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Abstract: The D-S evidence theory is extensively applied to manage uncertain information. However,
the theory encounters challenges related to conflicts during the fusion process, impeding the precise
identification of multi-subset focal elements. This paper introduces a novel method for conflicting
evidence fusion that incorporates the Bray–Curtis dissimilarity, cosine distance of the included
angle, and belief entropy. The method comprehensively evaluates three aspects—evidence similarity,
evidence distance, and the amount of information—while considering factors like the credibility
and uncertainty of evidence. Initially, the evidence undergoes conversion into single-subset focal
element evidence through the improved Pignistic probability function. Subsequently, the credibility
between pieces of evidence is established using the Bray–Curtis dissimilarity and angle cosine
distance, while the uncertainty of the evidence is computed using belief entropy. The weighted
correction coefficient of the evidence is determined by integrating the credibility and uncertainty of
the evidence. Subsequently, the corrected evidence is fused using the D-S evidence theory to derive
the final judgment. An analysis of two sets of arithmetic examples, considering both single-subset
and multi-subset focal elements, demonstrates the faster convergence and enhanced accuracy and
reliability of the proposed method in comparison to existing approaches.

Keywords: D-S evidence theory; Bray–Curtis dissimilarity; belief entropy; improved Pignistic
probability function; cosine of included angle

1. Introduction

The Dempster–Shafer (D-S) evidence theory [1] is an uncertainty reasoning method
first proposed by Dempster in 1967 and later refined by his student Shafer [2]. The D-S
evidence theory is adept at characterizing and expressing uncertain information in scenarios
where a priori probabilities are lacking. Consequently, it finds extensive application in
the fields of multi-sensor information fusion [3,4], classification [5,6], fault diagnosis [7,8],
decision making [9,10], and state assessment [11,12]. Despite its widespread utility, it
encounters some difficulties. For example, evidence theory faces challenges when fusing
conflicting evidence from multiple sources, giving rise to common issues such as the
common problems of complete conflict paradox, 0-trust paradox, 1-trust paradox, and
high-conflict paradox [13].

Currently, there are two main ideas to address the deficiency of the D-S theory of
evidence in dealing with conflicting evidence. The first is to modify the synthesis rules of
the evidence theory [14]. For example, Yager [15] proposed to assign all of the conflicting
information to the uncertainty domain. Florea [16] introduced a class of robust combination
rules (RCR) in which the weights are a function of the conflict between two pieces of
information that automatically consider the reliability of information sources. Su [17]
presented an improved evidence fusion rule based on the concept of joint belief distribution.

By modifying the synthesis rules, although it solves the problem of the fusion of
conflicting evidence to a certain extent, it destroys the excellent exchange law, combination
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law, and other mathematical properties of the D-S evidence theory, and it is less effective in
fusing a large amount of evidence, which has certain limitations. To minimize conflicts, the
second approach is to modify the weight coefficients of conflicting evidence and reduce
the degree of conflict of evidence; this method will not change the excellent properties of
the D-S evidence theory, which has received more attention from scholars. For instance,
Murphy [18] proposed the average weighting method of evidence, assigning equal weight
to each piece of evidence. However, this method overlooks the correlation between pieces
of evidence, resulting in poorer fusion result accuracy. Deng [19] introduced a method to
quantify the degree of conflict between the evidence based on the Jousselme distance and
subsequently determine the weighting coefficients of the evidence, which compensates for
the shortcomings of the average weighting method to a certain extent. Lin [20] presented
an evidence fusion method based on the Mahalanobis distance, enhancing the accuracy
of conflicting evidence fusion. Shi [21] proposed an evidence combination method based
on Manhattan distance and evidence angle. Tang [22] proposed a conflict evidence fusion
method based on correlation coefficients in complex networks. This innovative approach
leverages interactive relationships between bodies of evidence to depict correlation coef-
ficients, adjusting the weights of conflicting evidence accordingly. Chen [7] proposed a
weighted correction method based on the Jousselme distance and uncertainty measures,
demonstrating enhanced accuracy compared with relying solely on distance for conflict
coefficient correction and exhibiting improved convergence properties. Xiao [23] intro-
duced a multi-sensor data fusion method grounded in plausibility dispersion measure
and belief entropy. This method employs Jensen–Shannon dispersion to quantify conflict
between evidences, combines it with Deng entropy to assess uncertainty, and consequently
corrects plausibility. Zhao [24] presented a novel multi-sensor evidence fusion algorithm
based on the square-mean distribution distance, integrating it with entropy to enhance the
fusion accuracy of conflicting evidence. Li [25] proposed a weighted conflicting evidence
combination method using Hellinger distance and belief entropy. These metrics construct
weight coefficients for the evidence subsequently applied to weight the original evidence.
Wang [26] suggested a conflict evidence fusion method based on Lance distance and credi-
bility entropy, accounting for credibility and uncertainty to measure the discount coefficient
for the final evidence fusion, thereby correcting the original evidence. Zhou [27] introduced
the cosine of the angle to gauge the degree of conflict between evidence, correcting the
conflict coefficient. This method constructs judgment rules for evidence grouping by utiliz-
ing a combination of the conflict coefficient and belief entropy. The resulting coefficient is
then applied to weigh the original evidence, amending it effectively for a single subset of
evidence conflict fusion.

In summary, the primary approach to addressing the conflict problem is correcting
the weight coefficients of evidence sources. Generally, entropy is employed to describe
the uncertainty of the evidence itself, while the correlation between evidence is captured
through conflict coefficients such as the conflict coefficient k, Jousselme distance, Hellinger
distance, Lance distance, Mahalanobis distance, and so on. Simultaneously considering
the correlation and uncertainty of the evidence yields correction coefficients, ultimately
enhancing the accuracy of fusion results.

However, the majority of the aforementioned scholars’ research focuses on conflicting
evidence within single-subset focal elements, leaving the conflict problem of multi-subset
focal elements unresolved. To address these prevailing issues, a comprehensive solution is
proposed, introducing an enhanced Pignistic probability function. This function allocates
multi-subset focal element evidence into single-subset focal element evidence, effectively
resolving both single-subset and multi-subset focal element conflict problems. Additionally,
the Jousselme distance is influenced by the dispersion degree of the basic trust allocation
function of the evidence, potentially yielding results contrary to reality when measuring
evidence conflict. The Mahalanobis distance necessitates covariance calculation, and
the process of computing squared mean is intricate, making it unsuitable for large-scale
data processing.
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Consequently, this paper advocates a more optimal measure—the Bray–Curtis dissim-
ilarity. This measure adheres to the principles of non-negativity, symmetry and normality,
aligning with the requirements of the D-S evidence theory. The Bray–Curtis dissimilarity is
a non-parametric metric that avoids the need for assumptions or parameterization of prob-
ability distributions, rendering it applicable to various types of uncertainty distributions
without being constrained by specific assumptions. This similarity metric demonstrates
adaptability in scenarios where data may include missing values or an unequal number of
data points. In practical applications, the reliability and completeness of evidence may vary,
and the Bray–Curtis dissimilarity provides a relatively flexible approach under such circum-
stances. Furthermore, the computation of the Bray–Curtis dissimilarity is straightforward,
making it suitable for large-scale data processing. Its simplicity facilitates implementation
and comprehension, contributing to its practical utility in diverse research contexts.

To tackle the challenge of evidence conflict fusion, a multi-step approach is employed.
Firstly, leveraging the weights in the basic probability function, an improved Pignistic
probability function is applied to allocate multi-subset focal element evidence to single-
subset focal element evidence. This step aims to reduce computational complexity and
minimize information loss during the conversion process. Secondly, a novel method is
introduced to calculate conflict coefficients between evidences based on the Bray–Curtis
dissimilarity. The Bray–Curtis dissimilarity, in combination with the cosine of included
angle distance, is employed to gauge the degree of conflict and discrepancy among the
evidence. Subsequently, belief entropy is used to quantify evidence uncertainty, and these
three influencing factors are amalgamated to derive corresponding weighted correction
coefficients. These coefficients are then applied to weight and correct the original evidence.
Finally, the D-S evidence theory is employed to fuse the updated evidence sources. The
validation of two conflicting evidence algorithms, incorporating both single-subset and
multi-subset focal elements, demonstrates improved convergence and robustness compared
to previous methods.

2. Preliminaries

In this section, the pertinent theoretical foundations of the D-S theory of evidence will
be given in detail.

2.1. The Frame of Discernment

In the D-S evidence theory [28–31], the process of evidence reasoning is grounded in a
sample space consisting of non-empty finite sets, referred to as the identification frame Θ.
If Θ = {A1, A2, · · · , Ai}, where Ai is a subset of the identification frame Θ, then the subsets
within Θ are mutually exclusive pairwise.

It is customary to represent the power set of the recognition frame Θ. Denoted as 2Θ,
it encompasses all subsets in Θ, including the empty set and Θ itself, expressed as follows:

2Θ = {∅, {A1}, · · · , {An}, {A1, A2}, · · · , {A1, A2, A3}, · · · , Θ}.

Here, ∅ signifies the empty set, {A1, A2} represents {A1 ∩ A2} and Θ = {A1, A2, . . ., Ai}.

2.2. Basic Probability Assignment

For any proposition A in 2Θ, A ∈ 2Θ, the function m is the mapping 2Θ → [0, 1] and
m satisfies the following conditions. 

0 ≤ m(A) ≤ 1
m(∅) = 0

∑
A⊆Θ

m(A) = 1
(1)

Then, m is designated as the basic probability assignment (BPA) function on Θ, and
m(A) represents the BPA function of proposition A, commonly referred to as the mass
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function. Proposition A is identified as a focal element if m(A) > 0. When all focal
elements consist of singleton sets, such a focal element is termed a single-subset focal
element evidence. Conversely, when the focal elements involve multi-subsets, it is denoted
as multi-subset focal element evidence.

2.3. D-S Theory Synthesis Rules

Hypothesis m1 and m2 identify two independent BPA functions on the frame Θ. The
combinatorial rule of the D-S evidence theory is defined as follows:

m(A) = m1(Ai)⊕ m2
(

Aj
)
=

{
0, A = ∅

∑Ai∩Aj=A m1(Ai)m2(Aj)
1−k , A ̸= ∅

(2)

where k = ∑Ai∩Aj=∅ m1(Ai)m2
(

Aj
)

stands for conflict degree and indicates the degree of
conflict between two pieces of evidence, and k ∈ [0, 1]. The conflict coefficient is the greater
degree of conflict between two pieces of evidence.

2.4. Belief Function and Plausibility Function

For proposition A, the belief function [32,33], denoted as Bel, is defined as follows:

Bel(A) = ∑
Ai⊆A

m(Ai), ∀Ai ⊆ Θ (3)

The belief function represents the sum of the basic probability distribution functions
for all subsets in proposition A, reflecting the minimum level of confidence in A. When A
is a single-subset focal element, Bel(A) = m(A).

For proposition A, the plausibility function Pls is defined as follows:

Pls(A) = 1 − Bel
(

A
)
= ∑

Ai∩A ̸=∅
m(Ai), ∀Ai ⊆ Θ (4)

Pls(A) denotes the highest level of trust in A, where Pls(A) ≥ Bel(A). The interval
[Bel(A), Pls(A)] represents the placement interval of proposition A. A wider placement
interval indicates greater uncertainty about proposition A. When proposition A is a
singleton set, Bel(A) = Pls(A), signifying complete confidence in proposition A.

In evidence theory, uncertainty intervals emerge due to the presence of multi-set focal
elements. As illustrated in Equation (4), when calculating the likelihood, each element as-
signs itself the exact value of the multi-subset focal element in which it is located. However,
in the practical application of BPA, the value of the multi-subset focal element is collectively
assigned by the elements that it contains. Therefore, the likelihood of each element should
fall between Bel(A) and Pls(A), ensuring that the sum of the mass functions of all elements
equals one. This compliance results in a probability function satisfying the following
relation (5): {

Bel(Ai) ≤ Probability(Ai) ≤ Pls(Ai)

∑
Ai⊆Θ

Probability(Ai) = 1 (5)

3. Materials and Methods
3.1. Improved Pignistic Probability Function

When employing the BPA function to depict uncertain information regarding multi-
subset focal elements, obtaining a precise decision directly from the BPA function becomes
challenging. Typically, the BPA function of a multi-set focal element is viewed as supportive
of a single-subset focal element, with a transformation of the BPA function from the multi-
subset focal element into the decision probability distribution function of the single-subset
focal element. To quantify this multi-subset focal element before reaching a decision, a
probabilistic transformation method is applied. In the transferable belief model, Smets [34]
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introduced the Pignistic probabilistic transformation method. The definition of the Pignistic
probability transformation method is as follows:

BtPm(Ai) = ∑
Ai⊆Θ

|Ai ∩ A|
|A|

m(A)

1 − m(∅)
(6)

where A is the subset of the identification frame Θ, |•| denotes the number of focal
elements contained in the subset and ∅ is an empty set.

However, the conversion method proposed by Smets evenly distributes the values
of multi-subset focal elements to the contained elements without fully considering the
relationship between the evidence, making it less conducive to rational decision making.

Sudano and Martin [35] proposed an improved Pignistic probabilistic conversion
method based on the difference in the credibility of multi-subset focal elements: the
BPA of multi-subset focal elements is proportionally assigned to all Plausibilities (PraPl)
based on the total likelihood of truth information of the single-subset focal elements.
This significantly enhances the accuracy of the probabilistic conversion of multi-subset
focal elements.

The PraPl probabilistic conversion method is defined as follows:

BetPm(Ai) = Bel(Ai) + ε Pls(Ai) (7)

ε =
1 − ∑Ai⊆Θ Bel(Ai)

∑Ai⊆Θ Pls(Ai)
(8)

where Pls(Ai) represents the plausibility function of Ai, and Bel(Ai) is the belief function
of Ai.

After conserving the improved Pignistic probability function, the BPA is converted
into single subsets: BetPm1, BetPm2, . . . , BetPmN .

3.2. Evidence Similarity Based on the Bray–Curtis Dissimilarity

The Bray–Curtis dissimilarity [36], named after its originators J. Roger Bray and
John T. Curtis, is primarily utilized in ecology and environmental sciences to measure the
differences between samples and coordinate distances [37,38]. In this context, it serves to
indicate the degree of support among evidence items.

For the sample space Θ, assuming two pieces of the evidence are mi, mj, the Bray–Curtis
dissimilarity between them is given by the following:

b
(
mi, mj

)
=

∑M
k=1

∣∣∣BetPmi (Ak)− BetPmj(Ak)
∣∣∣

∑M
k=1 BetPmi (Ak) + ∑M

k=1 BetPmj(Ak)
(9)

where i, j = 1, 2, · · · , N.
The Bray–Curtis dissimilarity, i, j = 1, 2, · · · , N, between any two pieces of evidence

can be represented by the matrix B, an N-dimensional matrix defined as follows:

B =



b11 b12 . . .
b21 b22 . . .

...
...

. . .

b1j . . . b1N
b2j . . . b2N
...

. . .
...

bi1 bi2 . . .
...

...
. . .

bN1 bN2 . . .

bij . . . biN
...

. . .
...

bNj . . . bNN


(10)

where bij is b
(
mi, mj

)
and represents the Bray–Curtis dissimilarity between evidence mi

and mj. When i = j, bij = 0. The Bray–Curtis dissimilarity ranges between 0 and 1, with a
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negative correlation indicating similarity with the evidence. Thus, the system’s support for
evidence is defined as follows:

sup(mi) =
1

N − 1

N

∑
j=1,j ̸=i

1
bij

(11)

The weight of evidence mi can be obtained after normalization as wr(mi)
:

wr(mi)
=

sup(mi)

∑N
j=1 sup

(
mj

) (12)

where i = 1, 2, · · · , N.

3.3. Evidence Support Based on Cosine of the Included Angle

The consistency between evidence subjects can be established by determining the
angle between two pieces of evidence. Furthermore, the similarity between the two subjects
can be measured by the resulting angle. The formula for the cosine of the included angle is
as follows [39,40]:

cos
(
mi, mj

)
=

BetPmi × BetPmj

∥BetPmi∥ ×
∥∥∥BetPmj

∥∥∥ =
∑M

k=1 BetPmi (Ak)× BetPmj(Ak)√
∑M

k=1[BetPmi (Ak)]
2 ×

√
∑M

k=1

[
BetPmj(Ak)

]2
(13)

Here, ∥BetPmi∥
2 = BetPmi × BetPmi

T ;
∥∥∥BetPmj

∥∥∥2
= BetPmj × BetPmj

T ; i, j = 1, 2, · · · , N.
The pinch cosine distance between any two pieces of evidence can be expressed in

the form of a pinch cosine similarity matrix D. The matrix D is an N-dimensional matrix
defined as follows:

D =



d11 d12 . . .
d21 d22 . . .

...
...

. . .

d1j . . . d1N
d2j . . . d2N
...

. . .
...

di1 di2 . . .
...

...
. . .

dN1 dN2 . . .

dij . . . diN
...

. . .
...

dNj . . . dNN


(14)

where dij is cos
(
mi, mj

)
, representing the cosine distance between evidence mi and mj.

When i = j, dij = 1. The value range of the angle cosine distance is [0, 1], which is positively
correlated with the degree of similarity of the evidence, and therefore, the system’s support
for the evidence mi is as follows:

sus(mi) =
1

N − 1

N

∑
j=1,j ̸=i

dij (15)

The weight of evidence mi after normalization is denoted as wt(mi)
:

wt(mi)
=

sus(mi)

∑N
j=1 sus

(
mj

) (16)

where i = 1, 2, · · · , N.

3.4. Evidence Uncertainty Based on Entropy

Entropy [41] is defined as the amount of information contained in the state that
describes a random variable. Shannon [42] proposed Shannon entropy on the basis of
information entropy, which was introduced into the D-S evidence theory to measure the
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degree of uncertainty of evidence, while the belief entropy proposed by Deng [43] is
a generalized improvement over Shannon entropy. Lower belief entropy indicates less
information and uncertainty in the evidence, while higher belief entropy implies greater
information and uncertainty.

This paper introduces belief entropy to quantify evidence uncertainty. Hypothesis
mi is a mass function defined on the frame of discernment Θ, An(n = 1, 2, · · · , N) is a
proposition in mass function mi, and |An| is the cardinality of An. The belief entropy H(mi)
regarding evidence mi is given by the following [44,45]:

H(mi) = − ∑
An⊆Θ

mi(An)log2
mi(An)

2|An | − 1
(17)

When the subset An contains only one element, denoted by |An| = 1, the belief entropy
degenerates into Shannon entropy:

H(mi) = − ∑
An⊆Θ

mi(An)log2mi(An) (18)

To prevent assigning zero weight to evidence mi in certain cases, the paper deter-
mines the weight magnitude of evidence mi by calculating the exponential form of the
belief entropy:

Ui(mi) =
H(mi) = −∑An∈Θ mi(An)log2mi(An) (19)

After normalization, the uncertainty of evidence mi is computed as follows:

wn(mi)
=

Ui(mi)

∑N
i=1 Ui(mi)

(20)

3.5. Evidence Fusion Based on the Dempster Rule

Based on the preceding analysis, the computation of the Bray–Curtis dissimilarity
and the cosine of the included angle provides insight into evidence similarity, allowing
for the determination of support degrees between evidence. A higher support degree
corresponds to greater evidence credibility and results in a higher weighting coefficient.
Simultaneously, evaluating the belief entropy of evidence reveals its uncertainty, with lower
uncertainty signaling higher evidence credibility, meriting a greater weight. Integrating
weights derived from the Bray–Curtis dissimilarity, cosine of the included angle distance,
and belief entropy enhances the information impact on the evidence, assigning elevated
weights to evidence with heightened credibility.

The weighted correction factor, considering evidence distance, evidence angle and
uncertainty, for each piece of evidence is formulated as follows:

Wi(mi)
= wr(mi)

× wt(mi)
× wn(mi)

(21)

The weighted correction coefficients Wi(mi)
are normalized to yield evidence fusion

coefficients W f us(mi)
:

W f us(mi)
=

Wi(mi)

∑N
i=1 Wi(mi)

(22)

The mass function values of evidence m′
i are each assigned a corresponding weighted

correction factor to obtain the corrected evidence m′′
i :

m′′
i =

N

∑
i=1

W f us(mi)
× m′

i (23)
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where i = 1, 2, · · · , n. N − 1 fusion of m′′
i by the Dempster rule produces evidence fusion

results in the following:

m f us =
(((

m′′
i

⊕
m′′

i

)
1
· · ·

)
i

⊕
m′′

i

)
N−1

(24)

The presented flowchart illustrating the proposed method is depicted in Figure 1.
Firstly, the original BPA function undergoes transformation into a singleton subset BPA
function through the application of the improved Pignistic probability function. Secondly, a
meticulous correction of weights is applied to conflicting evidence, focusing on three critical
dimensions: evidence similarity, evidence distance and evidence uncertainty. This involves
computing the support of each piece of evidence based on the Bray–Curtis dissimilarity,
cosine of the included angle distance, and belief entropy, along with their respective weights.
Thirdly, utilizing these three dimensions, the ultimate weighted correction coefficients for
each piece of evidence are derived. These coefficients serve as the basis for the refinement
of the singleton subset BPA function, resulting in the ultimate BPA function. Finally,
the adjusted BPA function undergoes D-S evidence fusion, yielding the consolidated
fusion results.
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Figure 1. The flowchart of the proposed method.

The pseudocode for the proposed method is presented in Algorithm 1, outlining the
approach for weighted fusion of conflicting evidence in this paper. The final fusion result
of the collected evidence can be obtained by this algorithm to support decision making.

Assume a set of original evidence sources collected within the identification framework
Θ = {A1, A2, · · · , AN}, with the corresponding BPA function denoted as m = {m1, m2, · · · , mi}.
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As depicted in Algorithm 1, lines 1–3 illustrate the process of converting collected
BPA functions into a single subset of BPA functions, enhancing decision accuracy. Lines
4–12 elucidate the procedure for determining the weights of evidence similarity based
on the Bray–Curtis dissimilarity. Subsequently, lines 13–21 detail the computation of
evidence credibility weights using the cosine of the angle distance. Lines 22–27 articulate
the methodology for assessing evidence uncertainty based on belief entropy. Further, lines
28–30 delineate the computation of the weighted fusion coefficients for evidence. Lines
31–33 expound on the correction of the original BPA function to yield the final BPA function
value. Lastly, lines 34–36 explain the generation of fusion results.

Algorithm 1 Conflict Evidence Fusion Method Based on the Bray–Curtis Dissimilarity and the
Belief Entropy

Input: Initial BPAs: m = {m1, m2, · · · , mi}
Output: Fusion Result: m f us

1: f or i = 1; i ≤ N do
2: Applying Equations (7) and (8) for the initial BPA convert to single-subset BPA:m′

i ;
3: end
4: f or i = 1; i ≤ N do
5: f or j = 1; j ≤ N do

6: Applying Equation (9) obtain Bray–Curtis dissimilarity between m′
i and m′

j:b
(

m′
i , m′

j

)
;

7: end
8: end
9: Applying Equation (10) obtain Bray–Curtis dissimilarity matrix B;
10: f or i = 1; i ≤ N do
11: Applying Equations (11) and (12) obtain the weight of evidence based on Bray–Curtis

dissimilarity: wr(mi′);
12: end
13: f or i = 1; i ≤ N do
14: f or j = 1; j ≤ N do
15: Applying Equation (13) obtain the cosine of included angle distance between m′

i and

m′
j:cos

(
m′

i , m′
j

)
;

16: end
17: end
18: Applying Equation (14) obtain the cosine of included angle distance matrix D;
19: f or i = 1; i ≤ N do
20: Applying Equations (15) and (16) obtain the weight of evidence based on cosine of

included angle: wt(mi′);
21: end
22: f or i = 1; i ≤ N do
23: Applying Equations (17)–(19) obtain the Belief entropy: H

(
m′

i
)
;

24: end
25: f or i = 1; i ≤ N do
26: Applying Equation (20) obtain the weight uncertainty of evidence: wn(m′

i);
27: end
28: f or i = 1; i ≤ N do
29: Applying Equations (21) and (22) obtain the evidence fusion coefficients: W f us(mi)

;

30: end
31: f or i = 1; i ≤ N do
32: Applying Equation (23) obtain the final corrected BPA: m′′

i ;
33: end
34: f or i = 1; i ≤ N − 1 do
35: Applying Equation (24) obtain the fusion result: m f us;
36: end
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4. Experiments

To validate the effectiveness of the conflict evidence fusion method proposed in this
paper, we reference two sets of classic conflict data. The first set comprises single-subset
focal element data from the literature [26], while the second set consists of multiple subset
focal element data sources from the literature [7]. These two sets of data sources have been
widely employed in previous studies of enhanced methods and represent two forms of
BPA functions. The application of the proposed fusion method to these two conflicting
datasets, along with an analytical comparison against the D-S evidence theory and various
improved fusion algorithms, serves to verify the efficiency and effectiveness of the method
proposed in this paper.

4.1. An Example of Single-Subset Focal Element Data

There are five pieces of evidence on the frame of discernment Θ = {A1, A2, A3}, and
the BPA function of each evidence is as follows:

m1 : m1(A1) = 0.9, m1(A2) = 0, m1(A3) = 0.1;

m2 : m2(A1) = 0, m2(A2) = 0.01, m2(A3) = 0.99;

m3 : m3(A1) = 0.5, m3(A2) = 0.2, m3(A3) = 0.3;

m4 : m4(A1) = 0.98, m4(A2) = 0.01, m4(A3) = 0.01;

m5 : m5(A1) = 0.9, m5(A2) = 0.05, m5(A3) = 0.05.

Based on intuitive analysis, evidence m1, m3, m4 and m5 collectively supports propo-
sition A1, while evidence m2 supports proposition A3 with a higher degree of certainty,
despite being conflicting evidence. The next step involves validation using the method
proposed in this paper.

(1) Improved Pignistic probability function

The mass functions in the provided examples are all single-subset focal element
evidential bodies. Consequently, the mass function values after conversion through the
improved Pignistic probability function remain the same as the original BPA function
values. The values of converted mass function are detailed in Table 1.

Table 1. The values of converted mass functions.

The Converted Mass Functions m’(A1) m’(A2) m’(A3)

m′
1 0.9 0 0.1

m′
2 0 0.01 0.99

m′
3 0.5 0.2 0.3

m′
4 0.98 0.01 0.01

m′
5 0.9 0.05 0.05

(2) The Bray–Curtis dissimilarity matrix is derived from Equations (9) and (10) as follows:

B =


0 0.9

0.9 0
0.4 0.69

0.4 0.09 0.05
0.69 0.98 0.94

0 0.43 0.38
0.09 0.98
0.05 0.94

0.43 0 0.08
0.38 0.08 0


Applying Equation (11), the evidence support based on the Bray–Curtis dissimilarity

matrix is determined as follows:

sup
(
m′

i
)
= {8.6806, 1.1612, 2.2266, 6.7393, 9.0489}
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Utilizing Equation (12) for normalization, the support coefficients become as follows:

wr(m′
i)
= {0.3116, 0.0417, 0.0799, 0.2419, 0.3248}

(3) Equations (13) and (14) are applied to obtain the cosine distance matrix of the in-
cluded angle:

D =


1 0.11

0.11 1
0.86 0.49

0.86 0.99 1.00
0.49 0.01 0.06

1 0.82 0.85
0.99 0.01
1.00 0.06

0.82 1 1.00
0.85 1.00 1


According to Equation (15), the similarity of the evidence available based on the cosine

distance matrix of the included angle is determined as follows:

sus
(
m′

i
)
= {0.7400, 0.1675, 0.7550, 0.7050, 0.7275}

Normalization of the evidence similarity coefficient according to Equation (16) results
in the following:

wt(m′
i)
= {0.2391, 0.0541, 0.2439, 0.2278, 0.2351}

(4) Applying Equations (17)–(19), the entropy of each evidence is calculated as follows:

Ui
(
m′

i
)
= {1.5984, 1.0841, 4.4171, 1.1752, 1.7665}

Normalization of the evidence uncertainty coefficient according to Equation (20) yields
the following:

wn(m′
i)
= {0.1592, 0.1080, 0.4399, 0.1170, 0.1759}

(5) According to Equations (21)–(22), the normalized evidence weighted correction coeffi-
cient is calculated as follows:

W f us(m′
i)
= {0.2925, 0.0060, 0.2114, 0.1590, 0.3312}

Applying Equation (23), a corresponding correction coefficient is assigned to each
evidence, resulting in the final mass function value:

m′′
i =

N

∑
i=1

W f us(m′
i)
× m′

i = {0.8228, 0.0605, 0.1168}

(6) Evidence fusion is executed according to Equation (24), and the final fusion results
are presented in Table 2.

Table 2. Fusion results of single-subset focal element conflict data.

Fusion Results m(A1) m(A2) m(A3)

m′′
1
⊕

m′′
2 0.9751 0.0053 0.0196

m′′
1
⊕

m′′
2
⊕

m′′
3 0.9968 0.0004 0.0029

m′′
1
⊕

m′′
2
⊕

m′′
3
⊕

m′′
4 0.9996 0.0000 0.0004

m′′
1
⊕

m′′
2
⊕

m′′
3
⊕

m′′
4
⊕

m′′
5 0.9999 0.0000 0.0001

(7) Comparison with other improvement methods is outlined in Table 3. The variation in
the mass function value of the proposition A1 concerning different fusion rules and
the number of fusions is illustrated in Figure 2.
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Figure 2. Mass function values of proposition A1 for a single-subset of focal element conflict data
under different fusion methods.

Table 3. Fusion results of single-subset focal element conflict data under various fusion methods.

Fusion Approach BPA First Fusion
m”

1⊕m”
2

Second Fusion
m”

1⊕m”
2⊕m”

3

Third Fusion
m”

1⊕m”
2⊕m”

3⊕m”
4

Fourth Fusion m”
1⊕m”

2⊕
m”

3⊕m”
4⊕m”

5

Dempster rule
m(A1) 0.0000 0.0000 0.0000 0.0000
m(A2) 0.0000 0.0000 0.0000 0.0000
m(A3) 1.0000 1.0000 1.0000 1.0000

Murphy’s method
m(A1) 0.4054 0.5055 0.8930 0.9834
m(A2) 0.0001 0.0000 0.0001 0.0000
m(A3) 0.5946 0.4945 0.1069 0.0166

Deng’s method
m(A1) 0.4055 0.5737 0.8033 0.8585
m(A2) 0.0045 0.0866 0.0439 0.0379
m(A3) 0.5900 0.3397 0.1528 0.1036

Wang’s method
m(A1) 0.8931 0.9669 0.9898 0.9968
m(A2) 0.0179 0.0027 0.0004 0.0001
m(A3) 0.0890 0.3040 0.0098 0.0031

LI’s method
m(A1) 0.9189 0.9797 0.9949 0.9987
m(A2) 0.0180 0.0027 0.0004 0.0000
m(A3) 0.0630 0.0176 0.0047 0.0012

Zhao’s method
m(A1) 0.4571 0.7178 0.9792 0.9991
m(A2) 0.0000 0.0046 0.0001 0.0000
m(A3) 0.5429 0.2775 0.0207 0.0009

Chen’s method
m(A1) 0.4054 0.7211 0.9910 0.9996
m(A2) 0.0001 0.0040 0.0001 0.0000
m(A3) 0.5946 0.2749 0.0089 0.0003
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Table 3. Cont.

Fusion Approach BPA First Fusion
m”

1⊕m”
2

Second Fusion
m”

1⊕m”
2⊕m”

3

Third Fusion
m”

1⊕m”
2⊕m”

3⊕m”
4

Fourth Fusion m”
1⊕m”

2⊕
m”

3⊕m”
4⊕m”

5

Xiao’s method
m(A1) 0.2790 0.5763 0.9397 0.9963
m(A2) 0.0001 0.0065 0.0004 0.0000
m(A3) 0.7210 0.4173 0.0599 0.0037

Our method
m(A1) 0.9751 0.9968 0.9996 0.9999
m(A2) 0.0053 0.0004 0.0000 0.0000
m(A3) 0.0196 0.0029 0.0004 0.0001

4.2. An Example of Multi-Subset Focal Element Data

There are five pieces of evidence on the frame of discernment Θ = {A1, A2, A3}, and
the BPA function of each piece of evidence is, respectively, as follows:

m1 : m1(A1) = 0.41, m1(A2) = 0.29, m1(A3) = 0.3;

m2 : m2(A1) = 0, m2(A2) = 0.9, m2(A3) = 0.1;

m3 : m3(A1) = 0.58, m3(A2) = 0.07, m3(A1, A3) = 0.35;

m4 : m4(A1) = 0.55, m4(A2) = 0.1, m4(A1, A3) = 0.35;

m5 : m5(A1) = 0.6, m5(A2) = 0.1, m5(A1, A3) = 0.3.

Upon intuitive analysis, evidence m1, m3, m4 and m5 supports proposition A1, while
evidence m2 supports proposition A2 with a higher degree of certainty, despite being
conflicting evidence. Validation is performed using the proposed method.

(1) Improved Pignistic probability function

For the multi-subset focal propositions m3, m4 and m5, it is necessary to implement
the improved Probabilistic transformations for their resolution.

According to Equations (3) and (4), the belief function and plausibility function values
for m3 are as follows:

Bel(A1) = 0.58, Bel(A2) = 0.07, Bel(A3) = 0

Pls(A1) = 0.93, Pls(A2) = 0.07, Pls(A3) = 0.35

According to Equations (7) and (8), the following holds:

ε =

1 − ∑
Ai⊆Ω

Bel(Ai)

∑
Ai⊆Ω

Pls(Ai)
= 0.2593

BetPm3(A1) = 0.8211, BetPm3(A2) = 0.0882, and BetPm3(A3) = 0.0908.

Similarly, the following holds:

BetPm4(A1) = 0.7834, BetPm4(A2) = 0.1259, and BetPm4(A3) = 0.0908;

BetPm5(A1) = 0.8077,BetPm5(A2) = 0.1231, and BetPm5(A3) = 0.0692.

The values of mass function converted using the improved Pignistic probability func-
tion are shown in Table 4.

(2) The Bray–Curtis dissimilarity matrix, as derived from Equations (9) and (10), is
represented by the following:
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Table 4. Values of mass function after being converted.

The Converted Mass Functions m’(A1) m’(A2) m’(A3)

m′
1 0.4100 0.2900 0.3000

m′
2 0.0000 0.9000 0.1000

m′
3 0.8211 0.0882 0.0908

m′
4 0.7834 0.1259 0.0908

m′
5 0.8077 0.1231 0.0692

B =


0 0.6100

0.6100 0
0.4110 0.8210

0.4110 0.3733 0.3977
0.8210 0.7833 0.8077

0 0.0377 0.0349
0.3733 0.7833
0.3977 0.8077

0.0377 0 0.0243
0.0349 0.0243 0


Utilizing Equation (11), the support of the evidence based on the Bray–Curtis dissimi-

larity matrix is computed as follows:

sup
(
m′

i
)
= {2.3164, 1.3430, 14.7074, 17.9082, 18.3895}

After normalization according to Equation (12), the coefficients of support for the
evidence are as follows:

wr
(
m′

i
)
= {0.0424, 0.0246, 0.2690, 0.3276, 0.3364}

(3) The cosine distance matrix of the included angle, obtained from Equations (13) and (14),
is given by the following:

D =


1 0.5493

0.5493 1
0.8014 0.1176

0.8014 0.8240 0.8081
0.1176 0.1692 0.1585

1 0.9986 0.9987
0.8240 0.1692
0.8081 0.1585

0.9986 1 0.9995
0.9987 0.9995 1


According to Equation (15), the similarity of the evidence based on the cosine distance

matrix is as follows:

sus
(
m′

i
)
= {0.7457, 0.2487, 0.7291, 0.7478, 0.7412}

The normalized evidence similarity coefficient according to Equation (16) is as follows:

wt
(
m′

i
)
= {0.2321, 0.0774, 0.2270, 0.2328, 0.2307}

(4) Applying Equations (17)–(19), the entropy of each available evidence is determined
as follows:

Ui
(
m′

i
)
= {4.7893, 1.5984, 2.3555, 2.6289, 2.4291}

The coefficient of uncertainty of evidence after normalization according to Equation (20)
is as follows:

wn
(
m′

i
)
= {0.3470, 0.1158, 0.1707, 0.1905, 0.1760}

(5) According to Equations (21)–(22), the normalized evidence weighted correction coeffi-
cient is obtained as follows:

W f us(m′
i)
= {0.0808, 0.0052, 0.2467, 0.3439, 0.3234}
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According to Equation (23), each piece of evidence is assigned a corresponding correc-
tion coefficient, and the resulting mass function value can be calculated as follows:

m′′
i =

N

∑
i=1

W f us(m′
i)
× m′

i = {0.7633, 0.1330, 0.1008}

(6) Convergence of Evidence Based on D-S Theory

Evidence fusion is carried out according to Equation (24), and the final fusion results
are shown in Table 5.

Table 5. Fusion results of multi-subset focal element conflict data.

Fusion Results m(A1) m(A2) m(A3)

m1′′⊕m2′′ 0.9547 0.0288 0.0165
m1′′⊕m2′′⊕m3′′ 0.9926 0.0052 0.0023

m1′′⊕m2′′⊕m3′′⊕m4′′ 0.9988 0.0009 0.0003
m1′′⊕m2′′⊕m3′′⊕m4′′⊕m5′′ 0.9998 0.0002 0.0000

(7) Comparison with alternative improvement methods is illustrated in Table 6. The
variations in the mass function value of the proposition A1 across different fusion
rules and fusion numbers are depicted in Figure 3.
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Table 6. Fusion results of multi-subset focal element conflict data under different fusion methods.

Fusion Approach BPA First Fusion
m”

1⊕m”
2

Second Fusion
m”

1⊕m”
2⊕m”

3

Third Fusion
m”

1⊕m”
2⊕m”

3⊕m”
4

Fourth Fusion m”
1⊕m”

2⊕
m”

3⊕m”
4⊕m”

5

Dempster rule
m(A1) 0.0000 0.0000 0.0000 0.0000
m(A2) 0.8969 0.6350 0.3320 0.0000
m(A3) 0.1031 0.3650 0.6680 1.0000

Murphy’s method

m(A1) 0.0964 0.4939 0.8362 0.9613
m(A2) 0.8119 0.4180 0.1147 0.0147
m(A3) 0.0917 0.0792 0.0410 0.0166

m(A1, A3) 0.0000 0.0090 0.0081 0.0032

Deng’s method

m(A1) 0.0000 0.6019 0.9329 0.9802
m(A2) 0.8969 0.2908 0.0225 0.0009
m(A3) 0.1031 0.0991 0.0354 0.0154

m(A1, A3) 0.0000 0.0082 0.0092 0.0035

Wang’s method

m(A1) 0.7283 0.8679 0.9393 0.9728
m(A2) 0.0972 0.0423 0.0167 0.0063
m(A3) 0.0180 0.0034 0.0006 0.0000

m(A1, A3) 0.1565 0.0865 0.0433 0.0208

LI’s method

m(A1) 0.7505 0.8714 0.9346 0.9669
m(A2) 0.0504 0.0152 0.0042 0.0011
m(A3) 0.0072 0.0008 0.0000 0.0000

m(A1, A3) 0.1918 0.1126 0.0610 0.0319

Zhao’s method

m(A1) 0.1046 0.6945 0.9355 0.9817
m(A2) 0.7989 0.1902 0.0163 0.0000
m(A3) 0.0965 0.1062 0.0409 0.0147

m(A1, A3) 0.0000 0.0091 0.0073 0.0036

Chen’s method

m(A1) 0.0964 0.8923 0.9788 0.9916
m(A2) 0.8119 0.0293 0.0010 0.0001
m(A3) 0.0917 0.0455 0.0102 0.0026

m(A1, A3) 0.0000 0.0329 0.0173 0.0057

Xiao’s method

m(A1) 0.1420 0.6391 0.9400 0.9816
m(A2) 0.7412 0.2462 0.0165 0.0006
m(A3) 0.1168 0.1072 0.0341 0.0141

m(A1, A3) 0.0000 0.0075 0.0093 0.0037

Our method
m(A1) 0.9547 0.9926 0.9988 0.9998
m(A2) 0.0288 0.0052 0.0009 0.0002
m(A3) 0.0165 0.0023 0.0003 0.0000

4.3. Discussion

In this section, we present two approaches for fusing conflicting evidence from single-
subset and multi-subset focal element data sources. Initially, the effectiveness of the
improved Pignistic probability function is validated. Leveraging the total likelihood of
truth information from single-subset focal elements, the evidence from multi-subset focal
elements is allocated to single-subset propositions based on confidence intervals. This
approach maximizes the utilization of existing information, enabling the rapid identification
of the correct proposition A1, even in the presence of conflicting data sources from multi-
subset focal elements.

As shown in Figure 2 and Table 3, when validating conflict data with singleton focal
elements, the D-S evidence theory fails to correctly identify the proposition A1. Notably,
the methods proposed by Xiao, Murphy, Zhao and Chen in their first fusion attempts all
yielded mass function values for the proposition A1 that did not surpass 0.5. In contrast,
our proposed method achieved a substantial improvement, reaching a mass function
value of 0.9751 for the proposition A1 in the first fusion iteration, outperforming all of
the aforementioned methods. With increasing fusion iterations, the mass function value
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for the proposition A1 steadily increased, reaching 0.9999 in the final fusion iteration,
consistently surpassing the fusion accuracy of the aforementioned improved methods.
Compared to Murphy’s method, our proposed method exhibited a 1.68% improvement, a
0.36% improvement over Xiao’s method and a 0.03% improvement over Chen’s method.

As illustrated in Figure 3 and Table 6, when validating conflict data with multiple sub-
set focal elements, the D-S evidence theory still failed to identify the correct proposition A1.
Deng and Chen’s methods, in their initial fusion attempts, both failed to correctly identify
A1. For Murphy, Zhao and Xiao’s methods, the mass function values for proposition A1

did not exceed 0.2 in the first fusion iteration. In contrast, our proposed method achieved a
mass function value of 0.9547 for the proposition A1 in the first fusion iteration, reaching
0.9998 in the final fusion iteration. This consistently exceeded the fusion accuracy of the
aforementioned improved methods, showing a 4% improvement over Murphy’s method, a
1.86% improvement over Xiao’s method and a 0.83% improvement over Chen’s method.

In summary, our proposed method demonstrates faster convergence and higher fu-
sion accuracy compared to previously proposed improved methods. This validates the
effectiveness and feasibility of the proposed approach.

5. Conclusions

This paper conducts a comprehensive study on conflict issues in evidence fusion,
proposing the use of the improved Pignistic probability function to convert multi-subset
focal element evidence into single-subset focal element evidence. This approach enhances
the universality of conflict data fusion methods. The novel combination of the Bray–
Curtis dissimilarity and cosine of the included angle distance is introduced as a means to
measure evidence credibility. This, coupled with the belief entropy metric, gauges evidence
uncertainty and determines the final weighting correction coefficients for the evidence. In
the validation of conflicting evidence, the results demonstrate that the proposed method
can rapidly and effectively identify target propositions. It exhibits faster convergence speed,
higher fusion accuracy and better performance in addressing evidence conflict challenges.
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