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Abstract: Collating vast test reports is a time-consuming and laborious task in crowdsourced testing.
Crowdsourced test reports are usually presented in two ways, one as text and the other as images,
which have symmetrical content. Researchers have proposed many text- and image-based methods
for prioritizing crowdsourced test reports of mobile applications. However, crowdsourced test reports
of web applications typically have clearer textual descriptions of errors but noisier screenshots of
errors. This gap motivates us to propose a method for prioritizing crowdsourced test reports of
web applications to detect all errors earlier. In this paper, we integrate text and image information
from test reports to enhance the analysis process. First, we use the natural language processing
(NLP) technique to extract textual features of error descriptions and then symmetrically extract
image features of error screenshots, i.e., we use the optical character recognition (OCR) technique to
obtain textual information in the screenshots and then also use the NLP technique to extract features.
To validate our approach, we conduct experiments on 717 test reports. The experimental results show
that our method has a higher APFD (average percentage fault detection) and shorter runtime than
state-of-the-art prioritization methods.

Keywords: crowdsourced testing; web testing; test report prioritization; optical character recognition

1. Introduction

With the unprecedented rapid development of digital products, traditional software
testing methods are facing increasing challenges to ensure product quality, even when
automated or using device simulators [1]. More and more researchers are turning their
attention to crowdsourced testing. Crowdsourced testing uses a special software platform to
convene a large workforce for testing tasks [2]. It provides an efficient and streamlined way
to test the use of workforces who only show up when they are needed (without the ongoing
cost of an internal team). The benefit of crowdsourced testing is the ability to gain a greater
variety of test scenarios and test quality because it avoids cognitive tunneling (focusing too
much on one thing and missing other relevant data) and operational blindness (where one
is too familiar with something and miss obvious problems and opportunities) [2].

The problem with crowdsourced testing is dealing with the large number of test
reports [3]. Although a large number of test reports are obtained, the number of valuable
reports was relatively small, as duplicate reports amount to almost 82% [4]. High repetition
rates are inevitable because of the inherent properties of crowdsourced testing, where a
large number of testers test the same product at the same time. Therefore, it is necessary to
identify duplicate test reports, and it is more valuable to prioritize the test reports to review
as few reports as possible to find as many errors as possible.

In the past, many crowdsourced test report prioritization methods have been proposed,
which can be classified as text-based [5–7] and text- and image-based [8–10]. The concept of
prioritization of crowdsourced test reports was first proposed by Feng et al. [5]. They used
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natural language processing (NLP) to extract keywords from the test reports and designed
two prioritization strategies: risk strategy and diversity strategy. They later used a hybrid
analysis method of text and images to prioritize the test reports and found that image-
understanding techniques can improve the prioritization performance of test reports [8].
While these text- and image-based methods greatly improve the efficiency of processing test
reports, they are designed for mobile applications and are often difficult to apply directly to
web applications. For crowdsourced test reports of mobile applications, textual information
often lacks sufficient detail and accuracy, but screenshots are usually well defined and
depict the active view. However, crowdsourced test reports of web applications have
longer and clearer textual descriptions of errors; their screenshot information includes
more screens and windows of different sizes—even multiple windows—and more noise
information. Testers usually take full-screen screenshots to save time, which result in
screenshots with noisy information such as user-related browser favorites, window titles,
and so on. Therefore, it is necessary to design new processing methods for crowdsourced
test reports of web applications.

In this paper, we present a method called WDDiv for prioritizing crowdsourced test
reports of web applications. We integrate textual and image information from test reports
to enhance the analysis process. For textual information, we use NLP to extract textual
features to measure textual distances. For image information, to refine the feature extraction,
we first preprocess the images, then convert the images to text data using optical character
recognition (OCR), and finally filter to facilitate image distance measurement. Next, we
combine these distance results through a weighting formula. Based on the fusion results,
we ultimately prioritize the test reports based on diversity in order to detect more unique
errors as early as possible.

To evaluate our method, we use simulated crowdsourced tests of five modules for
a web application provided by a foreign trade company. In total, we collected and an-
alyzed 717 crowdsourced test reports. We used the APFD (average percentage of fault
detected) [11] metric to evaluate the validity of our method. Experimental results show the
following: (1) Converting image information to text information significantly improves the
effectiveness of prioritization methods; (2) Our method can outperform the state-of-the-art
prioritization method in the APFD metric; (3) Our method has a shorter run time to collate
our dataset.

The primary contributions of this paper are as follows:

• To the best of our knowledge, this is the first application of image-to-text technology
for calculating report similarity to help prioritize crowdsourced test reports of web
applications;

• We worked with a company to collect over 717 test reports and 956 screenshots. We
outsourced this dataset to expand research on this topic (https://doi.org/10.57760
/sciencedb.09699, accessed on 12 September 2023);

• We have conducted experiments based on this dataset. The experimental results show
that our method outperforms existing methods and can detect all errors earlier;

• We provide a comprehensive analysis of the weighting parameter settings. Based on
the empirical results, we suggest giving higher weight to textual information.

2. Related Work
2.1. Crowd Worker Recommendation

Crowdsourced testing inevitably faces the challenge of dealing with a large number of
reports. Some studies mitigate this problem at the source by recommending the appropriate
number of crowd workers for the task.

Most researchers view crowdsourced worker recommendations as a multi-objective
optimization problem. Cui et al. [12] introduced a method, ExReDiv, to select an appro-
priate set of workers for a test task to ensure a high error detection rate. It consists of
three key strategies: an experience strategy, a relevance strategy, and a diversity strat-
egy. The experience strategy is for selecting experienced workers; the relevance strategy

https://doi.org/10.57760/sciencedb.09699
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is for selecting workers with expertise related to a given testing task; and the diversity
strategy is for selecting different workers to avoid detecting duplicate errors. They [13]
also proposed a multi-objective crowd worker selection method (MOOSE) that uses the
NSGA-II evolutionary algorithm to obtain the pareto optimal solution set. It contains
three objectives: maximizing the coverage of testing requirements, minimizing the cost,
and maximizing the error detection experience of the selected workers. Wang et al. [14]
proposed the multi-objective crowd worker recommendation method (MOCOM), where
the objective consists of maximizing the probability of error detection of workers, relevance
to the test task, and diversity of workers while minimizing test cost, in order to recommend
the minimum number of crowd workers that can detect the most errors for a crowdsourced
testing task. They [15] also proposed a method called iRec to dynamically (in-process)
recommend the right workers to speed up the crowdsourced testing process. They [16]
subsequently upgraded iRec to iRec 2.0 to address the inequity in recommendation results,
where experienced workers were recommended for almost all tasks, while less-experienced
workers were rarely recommended. Kamangar et al. [17] have improved the validity of
crowdsourced testing by applying personality types, specifically using the Myers–Briggs
Type Indicator for measuring personality type. Xie et al. [18] presented the challenge of
achieving high test quality and expected test environment coverage in crowdsourced test-
ing, called crowdsourced testing quality maximization under context coverage constraint
(COCOON). They proved that the COCOON problem is NP-Complete and introduced two
greedy methods.

These studies are effective, but they are still difficult to control, as the recommended
crowdsourced workers do not guarantee high test quality. Therefore, we believe that it is
more important to handle test reports directly in crowdsourced testing.

2.2. Duplicate Crowdsourced Test Report Identification

Duplicate crowdsourced test report identification is an area of research that is highly
relevant to crowdsourced test report prioritization. Duplicate crowdsourced test report
identification tries to find duplicate test reports; however, crowdsourced test report pri-
oritization not only finds duplicate reports, but also arranges test reports in a way that
facilitates quick inspection by testers.

Researchers have identified duplicate crowdsourced reports from text, image, and video
perspectives. Jiang et al. [19] proposed a framework called test report fuzzy clustering
framework (TERFUR) to reduce the number of test reports inspected by aggregating
duplicate and multi-error test reports into clusters. Chen et al. [20] proposed a sen-
tence embedding-based report clustering model to analyze crowdsourced test reports.
Yang et al. [21] used the screenshot information in the crowdsourced test reports to sup-
plement the textual information to group the crowdsourced test reports and reduce the
pressure on the testers to review the reports. They used the spatial pyramid matching
(SPM) algorithm to extract the feature histograms of the screenshots. Wang et al. [4] pro-
posed SETU, which combines text and image information to detect duplicate crowdsourced
reports. They extract image structure features and image color features to describe the
screenshots. Cao et al. [22] performed cluster analysis and selection of crowdsourced test
reports by identifying the links between text and image information. Cooper et al. [23]
proposed a video-based duplicate detection method named TANGO that combines com-
puter vision, optical character recognition, and text retrieval methods. Huang et al. [24]
conducted an empirical evaluation of 10 commonly used state-of-the-art duplicate detec-
tion methods. They found that machine learning-based methods, i.e., ML-REP, and deep
learning-based methods, i.e., DL-BiMPM, are the best two methods; the latter is sensitive to
the size of the training data.

2.3. Crowdsourced Test Report Prioritization

Crowdsourced test report prioritization methods can be classified as text-based and
text- and image-based.
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Text-based: DivRisk, which was proposed by Feng et al. [5] in 2015, combines a
diversity strategy and a risk strategy to prioritize crowdsourced test reports. The diversity
strategy aims to prioritize the test reports that are most different from those already checked
to reveal different errors. The risk strategy prioritizes the test reports that are most likely to
reveal errors. Yang and Chen [6] considered the impact of duplicate reports and proposed a
method DivClass to determine the order of inspection of crowdsourced test reports based on
diversity strategy and classification strategy. Zhu et al. [7] migrated test case prioritization
methods to crowdsourced test report prioritization and evaluated the effectiveness of these
methods. They found that all these methods performed well, with an average APFD of
over 0.8.

Text- and image-based: Feng et al. [8] used not only text information but also rich
screenshot information to assist in prioritizing test reports. They used the spatial pyramid
matching (SPM) method to measure the similarity of screenshots. Based on their work,
Liu et al. [10] proposed a method that first clusters and then prioritizes crowdsourced test
reports to aid the inspection process. Yu et al. [25] proposed a crowdsourced test report
prioritization method, DEEPRIOR, through an in-depth screenshot understanding. They
obtained error features and context features in text and images. All three methods men-
tioned above are based on a diversity strategy for crowdsourced test report prioritization,
but CTRP, proposed by Tong and Zhang [9], also considers the severity of errors.

However, most of the methods are only designed for mobile applications, which are
not applicable to web applications, so we propose a prioritization method for crowdsourced
test reports of web applications.

3. Background and Motivation

Crowdsourced testing is all about leveraging a group of testers who are sourced via
the internet to complete test tasks. Testers from different backgrounds have a variety of
devices, operating systems, and browsers and vary in terms of real-world conditions and
environments [2]. This leads to more test scenarios and a greater test quality that a (small)
in-house team cannot match. In-house teams are very expensive and time-consuming to
set up, and also require the purchase of a lot of equipment for testing.

Crowdsourced testing tasks cover a wide range of areas, including test case creation,
usability testing, and error testing (to name just a few). On a technical level, crowdsourced
testing tasks are performed on a specific software platform, called a crowdsourced testing
platform. A crowdsourced testing process on a crowdsourced testing platform usually
consists of three phases: (1) planning and preparation, (2) execution, and (3) evaluation
and completion. In the first phase, the company mainly determines what to test and the
scope of the testing, lists what to achieve, and sets the timeframe. In the second phase,
crowdtesters conduct tests and give feedback on the test results in the form of test reports.
In the last stage, all feedback is collected and collated by the crowdsourced testing platform
to generate the final test report.

For an enormous number of test results, it is impractical for the platform to collate
these reports manually. One of the main bottlenecks limiting the sustainability of the
crowdsourced testing platform is the rapid delivery of high-quality final test reports back to
the company. Therefore, it is natural for platforms to seek automated methods to collate test
reports. In the past, researchers have proposed many methods that focus on the issues of
test report prioritization [5–10,25], duplicate test report identification [4,19–23], test report
classification [26–32], and test report reconstruction [33–37].

Crowdsourced test reports have many duplicate reports, which means that the same
errors are expressed with similar descriptions. Test report prioritization is designed to
find all errors sooner. Researchers first used the text information from the test report
and later added the image information for prioritization. Most researchers use the NLP
technique to extract text features and the spatial pyramid matching (SPM) technique
to extract image features [8–10]. While these methods have made efforts to prioritize
crowdsourced test reports, they are only for mobile applications. However, crowdsourced
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test reports for mobile applications are significantly different from crowdsourced test
reports for web applications.

To illustrate, we present two crowdsourced test reports of different applications in
Table 1. We can see that the error description and the error screenshot in the crowdsourced
test report are symmetrical in content and that they express the same error. The text
descriptions of test reports for web applications are longer than for Android applications.
The possible reason for this phenomenon is that it is easier for the crowdtesters to type
on the computer than on the phone. In addition to this, we can see from Table 1 that
the screenshots of the web applications contain more redundant information. The page
below the bookmark bar in the screenshot is where the error is located. These facts led
us to propose a prioritization method for web applications that combines text and image
information to help the platform speed up the collation of test reports.

Table 1. Example test reports.

Application Type Error Description Error Screenshots

Android

In the exercise screen,
when filtering,
it did not filter by
the selected label.

Web

product management -
Product library -
filtering -
server exception
when filtering by
supplier product code.

4. Proposed Method (WDDiv)

This section describes the design of our method. Figure 1 depicts the framework of our
method. The framework has four major stages: (1) text information processing, (2) image
information processing, (3) fusion distance computation, and (4) prioritization.
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Figure 1. Technical framework.

4.1. Preliminary

Crowdsourced test reports may contain multiple types of information, such as text,
images, and videos. However, among these types of information, text and images are most
widely used to analyze the reports. Therefore, we mainly deal with these two types of
information. The test report set can be denoted as TRS = {TRi(Ti, Si) | i = 0 . . . N}. In a
test report (TRi), Ti represents a textual description of the error discovery process and Si
represents screenshots of the active view at the time the error occurred. For specific test
reports that include several screenshots, we use Si = si1, si2, . . . , sim to denote the screenshot
set, where sim represents the mth screenshot in test report TRi. We process text and image
information separately.

4.2. Text Information Processing

As shown in the upper branch of Figure 1, text information processing consists of word
segmentation, word filtering, text feature representation, and text distance computation.

Word Segmentation. Text description of errors in test reports we handle are written
in Chinese, which differs significantly from English and other Latin languages in that
there are no spaces to break the words, so they are first subjected to word segmentation.
For Chinese, there are a number of effective word segmentation tools. We adopted a widely
used tool, Jieba (https://github.com/fxsjy/jieba, accessed on 12 September 2023), for word
segmentation [7,9,10].

Word Filtering. After word segmentation, the original word stream may contain some
meaningless words (also known as stop words (https://github.com/goto456/stopwords/
blob/master/cn_stopwords.txt, accessed on 12 September 2023)), such as punctuation,
numbers, and conjunctions. These words have a negative impact on the text distance
calculation and add extra computation time, so we need to filter them. After filtering
these words in the word stream of error descriptions for each test report, the keywords are
obtained to build a keyword dictionary. Suppose we have j keywords in total; the keyword
dictionary can be denoted as KD =

{
Kword1, Kword2, Kword3, . . . , Kwordj

}
.

Text Feature Representation. Based on the keyword dictionary, we construct feature
vectors for each test report’s error description to perform text distance measurement.
In this paper, we use the TF-IDF model [38] to represent text feature vectors. For a test
report TRi, [TF − IDFi1, TF − IDFi2, . . . , TF − IDFij] denotes its text features vector, where
TF − IDFij denotes the weight of the jth keyword of Ti. The weight can be computed as

TF − IDFij = log
(
1 + vij

)
× log

(
1 + N

d fij

)
, where vij represents the frequency of the jth

keyword of Ti, N represents the total number of test reports, and d fij represents the number
of test reports containing this keyword.

Text Distance Computation. After obtaining text feature vectors, we calculate the
distance between error descriptions to identify duplicate test reports. We use the cosine
distance (https://reference.wolfram.com/language/ref/CosineDistance.html, accessed on
12 September 2023) to calculate the distance between the error descriptions of each pair of

https://github.com/fxsjy/jieba
https://github.com/goto456/stopwords/blob/master/cn_stopwords.txt
https://github.com/goto456/stopwords/blob/master/cn_stopwords.txt
https://reference.wolfram.com/language/ref/CosineDistance.html
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test reports, since previous studies have demonstrated its efficiency in high-dimensional
data [39,40], as in our case. The formula for calculating the textual distance between each
pair of test reports TDij is as follows:

TDij = 1 −
TFVi · TFVj

|TFVi|
∣∣TFVj

∣∣ . (1)

In Equation (1), TFVi denotes the textual feature vector of test report TRi and TFVj denotes
the textual feature vector of test report TRj. The range of TDij is 0 to 1. A larger TDij means
that the test report TRi is less similar to the test report TRj.

4.3. Image Information Processing

As shown in the lower branch of Figure 1, image information processing contains
four steps: text extraction, character filtering, image feature representation, and image
distance computation.

Text Extraction. Images have been relatively little-studied and applied in crowd-
sourced test reports. Most researchers utilize the spatial pyramid matching (SPM) algo-
rithm to process images [8–10,21,31,33]. However, SPM directly obtains the features in
the whole image, which is not very suitable for web applications. Typically, web applica-
tion screenshots contain more noisy information such as user-related browser favorites
and window titles. In order to improve the accuracy and operational efficiency of the
image distance calculation, we preprocessed the images, i.e., we cropped the images to
a uniform size (1900 × 865 pixels). Due to the diversity in screenshot resolutions, it is
necessary to scale screenshots to a uniform size before cropping them. We calculated
statistics on the size of the screenshots in the test report, and the statistics showed that
1920 × 1020 pixels accounted for the most. Since screenshot scaling can make screenshots
blurry or distorted, in order to minimize the impact of screenshot scaling on subsequent
processing, we scale all screenshots to 1920 × 1020 pixels. Then, we use optical character
recognition (OCR) technology to extract the text in the cropped image to determine the
important features in the image. We directly call the OCR interface service provided by
Baidu (https://cloud.baidu.com/doc/OCR/s/Ek3h7xypm, accessed on 12 September
2023). Baidu OCR uses deep learning techniques such as convolutional neural networks
(CNN) and recurrent neural networks (RNN) for text recognition. It has a general text
recognition accuracy of more than 98% and is able to complete a large number of text
recognition tasks in a short period of time (https://ai.baidu.com/tech/ocr, accessed on
12 September 2023). For test reports containing multiple screenshots, we merge the text
content of each screenshot extracted by OCR.

Character Filtering. The text information obtained by the above operation may still
contain noise content. We remove punctuation, numbers, and letters, which are not useful
for distance calculation, and keep only Chinese characters. Specifically, we use regular
expressions for character filtering. After character filtering for each image, the keywords
are obtained to build a keyword dictionary.

Image Feature Representation. Based on the keyword dictionary, we construct image
feature vector for each test report to perform image distance measurement. As with the
text feature representation, we also use the TF-IDF model to represent the image of the
test report.

Image Distance Computation. As with the text distance computation, we also use
the cosine similarity to calculate the distance between the screenshots of each pair of
test reports.

https://cloud.baidu.com/doc/OCR/s/Ek3h7xypm
https://ai.baidu.com/tech/ocr
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4.4. Fusion Distance Computation

After obtaining the text distance and the image distance from test reports, we simply
weight these two distances to fuse the text and image information. The distance fusion
equation is as follows:

FDij = ωTDij + (1 − ω)IDij. (2)

In Equation (2), FDij denotes the overall distance between test reports TRi and TRj, TDij
denotes the text distance between test reports TRi and TRj, and IDij denotes the image dis-
tance between test reports TRi and TRj. The values of ω range from 0.0 to 1.0, and ω = 1.0
means that only the text information is used to calculate the distance between test reports.

4.5. Prioritization

Based on the fusion distance for each pair of test reports, we can prioritize the test
reports to speed up the review of test reports. In this paper, we use the prioritization
algorithm proposed by Feng et al. [8]. They used a diversity-based prioritization strategy,
with the goal of finding as many errors as possible as early as possible. In the beginning,
we randomly choose one report from the test report set TRS and append it to the result
queue Q. Then, we calculate the distance between each test report of TRS and Q, which
is defined by the minimal distance between TRi and each test report in Q, and the largest
one is appended to Q. When |TRS| = 0, the whole program is finished. The complexity of
prioritization after obtaining the fusion distance is O(n2).

5. Empirical Study Design
5.1. Research Questions

In our experiment, we raised the following three research questions:
[RQ1:] How effective is the prioritization method of crowdsourced test reports for

mobile applications in prioritizing crowdsourced test reports for web applications?
Researchers have proposed many prioritization methods for crowdsourced test reports,

but most of them are designed for the characteristics of mobile applications. We would like
to investigate their effectiveness in prioritizing crowdsourced web applications test reports;

[RQ2:] How effective is our method in prioritizing crowdsourced test reports for web
applications?

Although we investigated the effectiveness of other methods for prioritizing crowd-
sourced web application test reports in RQ1, it is critical to validate the effectiveness of
our method;

[RQ3:] How does the experimental parameter influence the performance of our
method?

Since the performance of our method is influenced by the weighting parameter in
the fusion distance, we analyze the performance of our method under different parameter
settings to give users a better understanding of our method.

5.2. Data Collection

In August 2022, we partnered with a foreign trade company to collect crowdsourced
test reports for real industry. We crowdtested a web application called Foreign Trade
Management Platform. The application contains five modules (Product, Team, Approval,
Logistics, and Sales), and the interaction between different modules is complex. We
crowdsource tested one module of the platform for up to 8 h a day and collected 730
test reports. After we fed back the test reports, the company’s developers manually
reviewed and labeled the errors revealed by the test reports. They determined duplicate
reports based on the function point where the error was located (e.g., Add, Delete, Modify,
and Search). They found that 13 reports did not reveal real errors and were labeled as
invalid. Finally, there were 717 qualified test reports, and their statistical information is
shown in Table 2, where |R| represents the number of test reports, |E| represents the number
of errors revealed by test reports, |DR| represents the number of duplicated test reports,
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|S| denotes the number of screenshots contained in the test reports, |TKD| represents the
size of the keyword dictionary constructed from text information, and |SKD| denotes the
size of the keyword dictionary constructed from screenshot information. Table 3 shows the
top-three most common errors in each module. Tables 4 and 5 show the top-ten text and
image keywords in terms of word frequency, respectively.

Table 2. Statistical information of dataset.

Module |R| |E| |DR| |S| |TKD| |SKD|
Product 177 111 66 225 323 948
Team 83 35 48 105 139 254
Approval 103 51 52 136 195 590
Logistics 166 84 82 230 281 599
Sales 188 115 73 260 331 1161

Total 717 396 321 956 1269 3552

Table 3. Top-three most common errors.

Product Team Approval Logistics Sales

Cannot filter based on
product category ID

Cannot disable
configuration

The returned status
approval form cannot
be submitted after
editing

Incomplete display of
domestic transit
warehouse information

Cannot filter based on
customer ID

There are no
restrictions on product
information input

Cannot configure
available members

Clearing the search box
cannot display all
approval forms

Incomplete display of
overseas transit
warehouse information

New projects cannot
stage drafts

Cannot filter based on
supplier ID Cannot add members Cannot search for

approval forms
Failed to create freight
order

Cannot filter based on
SKU name

Table 4. The top-ten text keywords and their frequency.

Product Team Approval Logistics Sales

(default, 322) (default, 138) (page, 194) (default, 280) (mouse, 330)

(verification, 321) (trouble, 137) (face, 193) (arrange in order, 279) (default, 329)

(factory inspection,
320) (page, 136) (need, 192) (order, 278) (preprocessing, 328)

(head, 319) (need, 135) (hidden, 191) (page, 277) (estimate, 327)

(advance payment, 318) (portal, 134) (attachment, 190) (whatever, 276) (project management,
326)

(page, 317) (sales, 133) (error, 189) (weight limit, 275) (project name, 325)

(not a number, 316) (re, 132) (sales, 188) (qualified, 274) (project, 324)

(limit, 315) (repeat, 131) (re, 187) (attachments, 273) (page, 323)

(attachment, 314) (duplicate name, 130) (repeat, 186) (stage, 272) (need, 322)

(stage, 313) (configuration, 129) (adopt, 185) (error message, 271) (demand, 321)
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Table 5. The top-ten image keywords and their frequency.

Product Team Approval Logistics Sales

(black, 947) (fish color, 253) (home, 589) (aojiang, 598) (black, 1160)

(yellow, 946) (home help, 252) (feishu meeting, 588) (home, 597) (yellow, 1159)

(aojiang, 945) (home, 251) (feishu, 587) (airplane, 596) (verification code, 1158)

(advanced, 944) (leadership, 250) (risk credit, 586) (feishu, 595) (home help to do, 1157)

(height, 943) (international business
group, 249) (color, 585) (color, 594) (home help, 1156)

(home, 942) (menbei people, 248) (estimated unit
shipping cost, 584)

(expected expected
expected expected, 593) (home, 1155)

(activate account for
first time use, 941) (menshi said, 247) (estimated unit tax,

583)
(estimated delivery
date, 592) (drinks, 1154)

(drinks, 940) (portal management,
246) (advance payment, 582) (expected, 591) (airplane, 1153)

(restaurant, 939) (sales manager, 245) (whatever, 581) (pre-ten, 590) (color, 1152)

(food, 938) (sales management,
244) (attachments, 580)

(estimated port of
departure incidental
charges, 589)

(expected to be full,
1151)

5.3. Baseline Setting

We adopted BDDiv [8] and TSE [10] as baselines. Both methods use text and image
information from the test reports, fusing the two types of information by balancing the
text and image distance. However, in contrast to BDDiv, TSE uses clustering techniques
to cluster similar reports together and uses a random sampling strategy. In addition, we
simulated a random test report inspection scenario and an ideal test report inspection
process to investigate the usefulness and potential of the above two methods. Thus, we
have the following four methods:

• Random: Random sorting to simulate the case without any prioritization method;
• Ideal: For a test report set with M errors, the theoretical best result is to review only M

test reports to find all errors;
• BDDiv [8]: A prioritization method that extracts text features using a bag of words

(BOW) model and image features using an SPM method, calculates text distance using
Jaccard distance and image distance using Chi-square distance, and fuses text and
image distances by using a balanced formula;

• TSE [10]: A prioritization method that extracts text features using Tthe F-IDF model
and image features using an SPM method, calculates text distance using Euclidean
distance and image distance using Chi-square distance, and fuses text and image
distances by using a balanced formula.

5.4. Evaluation Metrics

Given a test report inspection task, we measure the performance of a test report priori-
tization method based on the speed of revealing all errors. Based on previous studies [5,8],
we adopted the widely used APFD for evaluation. APFD [11] is calculated as follows:

APFD = 1 − ∑M
1 Tei

N ∗ M
+

1
2 ∗ N

. (3)

In Equation (3), Tei is the index of the first test report that reveals error i, N denotes the
number of test reports, and M denotes the number of errors revealed by all test reports.
APFD values range from 0.0 to 1.0. The higher the APFD score, the faster the rate of finding
all errors.
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To compare the APFD values of the different test report prioritization methods, we use
two metrics. Firstly, we use %∆, which is the percent difference between the mean APFD of
the two methods. The %∆ is defined as follows:

%∆(x1, x2) =
x1 − x2

x2
. (4)

In Equation (4), x1 and x2 are the mean APFD values of the two methods. A larger value of
%∆ means a larger difference between the two methods. Second, we use hypothesis testing
to assess whether there is a significant difference between the APFD values. For each
module, the APFD values for each method did not all follow a normal distribution, so
we chose the Friedman statistical test [41] and the Mann–Whitney U statistical test [42].
The Friedman statistical test was used to verify whether the APFD values of multiple
methods were significantly different, while the Mann–Whitney U statistical test was used to
verify whether the APFD values of two methods were significantly different. If the p-value
is less than 0.05, the difference is considered significant.

5.5. Parameters Setting

Considering that the weight ω can influence the performance of our experiment,
we experimentally adjusted this parameter and determined the final value of 0.6. Since
all baseline methods had random selection operations in the prioritization process, each
experiment was repeated 30 times to reduce the bias caused by randomness.

6. Results and Analysis
6.1. Answering Research Question 1

[RQ1:] How effective is the prioritization method of crowdsourced test reports for
mobile applications in prioritizing crowdsourced test reports for web applications?

We present the performance of four methods (Random, TSE, BDDiv, Ideal), as mea-
sured by APFD. Figure 2 shows the boxplots of the APFD results for the five modules.
Table 6 shows the mean APFD for each method in each module. We can easily observe that,
to varying degrees, TSE outperforms Random on all modules except “Logistics”. However,
BDDiv performs better, and it outperforms Random on all modules.

Table 6. Mean APFD (30 runs) (RQ1).

Product Team Approval Logistics Sales

Random 0.568 0.633 0.593 0.607 0.577
TSE 0.592 0.690 0.627 0.589 0.594
BDDiv 0.623 0.708 0.659 0.646 0.617
Ideal 0.686 0.789 0.752 0.747 0.694

To further show the effectiveness of these two baselines, we also present the extent
of their improvement over Random in the first and second rows of Table 7. We can see
that BDDiv improves Random in the range of 6.43–11.85%, while TSE improves Random
in the range of 2.95–9% (except for the “Logistics” module). In addition to revealing their
improvement over Random, we also show the gap between them and the theoretical ideal
(the third and fourth row of Table 7). We find that the gap between TSE and Ideal varies
from 14.35% to 26.83%, while the gap between BDDiv and Ideal varies from 10.11% to
15.63%. We also directly compared these two methods. From the last row of Table 7, we
can see that BDDiv has 2.61% to 9.68% improvement compared with TSE.
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Figure 2. APFD of experimental subjects (30 runs) (RQ1).

Table 7. Results of %∆ for mean APFD (30 runs) (RQ1).

Product Team Approval Logistics Sales

TSE vs. Random 4.23% 9% 5.73% −2.97% 2.95%
BDDiv vs. Random 9.68% 11.85% 11.13% 6.43% 6.93%
Ideal vs. TSE 15.88% 14.35% 19.94% 26.83% 16.84%
Ideal vs. BDDiv 10.11% 11.44% 14.11% 15.63% 12.48%
BDDiv vs. TSE 5.24% 2.61% 5.1% 9.68% 3.87%

In addition, we first performed the Friedman test on the APFD values of the four
methods (Random, TSE, BDDiv, and Ideal). We can see from Table 8 that all p-values are
less than 0.05, which means that there is a significant difference between the APFD values
of these four methods in each module. We then conducted the Mann–Whitney U test for
APFD between TSE and Random, BDDiv and Random, Ideal and TSE, Ideal and BDDiv,
and BDDiv and TSE. The results in Table 9 show that the p-values are all below 0.05 for all
modules. This signifies that the APFD values for each pair of methods described above are
significantly different.

Table 8. Results of Friedman Test for APFD (30 runs) (RQ1). “**” means the p-value is less than 0.05.

Product Team Approval Logistics Sales

p-value 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
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Table 9. Results of Mann–Whitney U Test for APFD (30 runs) (RQ1). “**” means the p-value is less
than 0.05.

Product Team Approval Logistics Sales

TSE vs. Random 0.000 ** 0.000 ** 0.001 ** 0.000 ** 0.000 **
BDDiv vs. Random 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
Ideal vs. TSE 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
Ideal vs. BDDiv 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
BDDiv vs. TSE 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **

Summary: Crowdsourced mobile application test report prioritization methods can
improve the effectiveness of crowdsourced web application test report inspection, but they
still have a large gap with the theoretically ideal results. For crowdsourced test reports
of mobile applications, TSE outperforms BDDiv [10]; however, the opposite conclusion is
reached in crowdsourced test reports of web applications. Therefore, we believe that the
crowdsourced web application test report prioritization method needs to be specifically de-
signed.

6.2. Answering Research Question 2

[RQ2:] How effective is our method in prioritizing crowdsourced test reports for web
applications?

Note that, in RQ2, we used BDDiv as the baseline instead of TSE because, as confirmed
in RQ1, it performs better than TSE. Figure 3 shows the boxplot of APFD and Table 10
shows the mean APFD values. We also performed the Friedman test on the APFD values
for each method in Table 10, and the results can be seen in Table 11. Based on Figure 3 and
Tables 10 and 11, we observe that, to different extents, our method significantly outperforms
BDDiv on all modules. Specifically, from the first row of Table 12, the improvement of our
method ranges from 1.77 to 5.02% in comparison with BDDiv. This means that our method
is able to detect all errors in these modules much earlier.

Table 10. Mean APFD (30 runs) (RQ2).

Product Team Approval Logistics Sales

Random 0.568 0.633 0.593 0.607 0.577
BDDiv 0.623 0.708 0.659 0.646 0.617
WDDiv 0.634 0.722 0.675 0.668 0.648
BDDiv_Text 0.625 0.705 0.69 0.657 0.623
WDDiv_Text 0.627 0.74 0.703 0.649 0.63
BDDiv_Image 0.574 0.666 0.626 0.574 0.573
WDDiv_Image 0.614 0.639 0.601 0.627 0.582
Ideal 0.686 0.789 0.752 0.747 0.694

Table 11. Results of Friedman Test for APFD (30 runs) (RQ2). “**” means the p-value is less than 0.05.

Product Team Approval Logistics Sales

p-value 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
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Figure 3. APFD of experimental subjects (30 runs) (RQ2).

Table 12. Results of %∆ for mean APFD (30 runs) (RQ2).

Product Team Approval Logistics Sales

WDDiv vs. BDDiv 1.77% 1.98% 2.43% 3.41% 5.02%
WDDiv_Text vs. BDDiv_Text 0.32% 4.96% 1.88% −1.22% 1.12%
WDDiv_Image vs. BDDiv_Image 6.97% −4.05% −3.99% 9.23% 1.57%
Ideal vs. WDDiv 8.20% 9.28% 11.41% 11.83% 7.10%

To investigate the deeper reasons why our method performs better than BDDiv, we
also compared the performance of using only text information and only image informa-
tion. According to Figure 3 and the second and third rows of Table 12, we found that
WDDiv_Text outperforms BDDiv_Text on four modules, while WDDiv_Image outperforms
BDDiv_Image on three modules. This means that the text distances and image distances
we calculate are more representative of the test report distances.

We also conduct the Mann–Whitney U test for APFD for each pair of methods men-
tioned above. The results are presented in Table 13, where we can see that all p-values,
except between WDDiv_Text and BDDiv_Text in the “Product” module, are below 0.05.
This means that the performance of our method is significantly better than that of BDDiv,
both with and without fusing text and images.
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Table 13. Results of Mann–Whitney U Test for APFD (30 runs) (RQ2). “**” means the p-value is less
than 0.05.

Product Team Approval Logistics Sales

WDDiv vs. BDDiv 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
WDDiv_Text vs. BDDiv_Text 0.351 0.000 ** 0.000 ** 0.000 ** 0.000 **
WDDiv_Image vs. BDDiv_Image 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
Ideal vs. WDDiv 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **

We not only compared the APFD values of these two methods (WDDiv, BDDiv),
but also compared their time overheads. The running times of the three sub-processes
involved in the method (i.e., text processing, image processing, and fusion distance calcula-
tion) are shown in Table 14. Note that we ran all processes on a personal computer with the
following configuration: 2.3 GHz Dual-Core Intel Core i5 processor and 8 GB of RAM. We
can see that, for all three sub-processes, WDDiv takes less time than BDDiv on all modules.
In particular, for image processing, our method saves at least 718 s compared to BDDiv.
This indicates that our method has higher operational efficiency.

Table 14. The running time (RQ2).

Product Team Approval Logistics Sales

BDDiv Text Processing Time (seconds) 1.234 2.524 3.100 2.548 2.810
WDDiv Text Processing Time (seconds) 0.038 0.064 0.039 0.057 0.081

BDDiv Image Processing Time (seconds) 520.5 341.1 349.2 504.1 552.8
WDDiv Image Processing Time (seconds) 451.7 140.0 166.0 312.2 478.9

BDDiv Fusion Computation Time (seconds) 0.050 0.012 0.014 0.045 0.194
WDDiv Fusion Computation Time (seconds) 0.001 0.008 0.009 0.001 0.022

Summary: The prioritization method specifically designed for crowdsourced test
reports for web applications performs better than mobile application-based methods.

6.3. Answering Research Question 3

[RQ3:] How does the experimental parameter influence the performance of our
method?

In this subsection, we further discuss the effect of the weight parameter ω on the
performance. The weight parameter ω directly affects the value of the fusion distance and
indirectly affects the final ranking result. A value greater than 0.5 means that text distance
takes more weight than image distance, while equal to 0.0 means that only image distance
is used and equal to 1.0 means that only text distance is used. We therefore analyzed the
variation in the APFD score with ω, where ω varied from 0.0 to 1.0 in increments of 0.1.

Table 15 shows the sensitivity of mean APFD to the weight parameter ω. From Table 15,
we can see that the mean APFD for all modules, except “Approval”, reaches maximum
value when ω ̸= 0.0 and ω ̸= 1.0. This indicates that using text and image information
is more effective than using only one type of information alone. We investigated the
“Approval” module more deeply to find out why adding image information was not better
than using text information alone. There are very few pages involved in all the functions of
“Approval” module, thus resulting in very similar screenshots, reflected in different errors.
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Table 15. Mean APFD of WDDiv under different weight parameters ω (30 runs) (RQ3). The bold
entries indicate the best results.

ω Product Team Approval Logistics Sales

0.0 0.6140 0.6352 0.6000 0.6254 0.5807
0.1 0.6184 0.6590 0.6053 0.6485 0.5945
0.2 0.6230 0.6777 0.6104 0.6551 0.6046
0.3 0.6259 0.6850 0.6230 0.6685 0.6125
0.4 0.6280 0.6983 0.6352 0.6672 0.6257
0.5 0.6293 0.7112 0.6544 0.6738 0.6398
0.6 0.6344 0.721 0.6774 0.6695 0.6475
0.7 0.6350 0.7316 0.6806 0.6656 0.6462
0.8 0.6344 0.7375 0.6934 0.6598 0.6432
0.9 0.6305 0.7404 0.7034 0.6565 0.6356
1.0 0.6265 0.7398 0.7037 0.6474 0.6293

Average 0.6272 0.7033 0.6533 0.6579 0.6236
SD 0.0064 0.0339 0.0384 0.0132 0.0215

Further, we find that the mean APFD of all modules can reach a maximum when
ω ≥ 0.5. More specifically, the mean APFD of the four modules reaches a maximum when
ω > 0.5. This means that, when text information is given more weight, the results are better.

Also, we show the average and standard deviation of the mean APFD for each module
in Table 15. We observe that the standard deviation values remained within a small range,
i.e., from 0.0064 to 0.0384, indicating that the APFD was relatively stable for the variation
of ω.

Summary: Generally, crowdsourced web application test report prioritization using
text and image information is better than using a single piece of information. Since weight-
ing textual information more than image information leads to better performance of our
method, we propose to adjust ω from 0.6. Although ω affects the performance of our
method to varying degrees, the performance of our method is generally stable with vary-
ing ω.

7. Discussion

In the different modules, WDDiv shows different results. In the Sale module, the re-
sults of WDDiv are very encouraging and are closest to the theoretical optimum. We
examined the test reports in the Sale module. Workers submitted more test reports and
found more errors in the Sale module than in the other modules. More critically, their
reports also had more text keywords and image keywords. Our approach relies on the
keywords in the test reports, so it is not surprising that the prioritization results of the Sale
module are more effective for the other modules, as shown in Table 12.

In RQ2, we evaluated the time cost of the proposed method, and the execution time
of the important processes can be seen in Table 14. We can see that the time cost is mainly
image information processing. Processing 956 screenshots from 717 test reports took about
26 min. It takes an average of 1.58 s per image. In our method, the cost of using text
information processing is negligible because it uses a natural language processing tool,
Jieba, for word segmentation. In the future, we can consider optimizing the efficiency of
image processing.

In RQ3, we discussed the sensitivity of the parameter ω in the fusion distance matrix.
The parameter ω represents the trade-off between text and image information. The larger
the value of ω, the greater the proportion of textual information. We conducted several
experiments to find the optimal ω. The results show that our technique performs better
when ω ≥ 0.5. This means that textual information analysis is better than image information
analysis. As can be seen from the last two columns of Table 2, for each module, the number
of image keywords is much larger than text keywords. We can infer that the image
keywords contain a lot of noise information about the error. Our method only removes some
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noise information by cropping and filtering characters. In the future, the correspondence
between the error description text and the text within the error screenshot can be considered
to further remove the noise information and obtain better image features.

8. Threats to Validity

In our empirical study, there are some general threats to validity.
External threats to validity. We simulated crowdsourced testing of a web application

to collect data, for which we hired students as crowd workers. The students are first-
year graduate students majoring in computer science with no relevant software testing
experience. This is not as diverse as the population involved in true crowdsourced testing.
Thus, when our technique is promoted for real crowdsourced testing scenarios, it could
be worse. However, according to Salman et al. [43], if a task is new to both students and
professionals, similar performance can be expected. Based on this study, we believe that
this threat may not be critical.

Internal threats to validity. The internal threats are in the preprocessing of the images,
namely, image scaling and cropping. Students were tested using devices with different
resolutions, so the error screenshots had a variety of resolutions. Our method requires
scaling the screenshots to a uniform size (1920 × 1020 pixels) before cropping. This scaling
size is obtained from statistical information on the size of all screenshots in this dataset,
and application of this size to other datasets may yield worse results.

After scaling the screenshots, we crop the screenshots uniformly to 1900 × 865 pixels,
which is carried out in consideration of the fact that the screenshots may contain noise
information, such as user-related browser information. However, this will lead to the
loss of important information in some screenshots, which will affect the calculation of the
distance of the test report. This cropping size is a compromise for this dataset and may give
worse results on other datasets. Therefore, different scaling and cropping sizes need to be
determined for different datasets.

Construct threats to validity. Since we hired Chinese students to conduct simu-
lated crowdsourced testing of a Chinese software, the collected test reports have error
descriptions written in Chinese, and the text content in their screenshots is also in Chi-
nese. Our proposed method is specific to Chinese, so it may perform better or worse in
other languages.

We only dealt with the error description and error screenshot information in the test
report and ignored the information about the type of error, the severity of the error, and so
on. These are also crucial for developers to fix the errors. In the future, we can consider
adding that information for test report prioritization.

Conclusion threats to validity. There are three conclusion threats to validity. First,
due to cost constraints, the crowdsourced testing tasks were for five modules of a single
application. All tasks were completed in five days, at a rate of one module per day. This
could have threatened the generalizability of our conclusions. However, our modules are
diverse and involve information about products, teams, logistics, and more. This may have
reduced this threat to some extent.

Second, in our experimental results, there are a small number of outliers in the APFD
values. However, we found that these outliers did not affect the analysis of the results.
Therefore, we do not believe that these APFD outliers posed a threat to the conclusion.

Third, in our method, the weights of text distance and image distance need to be
determined. Experiments prove that, with the change in weights, our method will have dif-
ferent results, so this may affect the application of our method on other datasets. However,
we have verified the effect of weights through sufficient experiments and found the most
suitable value, so this threat should be greatly reduced.

9. Conclusions

In this paper, we propose a crowdsourced test report prioritization method for web
applications that fuses text and image information to alleviate the challenge of collating
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large volumes of reports. To the best of our knowledge, this is the first work applying optical
character recognition (OCR) to improve the accuracy of test report similarity calculations.
We conducted experiments on 717 test reports that contained 956 screenshots across 5
modules and evaluated the ranking results using APFD metrics. We found that our method
was advantageous compared to mobile-based test report methods. Specifically, for APFD
values, our method improves them by 1.77% to 5.02% compared to BDDiv. We also found
that, for most of the modules we studied, methods that fused text and image information
were more promising than those that used a single type of information, even though one
module may have been less applicable. Therefore, in future work, we will improve our
methods to help prioritize such modules.
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