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Abstract: The theory of open quantum systems is applied to study galvano-, thermo-magnetic,
and magnetization phenomena in axial symmetric two-dimensional systems. Charge carriers are
considered as quantum particles interacting with the environment through a one-body (mean-field)
mechanism. The dynamics of charge carriers is affected by the average collision time that takes
effectively into account two-body effects. The functional dependencies of the average collision time
on the external uniform magnetic field, concentration and temperature are phenomenologically
treated. Analytical expressions are obtained for the tensors of electric and thermal conductivity
and/or resistivity. The developed theory is applied to describe the Shubnikov-de Haas oscillations
and quantum Hall effect in graphene and GaAs/AlxGa1−xAs heterostructure. The dependencies of
magnetization and thermal conductivity on the magnetic field are also predicted.

Keywords: open quantum systems; electron mobility; non-Markovian dynamics; magnetic field;
electric field; Shubnikov-de Haas oscillations; quantum Hall effect

1. Introduction

Emerging new two-dimensional (2D) materials such as heterostructures, graphene,
and black phosphorus are considered promising candidates for next-generation electronic,
optoelectronic devices, electrode materials, as well as for electrocatalysts in energy storage
and electrocatalytic applications [1–5]. One of the fascinating topics in fundamental physics
is experimental and theoretical investigations of the properties of 2D electron gas (2DEG)
or 2D materials in uniform magnetic fields and at low temperatures. Since the charge
carrier mobility in the 2D systems is significantly high, the quantum Hall effects (QHE)
and the Shubnikov–de Haas oscillations (SdHO) were observed [6–13]. For example,
the QHE appears in the bulk quasi-2D materials like the black-phosphorus [14,15] and
the inorganic conductor molybdenum oxide [16] at temperatures of about 0.07–4 K. The
oscillator behavior of the diagonal magneto-resistance and the quantization of the off-
diagonal resistance Rxy at low temperature are interesting phenomena that have not yet
been fully understood. External electric and magnetic fields and temperature can change
the charge density, mobility, and collision time of charge carriers, as a result of which the
transport properties of the latter may change [6]. At low temperatures and a sufficiently
strong magnetic field, the SdHO amplitude is large and the QHE plateau is significantly
wider [7,8]. For InSb single crystals with different concentrations and n-type mobility in the
temperature range from T0 = 4.2 to 16 K [8], the SdHO amplitude decreases with increasing
temperature. It is also clear from the experiment that the period of oscillation remains
unchanged at all temperatures. In ref. [13], the experiments with the In0.53Ga0.47As/InP
heterostructure were carried out at various low temperatures and found that the Hall
plateau disappeared with increasing temperature. The half-width of the oscillations of the
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diagonal resistance increases, which was also observed in graphene [17–26], which is a 2D
material.

In ref. [17], the integer QHE was discovered in graphene at temperature T0 = 30 mK.
The experimental results obtained show that the mobility of charge carriers in graphene is
very high. This, in turn, makes it possible to observe the QHE even at high temperatures. In
ref. [20], they even managed to observe QHE under the influence of a very strong magnetic
field at room temperature, where the Hall conductivity σxy = 2e2/h and the longitudinal
conductivity σxx = 0. In ref. [17], the temperature dependence and gate-voltage (charge
carriers concentration) dependence of the SdHO in graphene were measured. As obtained,
the amplitude of SdHO significantly changes at the magnetic field B ≈ 5 T. For the SdHO,
it would be interesting to investigate theoretically the off-diagonal resistances Rxy that
correspond to the experimentally obtained diagonal resistances Rxx at various magnetic
fields and temperatures.

Experimental data show that graphene has a high thermal conductivity (κ ' 3000–
5000 Wm−1K−1 at room temperature) [24]. It depends on the type of substrate, defects, and
concentration of impurity atoms [27–30]. Most experiments on thermal conductivity have
usually been carried out at room temperature and higher. Therefore, we are interested in
studying the dependence of thermal conductivity on the magnetic field at low temperatures
using experimental data on electric conductivity.

In refs. [31–34], 2D systems in extremely strong magnetic fields were theoretically
studied by treating the electron as a free particle and using a scattering potential with short-
and long-range scatterers. This model does not work if the 2D system has too much surface
roughness. In ref. [35], the Hall conductivity of 2D graphite was theoretically calculated
using the Born approximation and analytical expressions for the Hall conductivities were
obtained in the cases of short- and long-range scatterers and limits of strong and weak
magnetic fields. To date, many experimental and theoretical studies have been carried out,
but the theory of QHE is not fully developed.

The purpose of this work is to describe QHE and SdHO in graphene within the non-
Markovian quantum Langevin formalism. The main idea of our model is as follows. The
charge carriers are considered as quantum particles coupled to the environment (heat bath)
through particle-phonon interactions. For example, the substrate of graphene can serve as
a heat bath for it. The dynamics of the charge carriers are restricted by the average collision
time. The functional forms of the average collision time and relaxation time on temperature,
concentration, and magnetic field are extracted from experimental data. Because of this,
in reality, the coupling used between the charge carrier and environment is actually more
general than a simple particle-phonon coupling. In our model, the one-body, two-body,
and non-Markovian effects are taken into consideration. Note, that the quantum Langevin
approach was widely used to describe various macroscopic phenomena [36–46].

The work is organized as follows. In Section 2, the main assumptions of the model
are discussed. The non-Markovian Langevin equations for the charge carriers embedded
in the heat bath and uniform magnetic and electric fields are fully quantum-mechanically
derived. Using the solutions of these equations, we obtain time-dependent expressions
of the diagonal and non-diagonal electric conductivities in 2D systems. The resulting
expressions were analyzed for weak and strong magnetic fields, as well as in the non-
Markovian and Markovian limits. In Section 3, we present the description of experimental
data on the QHE and SdHO in graphene and GaAs/AlxGa1−xAs heterostructure. The
magnetization and thermal conductivity in graphene are predicted. In Section 4, the main
conclusions are given.
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2. Non-Markovian Langevin Equations in External Uniform Magnetic and
Electric Fields

In order to derive the electric conductivity or resistance tensor for the 2D collective
subsystem (charge carrier), a suitable microscopic Hamiltonian,

H = Hc(B, Ex) + Hb + Hcb,

Hc =
1

2mx
(px − eAx(x, y))2 +

1
2my

(py − eAy(x, y))2 + eExx, (1)

Hb = ∑
ν

h̄ωνb+ν bν,

Hcb = ∑
ν

(ανx + gνy)(b+ν + bν) + ∑
ν

1
h̄ων

(ανx + gνy)2,

was formulated in ref. [46]. The term Hc is the Hamiltonian of the collective subsystem
embedded in the external uniform magnetic and electric fields. Here q = (x, y, 0) is the col-
lective coordinate of a charged particle and p = (px, py, 0) is its canonically conjugated mo-
mentum, mx and my are the components of the effective mass tensor, A = (− 1

2 yB, 1
2 xB, 0)

is the vector potential of the perpendicular axisymmetric magnetic field (along the z-axis)
with the strength B = |B|, and the constant electric field E = (Ex, 0, 0) acting in the x-axis
direction (positive charge e). The terms Hb and Hcb are the Hamiltonians of the heat bath
subsystem, and the collective-bath interaction with the coupling parameters αν and gν,
respectively. The heat bath is an assembly of harmonic oscillators with frequencies ων. The
coupling to the heat bath is linear in the phonon creation b+ν and annihilation bν operators
and corresponds to the energy being transferred to and from the thermal reservoir by
absorption or emission of bath quanta. We introduce the counter-term (second term) in Hcb
in order to compensate for the coupling-induced potential [38,42].

Introducing new definitions for momenta

πx = px +
1
2

mxωcxy, πy = py −
1
2

myωcyx, (2)

where ωcx = eB/mx and ωcy = eB/my (ωc =
√

ωcxωcy = eB√mxmy
is the cyclotron fre-

quency), we rewrite the Hamiltonian Hc as

Hc =
π2

x
2mx

+
π2

y

2my
+ eExx. (3)

Commuting the collective operators x, y, πx, πy, and the bath phonon operators bν, b+ν with
H, we obtain the system of the Heisenberg equations

ẋ(t) =
i
h̄
[H, x] =

πx(t)
mx

,

ẏ(t) =
i
h̄
[H, y] =

πy(t)
my

,

π̇x(t) =
i
h̄
[H, πx]

= πy(t)ωcy − eEx −∑
ν

αν(b+ν (t) + bν(t))− 2 ∑
ν

αν

h̄ων
[ανx(t) + gνy(t)],

π̇y(t) =
i
h̄
[H, πy]

= −πx(t)ωcx −∑
ν

gν(b+ν (t) + bν(t))− 2 ∑
ν

gν

h̄ων
[ανx(t) + gνy(t)], (4)
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and

ḃ+ν (t) =
i
h̄
[H, b+ν ] = iωνb+ν (t) +

i
h̄
(ανx(t) + gνy(t)),

ḃν(t) =
i
h̄
[H, bν] = −iωνbν(t)−

i
h̄
(ανx(t) + gνy(t)). (5)

Substituting the solution

b+ν (t) = f+ν (t)− ανx(t) + gνy(t)
h̄ων

+
αν

h̄ων

t∫
0

dτẋ(τ)eiων(t−τ) +
gν

h̄ων

t∫
0

dτẏ(τ)eiων(t−τ),

bν(t) = fν(t)−
ανx(t) + gνy(t)

h̄ων
(6)

+
αν

h̄ων

t∫
0

dτẋ(τ)e−iων(t−τ) +
gν

h̄ων

t∫
0

dτẏ(τ)e−iων(t−τ),

fν(t) = [bν(0) +
ανx(0) + gνy(0)

h̄ων
]e−iωνt

of Equation (5) into (4), we obtain the stochastic dissipative quantum Langevin equations
(Heisenberg–Langevin equations)

ẋ(t) =
πx(t)

mx
,

ẏ(t) =
πy(t)

my
,

π̇x(t) = πy(t)ωcy − eEx −
1

mx

t∫
0

dτKα(t− τ)πx(τ)−
1

my

t∫
0

dτKαg(t− τ)πy(τ) + Fα(t), (7)

π̇y(t) = −πx(t)ωcx −
1

my

t∫
0

dτKg(t− τ)πy(τ)−
1

mx

t∫
0

dτKgα(t− τ)πy(τ) + Fg(t)

with the dissipative kernels

Kα(t− τ) = ∑
ν

2α2
ν

h̄ων
cos[ων(t− τ)], Kg(t− τ) = ∑

ν

2g2
ν

h̄ων
cos[ων(t− τ)],

Kαg(t− τ) = Kgα(t− τ) = ∑
ν

2ανgν

h̄ων
cos[ων(t− τ)], (8)

and the random forces

Fα(t) = −∑
ν

Fν
α (t) = −∑

ν

αν( f+ν (t) + fν(t)),

Fg(t) = −∑
ν

Fν
g (t) = −∑

ν

gν( f+ν (t) + fν(t)) (9)

in the coordinates. The random force operators Fν
α (t) and Fν

g (t) are identified as fluc-
tuations are identified as fluctuations due to the uncertainty of the initial conditions
for the thermostat operators. We consider an ensemble of initial states in which the
operators of the collective subsystem are fixed at the values x(0) and y(0), and the ini-
tial bath operators are drawn from an ensemble that is canonical relative to the collec-
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tive subsystem [39,42]. The initial distribution is then the conditional density matrix
ρ0({b+ν (0), bν(0)}|q(0)) = exp(−∑ν h̄ων[b+ν + ανx+gνy

h̄ων
][bν +

ανx+gνy
h̄ων

]/T0)/Z(T0), where
Z(T0) is conditional partition function. In an ensemble of initial states for the bath operators,
the fluctuations Fν

α (t) and Fν
g (t) have the Gaussian distributions with zero average value

� Fν
α (t)�=� Fν

g (t)�= 0, (10)

where the symbol� ...� denotes the average over the bath. The temperature T0 of the
heat bath is included in the analysis through the distribution of initial conditions. The
Bose-Einstein statistics is employed for the heat bath:

� f+ν (t) f+ν′ (t
′)� = � fν(t) fν′(t

′)�= 0,

� f+ν (t) fν′(t
′)� = δν,ν′nνeiων(t−t′), (11)

� fν(t) f+ν′ (t
′)� = δν,ν′(nν + 1)e−iων(t−t′),

where nν = [exp(h̄ων/T0)− 1]−1 are the occupation numbers for phonons. Employing (11),
the quantum fluctuation-dissipation relations are obtained:

∑
ν

ϕν
αα(t, t′)

tanh[ h̄ων
2T0

]

h̄ων
= Kα(t− t′), ∑

ν

ϕν
gg(t, t′)

tanh[ h̄ων
2T0

]

h̄ων
= Kg(t− t′),

∑
ν

ϕν
αg(t, t′)

tanh[ h̄ων
2T0

]

h̄ων
= Kαg(t− t′),

where

ϕν
αα(t, t′) = 2α2

ν[2nν + 1] cos(ων[t− t′]), ϕν
gg(t, t′) = 2g2

ν[2nν + 1] cos(ων[t− t′]),

ϕν
αg(t, t′) = 2ανgν[2nν + 1] cos(ων[t− t′]),

are the symmetrized correlation functions ϕν
kk′(t, t′) =� Fν

k (t)Fν
k′(t
′) + Fν

k′(t
′)Fν

k (t) �,
k, k′ = α, g. The quantum fluctuation-dissipation relations are reduced to the classical
ones in the high-temperature limit (or h̄→ 0): ∑ν ϕν

αα(t, t′) = 2T0Kα(t− t′), ∑ν ϕν
gg(t, t′) =

2T0Kg(t− t′), and ∑ν ϕν
αg(t, t′) = 2T0Kαg(t− t′).

The presence of the integral parts in Equations (7) indicates non-Markovian dynamics
of the system. The dissipative kernels have the form of memory functions since they make
the equations of motion at time t dependent on the values of ẋ and ẏ for previous times.
The Laplace transform L̂ of Equations (7) leads to the system of linear equations:

x(s)s = x(0) +
πx(s)

mx
,

y(s)s = y(0) +
πy(s)

my
, (12)

πx(s)s = πx(0) + ωcyπy(s)−
eEx

s
− Kα(s)

πx(s)
mx

− Kαg(s)
πy(s)

my
+ Fα(s),

πy(s)s = πy(0)−ωcxπx(s)− Kg(s)
πy(s)

my
− Kgα(s)

πx(s)
mx

+ Fg(s).

Here, Kα(s), Kg(s), Kαg(s), Kgα(s) and Fα(s), Fg(s) are the Laplace transforms of the dissi-
pative kernels and random forces, respectively. The system of Equation (12) is easy to solve
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and performs the inverse Laplace transform L̂−1 using the residue theorem and the roots
of the determinant

D = s2 + ωcxωcy +
sKα(s)

mx
+

sKg(s)
my

+
ωcyKgα(s)

mx

−
ωcxKαg(s)

my
+

Kα(s)Kg(s)
mxmy

−
Kαg(s)Kgα(s)

mxmy
= 0. (13)

Finally, the explicit solutions for the originals are

x(t) = x(0) + A1(t)πx(0) + A2(t)πy(0)− A3(t)eEx + Ix(t) + I′x(t),

y(t) = y(0) + B1(t)πy(0)− B2(t)πx(0) + B3(t)eEx − Iy(t) + I′y(t),

πx(t) = C1(t)πx(0) + C2(t)πy(0)− C3(t)eEx + Iπx (t) + I′πx (t),

πy(t) = D1(t)πy(0)− D2(t)πx(0) + D3(t)eEx − Iπy(t) + I′πy(t). (14)

In Equation (14),

Ix(t) =
∫ t

0
A1(τ)Fα(t− τ)dτ, I′x(t) =

∫ t

0
A2(τ)Fg(t− τ)dτ, Iy(t) =

∫ t

0
B2(τ)Fα(t− τ)dτ,

I′y(t) =
∫ t

0
B1(τ)Fg(t− τ)dτ, Iπx (t) =

∫ t

0
C1(τ)Fα(t− τ)dτ, I′πx (t) =

∫ t

0
C2(τ)Fg(t− τ)dτ,

Iπy(t) =
∫ t

0
D2(τ)Fα(t− τ)dτ, I′πy(t) =

∫ t

0
D1(τ)Fg(t− τ)dτ,

and the time-dependent coefficients

A1(t) = L̂−1
[

mys + Kg(s)
mxmyD(s)s

]
= B1|x,α↔y,g, A2(t) = L̂−1

[
myωcy − Kαg(s)

mxmyD(s)s

]
,

A3(t) = L̂−1
[

mys + Kg(s)
mxmyD(s)s2

]
, B2(t) = L̂−1

[
mxωcx + Kgα(s)

mxmyD(s)s

]
,

B3(t) = L̂−1
[

mxωcx + Kgα(s)
mxmyD(s)s2

]
, C1(t) = L̂−1

[
mys + Kg(s)

myD(s)

]
= D1|x,α↔y,g, (15)

C2(t) = L̂−1
[

myωcy − Kαg(s)
myD(s)

]
, C3(t) = L̂−1

[
mys + Kg(s)

myD(s)s

]
,

D2(t) = L̂−1
[

mxωcx + Kgα(s)
mxD(s)

]
, D3(t) = L̂−1

[
mxωcx + Kgα(s)

mxD(s)s

]
.

In general, the diagonal dissipative kernels are much larger than off-diagonal ones.
For simplicity, we assume that there is no correlation between the operators Fν

α and Fν
g ,

so that Kαg = Kgα = 0. We introduce the spectral density Dω of the heat bath excitations

to replace the sum over ν by the integral over frequency ω: ∑ν ...→
∞∫
0

dωDω..., αν → αω,

gν → gω, ων → ω, and nν → nω. The well-known spectral functions [36,39,42]

Dω
α2

ω

ω
=

λ2
x

π

γ2

γ2 + ω2 , Dω
g2

ω

ω
=

λ2
y

π

γ2

γ2 + ω2 (16)

are used. Here, the memory time γ−1 of dissipation is inverse to the phonon bandwidth of
the heat bath excitations and the coefficients

λx =
1

mx

∫ ∞

0
dτKα(t− τ), λy =

1
my

∫ ∞

0
dτKg(t− τ)
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are the friction coefficients in the Markovian limit. This Ohmic dissipation with the Loren-
zian cutoff (Drude dissipation) results in the dissipative kernels

Kα(t) = mxλxγe−γ|t|, Kg(t) = myλyγe−γ|t|. (17)

So, the solutions for the collective coordinates (14) include the following time-dependent
coefficients

A1(t) = Ȧ3(t), A2(t) = Ḃ3(t)|x↔y,

A3(t) =
1

mx

(
λyt

ω2
c + λxλy

+
ω2

c
(
γ− λy

)
− λ2

y(γ− λx)

γ
(
ω2

c + λxλy
)2

+
4

∑
i=1

βi(si + γ)
(
γλy + si(si + γ)

)
esit

s2
i

)
,

B1(t) = Ȧ3(t)|x↔y, B2(t) = Ḃ3(t), (18)

B3(t) =
ωcx

my

(
t

ω2
c + λxλy

+
2λxλy − γ(λx + λy)

γ
(
ω2

c + λxλy
)2 +

4

∑
i=1

βi(si + γ)2esit

s2
i

)
,

C1(t) = mx Ä3(t), C2(t) = mx B̈3(t)|x↔y, C3(t) = mx Ȧ3(t),

D1(t) = C1(t)|x↔y, D2(t) = C2(t)|x↔y, D3(t) = my Ḃ3(t),

where βi = [∏j 6=i(si − sj)]
−1 (i, j = 1− 4) and si are the roots of the equation

D(s) = (s + γ)
[
(s2 + ω2

c )(s + γ) + sγλx

]
+ γλy[s(s + γ) + γλx] = 0. (19)

These roots arise when the residue theorem is applied to perform the integration in the
inverse Laplace transform L̂−1.

The system of equations for the first moments

〈ẋ(t)〉 =
〈πx(t)〉

mx
, 〈ẏ(t)〉 =

〈πy(t)〉
my

〈π̇x(t)〉 = ω̃cy(t)〈πy(t)〉 − λπx (t)〈πx(t)〉 − eẼxx(t),

〈π̇y(t)〉 = −ω̃cx(t)〈πx(t)〉 − λπy(t)〈πy(t)〉 − eẼxy(t) (20)

is derived by averaging Equation (14) over the entire system and differentiating them with
respect to t. In Equation (20),

λπx (t) = −D1(t)Ċ1(t) + D2(t)Ċ2(t)
C1(t)D1(t) + C2(t)D2(t)

,

λπy(t) = −C1(t)Ḋ1(t) + C2(t)Ḋ2(t)
C1(t)D1(t) + C2(t)D2(t)

, (21)

ω̃cx(t) =
D1(t)Ḋ2(t)− D2(t)Ḋ1(t)
C1(t)D1(t) + C2(t)D2(t)

,

ω̃cy(t) =
C1(t)Ċ2(t)− C2(t)Ċ1(t)
C1(t)D1(t) + C2(t)D2(t)

, (22)

and

Ẽxx(t) = Ex
[
D3(t)ω̃cy + C3(t)λπx (t) + Ċ3(t)

]
,

Ẽxy(t) = Ex

[
C3(t)ω̃cx − D3(t)λπy(t)− Ḋ3(t)

]
(23)
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are the friction coefficients, renormalized cyclotron frequencies, and the components of the
electric field, respectively. As seen, the cross-component (along the y-axis) of the electric
field Ẽxy(t) is equal to zero at t = 0 and only arises during the non-Markovian evolution of
charge carriers, and Ẽxy(t→ ∞) 6= 0 (the classical Hall effect). Note that Ẽxy(t) = 0 in the
Markovian limit (γ→ ∞) [46].

One can define the current density (k, l = x, y) [6]

Jk = ∑
l

σkl(B)El (24)

by using the expression J = ne〈q̇(t)〉 and Equation (20):

Jx =
ne2

mx
C3(t)Ex(t), Jy = −ne2

my
D3(t)Ex(t). (25)

Changing the direction of the electric field E = (Ex, 0, 0) to E = (0, Ey, 0), we obtain

Jx =
ne2

mx
D̃3(t)Ey(t), Jy =

ne2

my
C̃3(t)Ey(t), (26)

where

C̃3(t) = myL−1
[

Kxx(s) + mxs
D

]
, D̃3 = mxmyωcyL−1

[
1
D

]
. (27)

From (24)–(26) we obtain the expression for the conductivity tensor

σ(τ) = ne2

 C3(τ)
mx

−D3(τ)
my

D̃3(τ)
mx

C̃3(τ)
my

 (28)

at time τ. The inverse transformation of σ(τ) results in the resistance tensor

R(τ) =
1

ne2
[
C3(τ)C̃3(τ) + D3(τ)D̃3(τ)

]( mxC̃3(τ) mxD3(τ)
−myD̃3(τ) myC3(τ)

)
. (29)

The non-diagonal elements

RH(τ) =
mxD3(τ)

ne2
[
C3(τ)C̃3(τ) + D3(τ)D̃3(τ)

] = myD̃3(τ)

ne2
[
C3(τ)C̃3(τ) + D3(τ)D̃3(τ)

] (30)

of the R(τ) have the meaning of the Hall resistance.
In order to describe the magnetotransport in real 2D systems, we need to use some

additional assumptions [46]:

(1) The dynamics of charge carriers are determined by three main characteristic times:
the relaxation time τr = λ−1 (if λx = λy = λ), the average time τ of a free path (or
the average collision time of a charge carrier between two successive collisions with
ions/atoms of the lattice), and the memory time γ−1 of the heat bath excitations. The
values of τr and τ are associated with one-body (mean-field) and two-body dissipa-
tions (effects), respectively (see Figure 1). At τ � τr (τr � τ), one-body (two-body)
dissipation dominates. If the values of τr and τ are comparable, then the transition
process takes place. In general, the values of τr and τ depend on the magnetic field
B, temperature T0, and concentration n. Since these relationships are extracted from
known experimental data, the coupling used between the charge carrier and environ-
ment is actually more general than the particle-phonon interaction.
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(2) Since the mass of the charge carrier is negligibly small compared to the mass of the
ion/atom, it can be assumed that with each collision with the ion/atom, the charge
carrier completely loses its ordered motion and its velocity or momentum becomes
equal to zero. The times τ of a free path are assumed to be the same for all charge
carriers and all collisions. Thus, the time limit t = τ is introduced in the conductivity
tensor (28) or resistance tensor (29).

Figure 1. Schematic illustration of the motion (time arrow t indicated) of the charge carrier (small
green circle) between two successive collisions with ions/atoms (large brown circles) of the lattice as
well as the relaxation time τr and the average collision time τ scales in 2D magnetotransport. Uniform
magnetic field B = (0, 0, B) perpendicular to the xy plane (along the z-axis), and the constant electric
field E = (Ex, 0, 0) acts in the direction of the x-axis.

For the space-symmetric system (mx = my = m, λx = λy = λ), we derive analytical
expressions that help us clarify our model and the magnetotransport process. In this case,
Equation (19) simplifies as(

s2 + ω2
c

)
(γ + s)2 + 2γλs(γ + s) + λ2γ2 = 0. (31)

The roots of this equation are

s1 = −1
2

(
γ + iωc +

√
(γ− iωc)

2 − 4γλ

)
, s2 = s∗1 ,

s3 = −1
2

(
γ + iωc −

√
(γ− iωc)

2 − 4γλ

)
, s4 = s∗3 .

Expanding these roots up to the first order in λ/γ,

s1 = s∗2 = −γ
ω2

c + γ2 − γλ

γ2 + ω2
c

+ i
λγωc

γ2 + ω2
c

, s3 = s∗4 = − λγ2

γ2 + ω2
c
− i

ω2
c + γ2 + γλ

γ2 + ω2
c

ωc, (32)

and taking them at t = τ, we obtain the diagonal and off-diagonal components of conduc-
tivity

σxx(τ) =
σxx0

1 + (ωcτr)2 −
σxx0√

1 + (ωcτr)2

× exp[− γ2

γ2 + ω2
c

τ

τr
] cos[

(
γ2 + γ/τr + ω2

c
)
ωcτ

γ2 + ω2
c

+ arctan(ωcτr)],

σxy(τ) = − σxx0ωcτr

1 + (ωcτr)2 +
σxx0√

1 + (ωcτr)2
(33)

× exp[− γ2

γ2 + ω2
c

τ

τr
] cos[

(
γ2 + γ/τr + ω2

c
)
ωcτ

γ2 + ω2
c

− arctan(
1

ωcτr
)].
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As seen, Equation (33) contain the non-oscillatory and oscillatory components. If the values
of τr and τ are comparable, the non-oscillatory terms of (33) have a major role. In the
Markovian limit (γ→ ∞), Equations (33) are transformed to simpler expressions:

σxx(τ) =
σxx0

1 + (ωcτr)2 −
σxx0√

1 + (ωcτr)2
exp[− τ

τr
] cos[ωcτ + arctan(ωcτr)],

σxy(τ) = − σxx0ωcτr

1 + (ωcτr)2 +
σxx0√

1 + (ωcτr)2
exp[− τ

τr
] cos[ωcτ − arctan(

1
ωcτr

)]. (34)

At τ � τr or t → ∞, the oscillatory terms vanish and we obtain the Drude conductivity
tensor

σ =
σxx0

1 + (ωcτr)2

(
1 −ωcτr

ωcτr 1

)
(35)

with the Drude conductivity

σxx0 =
ne2τr

m
(36)

at B = 0. Thus, one can say that our model is the generalized Drude model.

3. Calculated Results

In order to turn to the observable values, all parameters τ−1, τ−1
r , ωc, and γ in the

expressions are multiplied by m/e:

τ−1 → m
e

τ−1, τ−1
r → m

e
τ−1

r = µ−1,

ωc →
m
e

ωc = B, γ→ m
e

γ = Γ. (37)

So instead of the friction coefficient λ, cyclotron frequency ωc, and the inverse response time
γ of the system, we have the inverse reciprocal mobility µ−1 of charge carriers, the strength
of the magnetic field B, and a new parameter Γ related to the memory time. However, for
the graphene and 2D heterostructures considered, the mobility is almost independent of B
(here µ(B) = µ0 and µ0 = µ(B = 0)) in a wide range of B. So, their properties are described
by neglecting the effect of the magnetic field on the coupling term.

3.1. SdHO and QHE

The dependence of magnetoresistance (Rxx) and Hall resistance (Rxy) on the magnetic
field is shown in Figure 2 for a wide range of magnetic fields. Experimental results are
taken from ref. [17], and theoretical calculations are performed using formula (29) with
Γ = 13/(τ/τr). The experiment is conducted at the temperature T0 = 30 mK and the
gate voltage Vg = 15 V applied to the graphene sample. The charge carriers consist
of electrons and they have very high mobility, which is µ = 13,000 cm2V−1s−1 and it
weakly depends on the magnetic field and temperature. The SiO2 is taken as a substrate,
and the carrier density is controlled by applying a gate voltage Vg (n = αVg, where
α ≈ 7.3 × 1010 cm−2V−1 [19]). The average collision times τ are extracted using the
experimental data.

In Figure 2, the SdHO is observed in a narrow range of magnetic fields (B ≤ 3 T), and
the QHE is observed at strong magnetic fields (B > 3 T), where the longitudinal resistance
has a minimum, and the Hall resistance has a plateau. As seen, our model describes both
SdHO and QHE. The calculated results show that the values of τ/τr are different for both
processes (see Figure 3). The value of τ/τr for SdHO decreases with the magnetic field and
approaches unity at B = 3 T. At the beginning of the QHE (at B ≈ 3 T), a phase transition is
observed, in which the value of τ/τr increases several times compared to the value of τ/τr
at the end of the SdHO process. In the case of QHE, the value of τ/τr decreases slower
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with increasing magnetic field than in the case of SdHO. As follows from Figure 3, the
SdHO and QHE are the results of the transitional processes because the values of τr and τ
are comparable. The observed wide plateau in Rxy at strong fields can be explained by a
decrease in the average collision time of charge carriers.
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Figure 2. Dependencies of Rxx (left side) and Rxy (right side) on the magnetic field B. Experimental
results (solid lines) are taken from ref. [17]. Here, the charge carrier mobility is µ = 13,000 cm2V−1s−1,
gate voltage Vg = 15 V, and temperature of graphene T0 = 30 mK.
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Figure 3. The dependence of τ/τr, extracted from the experimental data of ref. [17], on the magnetic
field B.

In the QHE, in the region between two plateaus in Rxy, the longitudinal resistance Rxx
has a maximum, while in the center of the plateau, it is a minimum. This phenomenon
is explained by antiphase oscillations of Rxx and Rxy, which are clearly visible in the
approximate formulas

Rxx(B) =

Rxx0

(
1 + µB exp

[
− Γ2

Γ2+B2
τ
τr

]
sin
[
(Γ2+Γ/µ+B2)µB

Γ2+B2
τ
τr

])
1 + exp

[
− 2Γ2

Γ2+B2
τ
τr

]
− 2 exp

[
− Γ2

Γ2+B2
τ
τr

]
cos
[
(Γ2+Γ/µ+B2)µB

Γ2+B2
τ
τr

] ,

Rxy(B) =

Rxx0µB
(

1− exp
[
− Γ2

Γ2+B2
τ
τr

]
cos
[
(Γ2+Γ/µ+B2)µB

Γ2+B2
τ
τr

])
1 + exp

[
− 2Γ2

Γ2+B2
τ
τr

]
− 2 exp

[
− Γ2

Γ2+B2
τ
τr

]
cos
[
(Γ2+Γ/µ+B2)µB

Γ2+B2
τ
τr

] (38)

for the axial symmetric system in strong magnetic fields (ωcτr � 1). Here, Rxx0 = 1/σxx0 =
1/(neµ).

For the SdHO (Figure 4, left) and QHE (Figure 4, right) [17], the dependencies of

the average absolute value of the charge carrier velocity υ(B) =
√

υ2
x(B) + υ2

y(B) on the
magnetic field are calculated. At B ≈ 0 (the SdHO process), υ/c ≈ 0.02 (c is the speed of
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light in vacuum) and the mean free path l = υτ/2 ≈ 4 µm. Typically, the size of graphene
used in experiments is of the order of several µm. So in weak magnetic fields, charge
carriers move in a ballistic mode. For the QHE at strong magnetic fields (B > 3 T) υx � υy
and the off-diagonal resistance or off-diagonal conductance and υy (πy) are quantized and
have the step-wise behavior. Accordingly, the current component along the y-axis is also a
step function of the magnetic field. Note, that the observation of quantized conductance at
integer multiples of 2e/h at zero magnetic fields in high mobility suspended graphene and
GaAs-AlGaAs heterostucture ballistic nanoconstrictions was explained by the assumption
of quantized transverse momentum [47–49]. A surprising conclusion of ref. [50] is that the
quantized resistance of narrow quasi-one-dimensional (quasi-1D) ballistic channels (point
contacts) in the 2D electron gas at B = 0 is a limiting case of the QHE in the 2D systems.
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Figure 4. The dependence of υ/c on the magnetic field B.

The SdHO has been observed in a graphene sample where the mobility of charge
carriers is equal to µ =15,000 cm2V−1s−1 [17] (Figure 5). Experimental data show that the
value of µ is independent of the temperature up to T0 ≈ 100 K [21,24]. As seen in Figure 5,
the SdHO are getting smoother as temperature increases, especially at low magnetic fields.
The calculated results reproduce this behavior. This is clearly seen for the oscillation term
∆Rxy (see Figure 6). The main reason for this is a slight change of the τ/τr with increasing
T0. Note, that the values of τ and τr are comparable and τ ≈ τr at high magnetic fields. The
predicted Hall resistance (Figure 5) shows some plateau-like structure which also becomes
smoother with increasing T0.
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Figure 5. For the SdHO, the longitudinal resistivity resistance (the left plot) and the predicted
Hall resistance (the right plot) in graphene at different temperatures and magnetic fields. Experi-
mental data (solid lines) are taken from ref. [17]. Here the charge carrier mobility in graphene is
µ =15,000 cm2V−1s−1.
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Figure 6. The calculated oscillation part of the Hall resistance (∆Rxy) and τ/τr at different tempera-
tures and magnetic fields.

The SdHO was also measured in a graphene sample with much lower mobility
(µ = 2700 cm2V−1s−1) than in the previous case (Figure 7) [19]. The value of τ/τr de-
creases rapidly at weak magnetic fields and approaches τ/τr ≈ 1 as the magnetic field
increases (see Figure 8). Using these τ/τr, we describe well Rxx. As seen, the oscillations
in Rxx are small. The oscillation part ∆Rxy of the predicted off-diagonal resistance shows
that the plateau-like areas appear at B corresponding to the minima of Rxx (Figure 7). Since
the scale of the structure of ∆Rxy is much smaller than that in Figure 6, the predicted
behavior of ∆Rxy or Rxy will be difficult to observe in the experiment. However, we should
again note some similarities between the SdHO and QHE and the transitional nature of
both processes.
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Figure 7. The SdHO (left) and the oscillation part ∆Rxy of the Hall resistance (right). Experimen-
tal results (solid line) are taken from ref. [19]. Here, the charge carrier mobility of graphene is
µ = 2700 cm2V−1s−1, carrier density n = 4.38× 1012 cm2, and temperature T0 = 10 K. The predicted
Hall resistance is shown inside.
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Figure 8. The dependencies of τ/τr, extracted from the experimental data of ref. [19], on the magnetic
field B.
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In Figure 9, the dependencies of the experimental [19] and theoretical diagonal resis-
tance Rxx and Hall conductivity σxy on the carrier density (concentration) n in the graphene
are shown at the temperature T0 = 4 K and magnetic field B = 14 T. Based on the experi-
mental data of ref. [17], the mobility of charge carriers as a function of the charge density is
parameterized as follows µ = 0.097− 0.02|n|+ 1.403/(1 + |n|) (in unit m2V−1s−1). Using
the values of τ/τr from Figure 10 (approximately τ/τr ∼

√
|n|), we obtain quite good

agreement with the experimental data for the Rxx and σxy. Figure 11 shows that the trans-
verse velocity or the transverse momentum is quantized and has a step-wise dependence
on n. Thus, the step-like transverse current density Jy as a function of the carrier density is
predicted (Figure 12).
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Figure 9. Resistivity Rxx and Hall conductivity σxy as a function of the carrier density n. Experimental
results (solid lines) are taken from ref. [19]. Here, the magnetic field is B = 14 T and temperature
T0 = 4 K.
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Figure 12. The dependence of the transverse current density Jy on the carrier density n.

We also test the developed model by describing the diagonal resistance Rxx and the
Hall resistance Rxy in the 2DEG GaAs/AlxGa1−xAs [12] (see Figure 13). The experiment
was carried out at the temperature T0 = 66 mK, where the charge carrier mobility is
µ = 52,000 cm2V−1s −1 and the carrier density n = 1.93× 1011 cm2. As seen from the
calculated results in Figure 13, the SdHO and QHE are observed at B ≤ 1.5 T (weak
magnetic fields) and B > 1.5 T (strong magnetic fields), respectively, as in the case of
graphene [17] (see Figure 2). At B ≈ 1.5 T, the phase transition occurs between these two
processes. The same behavior is observed for the resistance in graphene (Figure 2) [17]. For
the 2DEG and graphene, the values of τ/τr have almost the same functional dependence
on the magnetic field but τ/τr(2DEG) < τ/τr(graphene) (see Figure 14). For both solid
materials, in the case of SdHO, the value of τ/τr is faster decreasing with increasing B than
in the case of QHE. Since the values of τr and τ are comparable, the SdHO and QHE are
the results of the transitional processes.
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Figure 13. Dependencies of Rxx (left) and Rxy (right) on B in 2DEG. Experimental data (solid lines)
are taken from ref. [12]. Here the charge carrier mobility is µ = 52,000 cm2V−1s−1, carrier density
n = 1.93× 1011 cm−2, and temperature T0 = 66 mK.

The off-diagonal conductivity (33) is expressed as

σxy(B) = − σxx0ωcτr

1 + (ωcτr)2 + ∆σxy(B),

where ∆σxy(B) is the oscillation part of σxy(B). If the magnetic field is very weak, the
oscillation part of the conductance is as follows:

∆σxy(B) = 2neµB
(

τ/τr

Γ
+ µ[1 + τ/τr]

)
exp(−τ/τr). (39)
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The experimental data show that the value of τ/τr is much larger at weak magnetic fields,
because ∆σxy(B) ≈ 0. Since τ/τr ≈ 1 at strong magnetic fields, the value of ∆σxy(B)
becomes significantly larger.
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Figure 14. The dependence of τ/τr on B (left) for 2DEG [12]. The values of τ/τr for graphene
(dashed lines) [17] and 2DEG (solid lines) [12] are compared (right). Here, the charge carrier mobility
in graphene is µ = 13,000 cm2V−1s−1 and temperature T0 = 30 mK [17]. The charge carrier mobility
in 2DEG is µ = 52,000 cm2V−1s−1 and temperature T0 = 66 mK.

3.2. Magnetization in Graphene

Using Equations (14) and the time-dependent correlations of the random forces, we
derive the z−component

Lz(τ) = 〈x(τ)πy(τ)− y(τ)πx(τ)〉 =
mh̄γ2

π

∫ ∞

0
dω

∫ τ

0
dt
∫ τ

0
dt′

coth[ h̄ω
2T0

]

ω2 + γ2 cos
[
ω(t− t′)

]
× {λx

[
B2(t)C1(t′)− A1(t)D2(t′)

]
+ λy

[
A2(t)D1(t′)− B1(t)C2(t′)

]
} (40)

of angular momentum or the magnetization M(τ) = neLz(τ)/(2m). As seen in
Figure 15, at weak magnetic fields (B ≤ 3 T), the magnetization Mz in graphene de-
creases with increasing B without any oscillations. At strong magnetic fields (B > 3 T),
plateau-like structures are observed. Even though the plateaus of Mz are slightly different
from the ones of Rxy (Figure 2), there is a correlation between them: the Hall resistance Rxy
is constant but the |Mz| decreases in the interval B ≈ 4− 6 T. In the interval B ≈ 6− 7.5 T,
the Hall resistance Rxy increases sharply, while Mz remains almost constant (see Figures 2
and 15). Note, that the plateaus appear when τ is approaching τr with increasing B. The
dependence of the predicted magnetization Mz on the magnetic field in graphene with the
properties as in Figure 7 is shown in Figure 16. The temperature of a sample is relatively
high (T0 = 10 K) and the mobility is relatively small (µ = 2700 cm2V−1s−1); so as a result,
the magnetization is small. In Figure 16, plateau-like structures are also formed at B > 1.5
T when the values of τ are τr are closer to each other.
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Figure 15. The dependence of magnetization Mz on the magnetic field in graphene at T0 = 30 mK
(m = 0.025 m0 (m0 is the bare mass of an electron), µ = 13,000 cm2V−1s−1 [17]).



Symmetry 2024, 16, 7 17 of 20

0 2 4 6 8 10

0.4

0.3

0.2

0.1

 

 

M
z (2

m
/(n

e
))

B (T)

0

Figure 16. The dependence of magnetization Mz on the magnetic field in graphene at T0 = 10 K
(m = 0.04 m0, µ = 2700 cm2V−1s−1 [19]).

3.3. Thermal Conductivity

We assume the same ability of the carriers to carry a charge and transport heat. If
the electric energy gradient eEx in (1) is substituted by the temperature gradient dT0/dx
(the temperature is in energy units), the generating force of particle motion changes from
electric to thermal potential, giving rise to thermomagnetic effects. Employing the formula

Q = nεkinq̇ (41)

for heat flux, the expression for the thermal conductivity tensor is obtained as

κ(τ) =
1
e2 εkin(τ)σ(τ), (42)

where εkin is the average kinetic energy of the charged particle. In the quasi-equilibrium
high-temperature limit (τ → ∞), one can derive the classical Wiedemann–Franz law [6] for
the Lorentz number

L =
κ

σT0
=

1
e2 = const. (43)

Thus, we obtain a violation of the Wiedemann–Franz law in graphene at low temperatures,
which was experimentally observed in ref. [29].

The magnetic field dependencies of the diagonal κxx and off-diagonal κxy components
of the thermal conductivity in graphene at T0 = 30 mK (m = 0.025 m0, µ = 13,000 cm2V−1s−1

[17]) are shown in Figure 17. At weak magnetic fields, κxx decreases smoothly with
increasing magnetic field. This is more due to the fact that the speed of charge carriers
decreases with increasing magnetic field. At B ≈ 0, the diagonal thermal conductivity
is equal to κxx ≈ 1000 Wm−1K−1 and the off-diagonal thermal conductivity is equal to
κxy ≈ 0. When υy reaches its maximum value, κxy also reaches its maximum value and
then decreases (κmax

xy ≈ 300 Wm−1K−1). If the magnetic field is strong enough (B ≥ 3 T), a
noticeably large plateau-like structure is formed in κxx.

Figure 18 shows the dependence of the diagonal κxx and non-diagonal κxy on the
magnetic field in graphene (T0 = 10 K, m = 0.04m0, µ = 2700 cm2V−1s−1 [19]). The values
of τ/τr are taken from Figure 8. It is also clear that κxx > κxy at weak magnetic fields.
Plateau-like behavior is not observed due to the low mobility of the charge carriers.

Note, that the value of the thermal conductivity in graphene at room temperature
and B = 0 ranges from κxx ≈ 600 to 5500 Wm−1K−1 [27,28,30]. The calculated κxx in
Figures 17 and 18 are in the intermediate range shown by the experimental data.
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Figure 17. The dependencies of the diagonal κxx and non-diagonal κxy components of the thermal
conductivity on the magnetic field at T0 = 30 mK (µ = 13,000 cm2V−1s−1 [17]).
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Figure 18. The dependencies of the diagonal κxx and non-diagonal κxy thermal conductivities on the
magnetic field in graphene at T0 = 10 K (µ = 2700 cm2V−1s−1 [19]).

4. Conclusions

Using the non-Markovian quantum Langevin approach and taking into account the
coupling between charge carriers and the environment, and two-body effects, we described
the SdHO and QHE and predicted thermal conductivity and magnetization in graphene
and 2DEG. As shown, the galvano-, and thermo-magnetic effects strongly depend on
the relationship between the relaxation and average collision times. The suitable average
collision times were adjusted to describe the experimental data. One of the main conclusions
of this work is that the values of relaxation and collision times are comparable and, thus,
the SdHO and QHE are the results of the transitional processes. As shown for the QHE,
the transverse velocity (momentum) is quantized and the transverse current is a step-like
function of the magnetic field or charge density. Plateau-like behavior was predicted for the
off-diagonal resistance in the SdHO, off-diagonal thermal conductivity, and magnetization
in graphene and GaAs/AlxGa1−xAs heterostructure.
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