl , and then,

we can express the coefficients of the third invariant, fourth invariant, and fifth invariant of
the T-system (3):

Theorem 2. The eight coefficients of the third invariant of KCC theory, i.e., the torsion tensor Pi
jk,

are all equal to zero,
Pi

jk = 0 , ∀ i, j, k. (7)

The sixteen coefficients of the fourth invariant of KCC theory, i.e., the Riemann–Christoffel
curvature tensor Pi

jkl , are all equal to zero,

Pi
jkl = 0 , ∀ i, j, k, l. (8)

The sixteen coefficients of the fifth invariant of KCC theory, i.e., the Douglas tensor Di
jkl , are

all equal to zero,
Di

jkl = 0 , ∀ i, j, k, l. (9)

4. Jacobi Stability Analysis of the T-System

In this section, for every equilibrium point the first invariant and the second invari-
ant of the first-order differential T-system (1) will be calculated. So, the Jacobi stability
conditions of the T-system near every equilibrium point will be obtained.

If
b(c − a)

a
> 0, then for equilibrium points O(0, 0, 0), E1

(√
b(c−a)

a ,
√

b(c−a)
a , c−a

a

)
and E2

(
−
√

b(c−a)
a ,−

√
b(c−a)

a , c−a
a

)
of the initial T-system (1), we obtain the associated

equilibrium points O(0, 0, 0, 0), E1

(√
b(c−a)

a , c−a
a , 0, 0

)
and E2

(
−
√

b(c−a)
a , c−a

a , 0, 0
)

for

the second-order differential system (SODE or semi-spray) (3).
For O(0, 0, 0, 0), we have that the first invariant of the theory has all coefficients null,

i.e., ε1 = ε2 = 0. Then, the matrix of the coefficients of the second invariant is as follows:

P =

(
a(c − a) + 1

4 a2 0
0 1

4 b2

)
.

We have the following result:
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Theorem 3. The trivial equilibrium point O is always Jacobi-unstable.

Proof. Since tr P = a(c − a) + 1
4 a2 + 1

4 b2 and det P = 1
4 b2
(

a(c − a) + 1
4 a2
)

, it results in

tr P > 0 for the case c−a
a ≥ 0. If c−a

a < 0, then it is impossible to fulfill simultaneously
tr P < 0 and det P > 0. Therefore, the conclusion is true by using Theorem 1.

For E1

(√
b(c−a)

a , c−a
a , 0, 0

)
the first invariant of the KCC geometric theory εi has the

components ε1 = 0, ε2 = 0, and the coefficients of the second invariant are as follows:

P1
1 = 1

4 a2,

P1
2 = −a2

√
b(c−a)

a ,

P2
1 = −

(
a+b

4

)√
b(c−a)

a ,

P2
2 = −b(c − a) + 1

4 b2.

Then, we have:

Theorem 4. E1 is Jacobi-stable if and only if P1
1 + P2

2 < 0 and P1
1 P2

2 − P2
1 P1

2 > 0, i.e.,

a2 + b2 − 4b(c − a) < 0 and a2b2 − 4ab(c − a)(2a + b) > 0 .

For E2

(
−
√

b(c−a)
a , c−a

a , 0, 0
)

the first invariant of the KCC geometric theory εi has the

components ε1 = 0, ε2 = 0, and the components of the second invariant are as follows:

P1
1 = 1

4 a2,

P1
2 = a2

√
b(c−a)

a ,

P2
1 =

(
a+b

4

)√
b(c−a)

a ,

P2
2 = −b(c − a) + 1

4 b2.

Then, we have the same result as for E1:

Theorem 5. E2 is Jacobi-stable if and only if P1
1 + P2

2 < 0 and P1
1 P2

2 − P2
1 P1

2 > 0, i.e.,

a2 + b2 − 4b(c − a) < 0 and a2b2 − 4ab(c − a)(2a + b) > 0 .

Let us emphasize that E2 is Jacobi-stable if and only if E1 is Jacobi-stable, due to the
fact that for both equilibrium points, we have

tr P = P1
1 + P2

2 = 1
4
[
a2 + b2 − b(c − a)

]
,

det P = P1
1 P2

2 − P2
1 P1

2 = 1
16
[
a2b2 − 4ab(c − a)(2a + b)

]
.

Remark 1. If a < 0, then it result that b(c − a) < 0 and then tr P > 0. Therefore, E1,2 are
Jacobi-unstable whenever a < 0, and then it remains to study the Jacobi stability of the T-system
only for the case a > 0.

Hence, we have the following result:

Theorem 6. If they exist, the equilibrium points E1 and E2 are Jacobi-stable if and only if the
following two conditions are simultaneously fulfilled:

a2 + b2 − 4b(c − a) < 0 and ab2 − 4b(c − a)(2a + b) > 0 .
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If a > 0, to simplify the approach, next, we will denote by m =
c − a

a
, n =

b
a

. Then,
the equilibrium points E1,2 exist if and only if mn > 0. In this case, for E1,2, we have

tr P =
a2

4

(
1 + n2 − 4mn

)
and

det P =
a4

16

(
n2 − 4mn(n + 2)

)
,

and then by using Theorem 1, we obtain the following result:

Theorem 7. If mn > 0, then the equilibrium points E1,2 are Jacobi-stable if and only if

1 + n2 < 4mn and n2 > 4mn2 + 8mn .

According to [8,9], if mn > 0, then we have that the equilibrium points E1,2 are stable
foci if m(n − 1) + n + 1 > 0. Otherwise, E1,2 are saddle foci if m(n − 1) + n + 1 < 0. To
clear up the relation between the Jacobi stability and classical linear (Lyapunov) stability
at the equilibrium points E1,2, and to highlight the dependence of Jacobi stability on the
parameters of the T-system, we will use the next diagram relative to m and n in Figure 1:

Figure 1. The Jacobi stability for T-system.

Remark 2. Let us remark that the Jacobi stability for the equilibrium points E1,2 it only happens in
the third quadrant, which means for m < 0 and n < 0. Moreover if E1,2 are Jacobi-stable, then E1,2
are stable foci equilibrium points. So, whenever E1 (and E2) exists and satisfies the Jacobi stability
conditions, any chaotic behaviour of the T-system in a sufficiently small vicinity of E1 (and E2) is
not possible.

Remark 3. Let us point out that any chaotic behaviour of the T-system is known only for some
values of parameters m > 0 and n > 0. More exactly, near to the Hopf bifurcation curve,
m(n − 1) + n + 1 = 0, with 0 < n < 1, the T-system could have an attractor of butterfly type or
even a butterfly attractor coexisting with two unstable limit cycles [8,9]. From this perspective, the
Jacobi stability obtained for a whole region of the third quadrant (which means for n2 + 1− 4mn < 0
and n2 − 4mn2 − 8mn > 0) is a very important result for the investigation of the dynamics of
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T-system, because in this region, due to Jacobi stability, we do not have any chaotic behaviour around
the equilibrium points E1,2.

If
b(c − a)

a
≤ 0, then the T-system (1) has only the trivial equilibrium point O(0, 0, 0),

and the associated equilibrium point O(0, 0, 0, 0) for SODE (3) is obviously Jacobi-unstable.

Dynamics of the Deviation Vector for the T-System

Due to the fact that the deviation vector ξ i, i = 1, 2 shows us the time evolution of the
integral curves of the associated dynamical system near any equilibrium point, it results in
the study of the behavior of the deviation vector being very important. This time evolution
is given by the deviation equations system (A8), which are named Jacobi equations. Also,
this system can be written in the covariant form (A9).

For the T-system, the system of deviation Equation (A8) is given by{
d2ξ1

dt2 + a dξ1

dt +
(
a2x2 − a(c − a)

)
ξ1 + a2x1ξ2 = 0,

d2ξ2

dt2 −
( 2

a y1 + x1) dξ1

dt + b dξ2

dt +
(
−y1 + 2(ax2 − c + a)x1)ξ1 + a

(
x1)2

ξ2 = 0.
(10)

The deviation vector ξ(t) =
(
ξ1(t), ξ2(t)

)
has the length defined by

∥ξ(t)∥ =

√
(ξ1(t))2

+ (ξ2(t))2 .

Further, the system of deviation equations near every equilibrium point for the T-
system will be presented. So, the evolution in time of the deviation vector near to the trivial
equilibrium point O(0, 0, 0, 0) is carried out by the next SODE:{

d2ξ1

dt2 + a dξ1

dt − a(c − a)ξ1 = 0,
d2ξ2

dt2 + b dξ2

dt = 0.
(11)

The evolution in time of the deviation vector near to the equilibrium point

E1

(√
b(c−a)

a , c−a
a , 0, 0

)
is carried out by the next SODE:

 d2ξ1

dt2 + a dξ1

dt + a2
√

b(c−a)
a ξ2 = 0,

d2ξ2

dt2 −
√

b(c−a)
a

dξ1

dt + b dξ2

dt + b(c − a)ξ2 = 0.
(12)

The evolution in time of the deviation vector near to the equilibrium points

E2

(
−
√

b(c−a)
a , c−a

a , 0, 0
)

is carried out by the next SODE:

 d2ξ1

dt2 + a dξ1

dt − a2
√

b(c−a)
a ξ2 = 0,

d2ξ2

dt2 +
√

b(c−a)
a

dξ1

dt + b dξ2

dt + b(c − a)ξ2 = 0.
(13)

According to the theory of differential geometry of plane curves [18], the curvature κ(t)
of the trajectory ξ(t) =

(
ξ1(t), ξ2(t)

)
associated to the system of deviation Equation (10)

represents a quantitative indicator of the dynamics that is carried out by the deviation
vector ξ i, and it is defined by the formula

κ(t) =
ξ̇1(t)ξ̈2(t)− ξ̈1(t)ξ̇2(t)[(

ξ̇1(t)
)2

+
(
ξ̇2(t)

)2
]3/2 , (14)

where ξ̇ i(t) =
dξ i

dt
, ξ̈ i(t) =

d2ξ i

dt2 , i = 1, 2.
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5. Conclusions

The basic target of this work is to investigate the dynamics of the second-order differ-
ential equations system (SODE or semi-spray) associated with the T-system from the Jacobi
stability perspective through the instruments of the geometric Kosambi–Cartan–Chern
(KCC) theory. Firstly, we recalled briefly the Lyapunov, linear, or classical local dynamics
near each equilibrium point, and secondly, we reformulated the system of first-order non-
linear differential equations as an equivalent system of second-order differential equations
(SODE). We calculated the first invariant and the second invariant of the Kosambi–Cartan–
Chern (KCC) geometric theory, and for the third invariant, the fourth invariant, and the
fifth invariant, we obtained that they have all coefficients equal to zero. Moreover, all
coefficients of the Berwald connection are equal to zero, with a single exception. Also, near
every equilibrium point, the coefficients of the tensor of zero-connection curvature and the
coefficients of the nonlinear connection defined by the semi-spray (SODE) were computed.
Moreover, the tensor of the deviation curvature was determined in order to obtain the
Jacobi stability conditions at each equilibrium point.

The Jacobi stability of the T-system by the Kosambi–Cartan–Chern geometric theory
for a whole region with negative values of the parameters m and n, i.e., a big region from
the third quadrant, is very important in order to know more information about the local
dynamics of this new system with chaotic behavior. These new results are very precious
because the Jacobi stability near to an equilibrium point excludes a chaotic behavior of
the system in a neighborhood of this point. Moreover, for the purpose of comparing the
two kinds of stability, a comparative analysis of the Jacobi stability and the classical (linear
or Lyapunov) stability near the nontrivial equilibrium points was performed. Also, the
system of deviation equations near each equilibrium point of the T-system was determined.
A possible continuation of this work could consist of performing a numerical study on
the variation in time of the deviation vector and of its curvature in order to deduce new
data and information about the behaviour of the T-system close to each equilibrium point.
Also, in a future paper, we will look for possible applications of this new chaotic system
to the catastrophe theory by using mathematical models inspired by sociology, ecology,
epidemiology, and others.
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Appendix A. Kosambi–Cartan–Chern Geometric Theory and Jacobi Stability

The main aim of this appendix is to show briefly the basic of the Kosambi–Cartan–
Chern geometric theory, because all these notions and results are necessary to understand
the obtained results about the Jacobi stability of the T-system [19,20,25,26,30,31,35–40].

If M is a real n-dimensional C∞–manifold and TM denotes the tangent bundle of
M, then u = (x, y) will be denoted as a point from TM, where x =

(
x1, . . . , xn), y =(

y1, . . . , yn), and yi = dxi

dt , i = 1, . . . , n. Most often, M is Rn or an open subset of Rn. Let
the next system of second-order differential equations (in brief, SODE), in the normalized
form [24] be {

d2xi

dt2 + 2Gi(x, y) = 0, i = 1, . . . , n. (A1)
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where Gi(x, y) are C∞–functions given on a domain of a local system of coordinates on
TM, i.e., an open neighborhood for some initial conditions (x0, y0). The system (A1) can be
interpreted as a system of Euler–Lagrange equations from classical mechanics [24,41]:{ d

dt
∂L
∂yi − ∂L

∂xi = Fi

yi = dxi

dt

, i = 1, . . . , n. (A2)

where L(x, y) is a regular Lagrangian on TM, and Fi are the coefficients of the external force.
The SODE (A1) has ”a geometrical meaning” if and only if “the accelerations” d2xi

dt2 and
“the forces” Gi(xj, yj) are tensors of type (0, 1) relative to the change in local coordinates:{

x̃i = x̃i(x1, . . . , xn)

ỹi = ∂x̃i

∂xj yj , i = 1, . . . , n. (A3)

More clearly, the SODE (A1) has a geometrical meaning (and then this system is called
semi-spray) if and only if the changing of coefficients Gi(xj, yj) relative to the change in
local coordinates (A3) is going following the next relations [24,41]:

2G̃i = 2Gj ∂x̃i

∂xj −
∂ỹi

∂xj yj . (A4)

The geometric thought of the Kosambi–Cartan–Chern (KCC) theory is to obtain from
the system of second-order differential Equation (A1) an equivalent system (i.e., with the
same solutions), while preserving a geometric sense. Next, for the second-order differential
equations system (SODE or semi-spray), we will introduce five tensor fields, named the
geometric (or differential) invariants of the theory [25,26]. Surely, they do not change, i.e.,
they are invariant relative to the local change in coordinates (A3). Further, we will use the
KCC covariant derivative of a vector field ξ = ξ i ∂

∂xi on an open domain of TM (sometimes,
even on TM = Rn × Rn) [25,38–40]:

Dξ i

dt
=

dξ i

dt
+ Ni

j ξ
j , (A5)

where Ni
j =

∂Gi

∂yj are the coefficients of a nonlinear connection N on the tangent bundle TM
corresponding to the semi-spray (A1).

For ξ i = yi,
Dyi

dt
= −2Gi + Ni

j y
j = −εi . (A6)

and the contravariant vector field εi = −
(

Ni
j y

j − 2Gi
)

is called the first invariant of the

theory. This invariant represents an external force, and its coefficients εi have a geometrical
sense, because with respect to a change in local coordinates (A3), we have [25]:

ε̃i =
∂x̃i

∂xj εj .

If the coefficients Gi of the semi-spray (A1) are homogeneous functions of degree
2 with respect to yi (i.e., ∂Gi

∂yj yj = 2Gi, for all i), then the system (A1) is called a spray.

Therefore, the first invariant is null (εi = 0 for all i = 1) if and only if the semi-spray is
a spray. More that, this is available for the geodesic spray associated to a Riemannian or
Finslerian metric [24,41].

Among the main objectives of the Kosambi–Cartan–Chern theory, we have to investi-
gate the orbits that deviate slightly from an orbit of (A1). More exactly, the behavior of the
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system in variations will be investigated, and thus, the orbits xi(t) of (A1) will be changed
into close ones, as given by the relations

x̃i(t) = xi(t) + ηξ i(t), (A7)

where |η| is a is an enough small parameter and ξ i(t) are the coefficients of a contravariant
vector field on the orbits xi(t), and named the deviation vector. Next, by using (A7) into
(A1) and by following the limit η → 0, we obtain the variational equations system [24–26]:

d2ξ i

dt2 + 2Ni
j
dξ j

dt
+ 2

∂Gi

∂xj ξ j = 0. (A8)

If we use the formula of the KCC covariant derivative from (A5), then the system (A8)
can be written in the equivalent covariant form [24–26]:

D2ξ i

dt2 = Pi
j ξ

j , (A9)

where, on the right side, we have the (1, 1)- type tensor Pi
j , with the following coefficients:

Pi
j = −2

∂Gi

∂xj − 2GlGi
jl + yl

∂Ni
j

∂xl + Ni
l Nl

j . (A10)

According to [24,41], the coefficients

Gi
jl =

∂Ni
j

∂yl (A11)

represent the Berwald connection corresponding to the nonlinear connection N of the
semi-spray (A1).

The coefficients Pi
j represent the so-called deviation curvature tensor or the second

invariant of the Kosambi–Cartan–Chern (KCC) geometric theory. If all coefficients of
the nonlinear connection and all coefficients of the Berwald connection are null, then the
deviation curvature tensor from (A10) has the coefficients Pi

j = −2 ∂Gi

∂xj . So, it very useful to
define the so-called zero-connection curvature tensor Z with the coefficients [44]:

Zi
j = 2

∂Gi

∂xj . (A12)

The system of second-order differential Equation (A8) represents the deviation equa-
tions (or Jacobi equations), and the invariant Equation (A9) also represents the Jacobi
equations. In Riemann geometry or Finsler geometry, when a system of second-order
equations represents the geodesic curve, Equations (A8) (or (A9)) are exactly the Jacobi
field equations for the manifold geometry.

Next, we can introduce the third, the fourth, and the fifth invariants of the Kosambi–
Cartan–Chern theory for the system of second-order differential equations (semi-spray or
SODE) (A1). The coefficients of these invariants are given by:

Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
, Pi

jkl =
∂Pi

jk

∂yl , Di
jkl =

∂Gi
jk

∂yl . (A13)

From the geometric point of view, the third invariant Pi
jk is called the torsion tensor,

and the fourth and the fifth invariants Pi
jkl and Di

jkl are called the Riemann–Christoffel
curvature tensor and the Douglas tensor. Let us remark that all these tensors always
exist [24–26,31,41].
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According to [24,39,41], all these five geometric objects are the main invariants that
determine the geometrical properties of the system and give us the geometrical character-
istics of the system of second-order differential Equation (A1). Next, we present a basic
theorem of the KCC geometric theory, which belongs to P.L. Antonelli [25]:

Theorem A1. Two systems of second-order differential equations (SODE) of type (A1), e.g.,

d2xi

dt2 + 2Gi(xj, yj) = 0, yj =
dxj

dt

and
d2 x̃i

dt2 + 2G̃i(x̃j, ỹj) = 0, ỹj =
dx̃j

dt
,

can be locally changed, from one into another, by local coordinate changing (A3) if and only if the
five geometrical invariants εi, Pi

j , Pi
jk, Pi

jkl , and Di
jkl are equivalent tensors of ε̃i, P̃i

j , P̃i
jk, P̃i

jkl , and

D̃i
jkl , respectively.

Moreover, there exists a local coordinates chart (U; x1, . . . , xn) on the basic manifold M, for
which Gi = 0 on U, for all i, if and only if all five invariant tensors have all coefficients equal to
zero. In this case, the orbits of the dynamical system are straight lines.

The name “Jacobi stability” from the Kosambi–Cartan–Chern theory cames from
Riemann geometry or Finsler geometry, when the system (A1) is the system of second-order
differential equations that define the geodesics associated with the manifold’s metric. Then,
the system (A9) represents the Jacobi field equations for the geodesic deviation. More
generally, the Jacobi Equation (A9) of a Finsler manifold (M, F) can be rewritten in the
scalar form [28]:

d2v
ds2 + K · vs. = 0, (A14)

where ξ i = v(s)ηi is the Jacobi tensor field along the geodesic γ : xi = xi(s), ηi is the
unit normal vector field on γ, and K is the flag curvature associated with the Finslerian
function F.

Additionally, related to the sign of the flag curvature K of the Finsler manifold, we can
determine the following [29]:

• If K > 0, then the geodesics “add up together” (i.e., Jacobi stability of the geodesics occurs);
• If K < 0, then the geodesics “disperse” (i.e., no Jacobi stability of the geodesics occurs).

Due to the equivalence of Equations (A9) and (A14), we can conclude that the flag
curvature K is positive if and only if the eigenvalues of the curvature deviation tensor Pi

j

are negative, and the flag curvature K is negative if and only if the eigenvalues of Pi
j are

positive [29,32].
Now, we can present the main theorem of the KCC geometric theory [29,32]:

Theorem A2. The trajectories of the second-order differential system (A1) are Jacobi-stable if and
only if the real parts of the eigenvalues of the deviation curvature tensor Pi

j are strictly negative
everywhere. Otherwise, the trajectories are Jacobi-unstable.

In conclusion, the geometric stability in the Jacobi sense of a system of second-order
differential equations (SODE) of type (A1) means the stability in the Lyapunov sense (linear
or classical) of the variations system (A9). Therefore, the investigation of Jacobi stability
is based on the study of the Lyapunov stability of all trajectories in a region, but without
considering speed. Moreover, although the local analysis is concentrated at an equilibrium
point, this kind of approach provides us details of the behavior of the trajectories of the
system in a vicinity of this equilibrium point.
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41. Miron, R.; Hrimiuc, D.; Shimada, H.; Sabău, S.V. The Geometry of Hamilton and Lagrange Spaces; Book Series Fundamental Theories

of Physics (FTPH 118); Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002.
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