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Abstract: An intelligent logistics system is a production system based on the Internet of Things (IoT),
and the logistics information of humans has a high degree of privacy. However, the current intelligent
logistics system only protects the privacy of shippers and consignees, without any privacy protection
for carriers, which will not only cause carriers’ privacy leakage but also indirectly or directly affect the
logistics efficiency. It is particularly worth noting that solving this problem requires one to consider
the balance between privacy protection and operational visibility. So, the local privacy protection
algorithm ϵ-L_LDP for carriers’ multidimensional numerical sensitive data and ϵ-LT_LDP for carrier
location sensitive data are proposed. For ϵ-L_LDP, firstly, a personalized and locally differentiated
privacy budgeting approach is used. Then, the multidimensional data personalization perturbation
mechanism algorithm L-PM is designed. Finally, the multidimensional data are perturbed using
L-PM. For ϵ-LT_LDP, firstly, the location area is matrix-partitioned and quadtree indexed, and the
location data are indexed according to the quadtree to obtain the geographic location code in which it
is located. Secondly, the personalized random response perturbation algorithm L-RR for location
trajectory data is also designed. Finally, the L-RR algorithm is used to implement the perturbation of
geolocation-encoded data. Experiments are conducted using real and simulated datasets, the results
show that the ϵ-L_LDP algorithm and ϵ-LT_LDP algorithm can better protect the privacy information
of carriers and ensure the availability of carrier data during the logistics process. This effectively
meets the balance between the privacy protection and operational visibility of the intelligent logistics
system.

Keywords: data privacy; location privacy; smart logistics platform; privacy protection

1. Introduction

Intelligent logistics is a modern logistics model based on the Internet of Things (IoT)
technology [1,2], which is an important branch of the development and innovation of IoT
technology [3]. Intelligent logistics is characterized by informationization, intelligence,
and automation [1,2,4,5], and is an important link in the development of the digital economy
of enterprises. Intelligent logistics has become one of the most important directions in the
development of the logistics industry [1–3] and has become a focus of attention in academia
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and industry. The intelligent logistics platform is the core and carrier of intelligent logistics,
which is built based on an information-sharing mechanism and has the characteristics of
reasonable distribution of a series of logistics resources such as transportation, storage,
packaging, unloading, and distribution, etc. It can break the information barrier between
consumers, logistics enterprises (carriers), and suppliers, and provides better and more
stable logistics services for users of all levels. At the same time, the flexible allocation
of logistics resources according to market demand in the intelligent logistics platform
can solve the problem of resource tension in the peak season and resource waste in the
off-season of logistics to a certain extent, to truly realize the intelligence, automation, and in-
formationization of logistics [6]. M. Yang et al. [7] designed an intelligent logistics platform
containing major applications such as e-commerce, self-service collection, and delivery, big
data analysis, path location, and distribution optimization to accelerate the construction of a
symbiotic and win–win logistics ecosystem and the benign development of the ICT industry.
E. Mathew [8] proposed a conceptual model of an intelligent logistics distribution platform,
analyzed the value creation process of the stakeholders of the intelligent logistics platform,
and pointed out that it would be a new solution for logistics and distribution problems.

There are four object entities in the intelligent logistics platform, which are people,
objects, fields, and transportation equipment, among which people–object entities include
shippers, consignees, and carriers. A shipper, also known as a “cargo owner”, is entrusted
to be the carrier to transport goods (luggage or parcels) and pay the freight costs of social
organizations or individuals. The consignee is the social organization or individual who
has the right to pick up the goods (luggage or parcels). The carrier is the person or company
who enters into a contract of the carriage of goods with the shipper in their own name
or entrusts others in one’s own name. In the process of logistics transportation, the main
responsibility of the carrier is to ensure that the transported goods reach their destination
on time and safely and are finally delivered to the consignee.

In the intelligent logistics platform, the sensitive information of the human and the
object entity has a high degree of privacy. Currently, a large number of research works
exist in academia and industry on logistics information privacy protection schemes for the
sensitive data of shippers and recipients, but without any privacy protection for carrier
logistics process data. For example, S. Liu and J. Wang [9] proposed a courier system based
on (near-field communication) technology and encryption protocol, which uses the secure
NFC tags instead of traditional orders to protect the personal information of consignees
and shippers. X. Lin et al. [10] proposed a blockchain-based logistics privacy protection
scheme to ensure the auditability and traceability of personal and logistic information.
Among them, personal information is mainly targeted at shippers and consignees, and the
privacy protection of logistics process data of carriers is relatively lacking. Therefore,
this will not only cause the carrier’s personal privacy information to be leaked but also
indirectly or directly affect the logistics efficiency of the whole intelligent logistics platform.
D. Waters [11] pointed out that the leakage of precise information about the logistics
transportation process of logistics transporters (carriers) will increase the threat to the
security of logistics goods, as well as cause a decrease in the quality of logistics services.
For example, malicious personnel, competing companies, etc., obtain detailed logistics
process data of carriers, and through techniques such as machine data mining and data
analysis, obtain private information about the driving habits, physical health, and home
address of carriers, which can be used to obstruct and hijack the designated logistics activity
services with precision. T. Sativell and R. Sabar [12] studied the threats to high-value goods
faced by logistics companies where the information leakage of carrier equipment or carriers
is one of the reasons for the precise hijacking of cargoes. An elaborate logistics truck
robbery scheme reported by the National Broadcasting Company (NBC) [13] hijacked a
United Parcel Service Inc. (USP) truck for six hours, resulting in the loss of a quarter of
the packages. One of the important reasons why the hijackers were able to carry out the
robbery plan was that they gained access to the logistics truck driver’s transportation routes
and driving habits.
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It is worth noting that an intelligent logistics system is a production system, and solv-
ing this problem requires considering the balance between privacy protection and oper-
ational visibility. If traditional privacy protection technologies such as encryption [14],
multi-party secure computing [15], or access control [16,17] are adopted, this will inevitably
affect the availability of carrier data in the logistics system. Encryption is the most com-
monly used privacy protection technology. Carrier information is transmitted, stored,
and shared after encryption, and only an entity with a key can be decrypted and accessed.
Although encryption protects privacy, data cannot be directly counted, processed, or pro-
cessed, it increases the complexity of data usage. The goal of multi-party secure computing
is a computing model designed by the participating parties to protect their privacy. Its
application scenario does not match the protection of carrier information privacy in logistics
systems, so multi-party secure computing cannot be applied to protect carrier informa-
tion privacy in logistics systems. Access control is the most important way to achieve
privacy protection. The essence of privacy protection is to share private information with
authorized entities at appropriate times and in appropriate ways. In traditional access
control, permissions are formulated and implemented by system managers, and ensuring
that permissions are reasonably allocated and not tampered with is the most critical issue.
However, in traditional access control, not only unreasonable authorization can cause
privacy leakage, but the system manager’s permissions are too large and the permission
data are easily tampered with, which can also lead to illegal data access.

Therefore, to address the problem of the lack of privacy protection for carrier logistics
to process sensitive data, this paper proposes a local differential privacy protection scheme
for carrier logistics to process sensitive data in an intelligent logistics platform. The scheme
can protect the privacy of carrier users while also satisfying the personalized privacy needs
of carrier users, as well as ensuring the availability of logistics process data. The research
content and contributions of this paper are as follows.

1. A local differential privacy protection algorithm ϵ-L_LDP (ϵ-Logistic Local Differen-
tial Privacy, ϵ-L_LDP) for the carrier’s multidimensional numerical sensitive data
in the logistics process is proposed. First, a personalized local differential privacy
budget method is used to introduce a carrier user’s personalized privacy budget,
which ensures that each carrier can modify the privacy protection budget of sensitive
data according to individual or carrier company requirements. Then, the data are
normalized to [−1, 1] using each attribute data security domain value, introducing
[0,1] uniform random variables, and designing the multidimensional data personal-
ized perturbation mechanism algorithm L-PM on segmented perturbation mechanism
PM. Then, the carrier’s multidimensional numerical data are perturbed using the
L-PM algorithm.

2. The local differential privacy protection algorithm ϵ-LT_LDP (ϵ-Logistic Trajectory
Location Differential Privacy, ϵ-LT_LDP) for the location-based data of carriers is
put forward. First, the location region is matrix partitioned and quadtree indexed,
and the location data are indexed according to the quadtree to obtain the geographic
location code (including area code and inner code) where it is located. Then, this paper
adopts a personalized local differential privacy budget method, which introduces a
personalized privacy budget for carrier users and ensures that each carrier can modify
the privacy protection budget of sensitive data according to personal or company
requirements. Then, the geographic location coding vector is normalized to [−1, 1],
and a certain probabilistic Bernoulli variable is introduced, which is determined
by the privacy budget and the specific geographic location coding vector value,
to realize the personalized random response algorithm L-RR for location trajectory
data. Finally, the L-RR algorithm is used to realize the perturbation of geographic
location coding data.

3. In this paper, the privacy of the ϵ-L_LDP algorithm and the ϵ-LT_LDP algorithm
are analyzed and proved. In addition to that, simulation experiments are conducted
to verify the usability of the algorithms. The evaluation criteria in the experiments
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are the standard mean square error (MSE), mean absolute percentage error (MAPE),
and root mean square error (RMSE). The experimental datasets include: the simulation
dataset, which is the GAUSS dataset and UNIFORM dataset; the multidimensional
numerical real dataset, which comprises the BR dataset and MX dataset; and the real
trajectory (location) dataset, which comprises the GPS data of more than 14,000 cabs
selected from 3 August 2014 to 30 August 2014, in Chengdu city. Among them, the ϵ-
L_LDP algorithm is experimentally compared with three existing algorithms, and the
ϵ-LT_LDP algorithm is experimentally compared with two existing algorithms for
implementation. The experimental results show that the data processed by the scheme
in this paper have higher usability under the same privacy budget. The privacy
protection scheme proposed in this paper not only ensures the privacy protection of
the carrier logistics process but also meets the personalized privacy needs of carrier
users, which will help the intelligent logistics platform provide a better and more
stable logistics services.

The rest of this paper is organized as follows: Section 2 of this paper introduces the
research results of the scholars in the logistics data privacy protection; Section 3 carries out
the introduction of relevant privacy protection algorithm knowledge, including differential
privacy, local differential privacy and location privacy, etc.; Section 4 describes the scenarios
and problems of intelligent logistics platforms, as well as elaborates the design of carrier
sensitive data privacy protection schemes; Section 5 reports the experimental environment
of the privacy algorithm and experiments on the algorithm on multiple datasets, followed
by analysis and comparison; and Section 6 concludes the full paper.

2. Related Work

In recent years, with the development of intelligent logistics, domestic and foreign
researchers have made significant progress in terms of protecting the privacy of sensitive
data of shippers and receivers in intelligent logistics systems. We will introduce the research
results in detail from the following three perspectives: firstly, the privacy protection of
sensitive data in logistics systems; secondly, the privacy protection of facial data in logistics;
and thirdly, the integration of logistics systems and blockchain to enhance data privacy.

In terms of the privacy protection of the sensitive data in logistics systems, X. Liu et al. [18]
combined the web technologies of cloud computing and QR codes to build a secure and
trusted logistics system with the complete protection of personal privacy from shipper to
consignee. The paper [19] optimizes the logistics costs while protecting user privacy infor-
mation by using artificial intelligence methods, formalizing the problem as a distributed
constraint optimization problem (DCOP), and using various cryptographic encryption
techniques to process data in the logistics system. F. Xu et al. [20] proposed a unified
privacy-preserving mechanism for participants to register and cancel strategic and business
relationships; set and clear job information for cargo transportation under predefined
partnerships; and update and clear tracking and tracing data associated with a given job or
partnership. Q. Gao [21] proposed a secure logistics information scheme, LIP-PA, using
attribute-based encryption and location-based key exchange that implemented a logistics
information privacy protection scheme with location and attribute-based access control
for mobile devices to provide privacy protection for personal and logistics information.
All these solutions start from logistics systems and use cloud computing technology [18],
artificial intelligence technology [19], privacy protection mechanisms [20], and cryptog-
raphy [19,21] to improve the privacy of logistics data and ensure the privacy of sensitive
user data.

In terms of the privacy protection of sensitive data on face-sheet data in logistics, W.
Qian et al. [22] proposed a k-anonymity model to protect logistics information. However,
the name and phone number of the consignee are printed directly on the logistics manifest,
and this scheme only protects some personal information among users. To solve the
problem of the paper [22], H. Qi et al. [23] proposed a logistics courier management system
based on encrypted QR codes; in this system, encrypted QR codes are used to store all
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information about goods, and real-time logistics information about goods is automatically
updated via General Packet Radio Service (GPRS) or Wi-Fi, and an improved genetic
algorithm is used to provide carriers with an optimal delivery route. X. Zhan et al. [24]
proposed a logistics information privacy protection system (LIPPS) based on encrypted QR
codes, which stores the cipher text in the QR codes through a segmented encryption method,
thus realizing a different level of authorization mechanism to decrypt the corresponding
information to complete logistics business operations. W. Yan et al. [25] proposed a QR
code and information-hiding-based logistics system privacy protection scheme, which uses
information-hiding technology to embed user privacy information into QR codes on courier
face slips and designs a JPEG image steganography algorithm for QR codes to complete the
access permission control of privacy information. Both the paper [22] with a k-anonymity
model and the papers [23–25] based on QR code technology aimed to solve the plain-text
privacy problem of paper logistics sheets, and the paper [23] used cryptographic encryption
technology to encrypt the e-logistics sheets within the logistics system, which avoid the
user’s personal privacy from sensitive data leakage due to internal employees.

In terms of improving the privacy protection by combining logistics systems with
blockchain, the paper [26] presents the current research results of blockchain technology
in supply chain, logistics, and transport management and suggests that the application of
blockchain technology in the logistics industry is one of the main themes of future research.
E. Tijan et al. [27] studied decentralized data storage represented by blockchain technology
and its use in sustainable logistics and supply chain management as a way to improve the
security and privacy of data storage in logistics systems. N. Rožman et al. [28] proposed an
approach to integrate blockchain and IoT technologies into modern supply chains, where
blockchain technology is used not only to write down agreements and conduct transactions
but also as a trusted public list of services and information, ensuring their security and
trustworthiness. H. Yi [29] proposed a secure logistics technology using blockchain to
protect the privacy of individuals. The main contribution is the proposed blockchain
model for logistics, which uses the security and anonymity of blockchain technology
to achieve the effect of logistics data privacy protection. H. Duan et al. [30] proposed
a privacy-preserving scheme to improve the logistics business, using a combination of
blockchain and anonymous authentication to achieve the control and management of users’
access rights to private data, and to divide and store data from different services, and the
blockchain nodes receiving transactions are used as transit nodes to synchronize data
within the chain, ultimately achieving the effect of data privacy protection. H. Li et al. [31]
proposed a blockchain-assisted secure storage scheme for logistics data, in which data
generation and aggregation, session establishment, record encryption, and storage, and an
efficient consensus mechanism are introduced to improve the efficiency of the consensus
process as a way to prevent the logistics data privacy leakage. Papers [27,31] used the
decentralized and distributed storage characteristics of blockchain to ensure the security
and privacy of logistics data, while the papers [28–30] used the trustworthiness, tamper-
evident, and anonymity of blockchain to ensure the security and privacy of logistics data.

In summary, an overall analysis of the research work on the privacy protection of
sensitive logistics data is shown in Table 1. From Table 1, it can be obtained that the existing
research on the privacy protection of logistics data mainly focuses on shippers and con-
signees, but there is less research on the privacy protection of sensitive data for protecting
carriers. The carrier is an important part of the human–object entity in the intelligent
logistics platform. The security of sensitive data privacy information of carriers directly
or indirectly affects the efficiency of the whole intelligent logistics platform. Therefore,
the privacy protection scheme applicable to the sensitive data of carriers proposed in this
paper has certain practical significance.
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Table 1. Comparison table of related work.

Researches Shippers Consignees Carriers Characteristics

Paper [15] ✓ ✓ ✕ Optimizing logistics costs with the use of artificial intelligence and encryption
technology to protect users’ private information.

Paper [16] ✓ ✓ ✕ Update and clear tracking and tracing data associated with a given job or
partnership under a predefined partnership.

Paper [17] ✓ ✓ ✕ Attribute-based encryption and location-based key exchange for
mobile device access control.

Paper [18] ✓ ✕ ✕ The k-anonymity model protects the logistic information, but the consignee’s
information is still printed on the logistic face-sheet.

Paper [19] ✓ ✓ ✕ Privacy protection for e-logistics sheets within the logistics system using
QR code technology and encryption.

Papers [20,21] ✓ ✓ ✕ The use of QR code technology to solve the problem of privacy leakage caused
by the explicit printing of paper logistics sheets.

Papers [23,27] ✓ ✓ ✕ Ensure the security and privacy of logistics data with the decentralized and
distributed storage features of blockchain.

Papers [24,25] ✓ ✓ ✕ Ensure the security and privacy of logistics data using the trustworthiness,
tamper-evident, and anonymity of blockchain.

Paper [26] ✓ ✓ ✕ The combination of blockchain and anonymous authentication enables users
to control and manage access to private data.

The table summarizes the characteristics of the relevant research work and its focus on the privacy and security of
shippers, consignees, and carriers.

3. Preliminaries

This chapter introduces the relevant basic knowledge used in the scheme, providing
a theoretical basis for the algorithms in the scheme. Among them, the definitions of
privacy, differential privacy, local differential privacy, and location trajectory privacy are
provided, as well as detailed introductions including noise mechanisms and random
response mechanisms.

3.1. Differential Privacy
3.1.1. Definition of Differential Privacy

Privacy refers to sensitive information that entities such as individuals and organi-
zations do not wish to be known externally [32] and thus express themselves selectively.
Examples include personal financial information, medical records, travel records, shop-
ping order data, etc. In recent years, many privacy-preserving approaches based on
k-anonymity [33] and division (e.g., l-diversity [34], t-closeness [35], (α, k)−anonymity [36])
have been proposed, but new attack models (e.g., composition attacks [37], foreground
knowledge attacks [38], etc.) pose a serious threat to the effectiveness of these privacy-
preserving methods. In 2006, Dwork [39] proposed a new definition of privacy protection
for addressing privacy breaches in databases, which is called differential privacy (DP).
The differential privacy as a privacy-preserving model is strictly defined in terms of the
strength of privacy protection, i.e., deleting and adding any one record will not affect the
query result. Also, an extremely strict attack model is defined in the differential privacy
algorithm, which does not care how much background knowledge the attacker possesses
and proves its privacy mathematically rigorously.

Definition 1. Differential privacy [39,40]. D and D′ are two adjacent datasets that differ by at
most one tuple, i.e., ∆(D, D′) = 1, the randomized algorithm M: D → Rd, where Ran(M) is all
possible outputs of M on D and D′, and any subset S of Ran(M); M satisfies ϵ-differential privacy
if it satisfies the following inequality (1).

Pr[M(D) ∈ s] ≤ eϵ × Pr[M(D′) ∈ s] (1)
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In inequality (1), Pr denotes the probability of the risk of privacy being disclosed; ϵ is
the privacy budget, which defines the level of privacy protection and reflects the level of
privacy protection that the algorithm M can provide. The smaller the value of ϵ, the higher
the level of privacy protection. From Definition 1, it can be seen that the differential privacy
protection mechanism limits the effect of any one record on the output of the algorithm
M. This definition theoretically ensures that algorithm M satisfies ϵ-differential privacy,
whilst the implementation a differential privacy algorithm requires the introduction of a
noise mechanism.

3.1.2. Noise Mechanisms

There are many ways to implement differential privacy protection mechanisms,
and one of the most common methods is to use noise addition mechanisms to achieve
differential privacy. There are two representative noise mechanisms, namely the Laplace
mechanism [41] for numerical types of data and the exponential mechanism [42] for discrete
types of data. In differential privacy-preserving algorithms, different noise mechanisms are
chosen depending on the type of data, and the required noise size is closely related to the
global sensitive.

Definition 2. Sensitivity [41]. For any function f : D → Rd, the global sensitivity of the function
f can be expressed by Equation (2).

∆ f = max
D,D′
∥ f (D)− f (D′)∥p (2)

In Equation (2), D and D′ differ by at most one record; R denotes the real space of the
mapping; d denotes the query dimension of the function f ; and p denotes the metric. ∆ f
uses the Lp distance, which is usually measured using the 1-order paradigm distance (L1).

Theorem 1. Laplace mechanism [41]. For any function f : D → Rd, an algorithm M satisfies
ϵ-differential privacy if the output of the algorithm M satisfies the following Equation (3).

M(D) = f (D) + < Lap1(∆ f /ϵ), . . . , Lapd(∆ f /ϵ) > (3)

In Equation (3): Lapi(∆ f /ϵ)(1 ≤ i ≤ d) are mutually independent Laplace variables,
where the amount of noise is proportional to ∆ f and inversely proportional to ϵ. The larger
the added noise, the greater the global sensitivity of the algorithm M.

It easily follows from Equation (3) that the i(1 ≤ i ≤ d) element in M(D) is caused by
the Laplace noise, the standard absolute error is shown by Equation (4), and the variance is
shown by Equation (5).

errori
abs = E|M(D)i − f (D)i| = E|Lap(

∆ f
ϵ
) =

√
2∆ f
ϵ

(4)

errori
var = E(M(D)i − f (D)i)

2 =
2(∆ f )2

ϵ2 (5)

The exponential mechanism [42] is commonly used in non-numerical types of data to
randomly select data to achieve differential privacy protection. The key in the exponential
mechanism is designing a reasonable score function u(D, t)(t ∈ O), where D denotes the
input dataset and t denotes the output term selected in the output domain O. Different
score functions need to be designed for different statistical queries or statistical tasks.
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Theorem 2. Exponential mechanism [42]. Let u(D, t) be the score function corresponding to
the input dataset D and the output t. The following Equation (6) is satisfied by the algorithm M.
The algorithm M satisfies ϵ-differential privacy.

M(D, u) = {t : |Pr[t ∈ O] ∝ exp(
ϵu(D, t)

2∆u
)} (6)

In Equation (6), ∆u denotes the global sensitivity of the score function u(D, t). From
Equation (6), it can be seen that the higher the score of the score function, the higher the
probability of being selected for output.

3.2. Local Differential Privacy
3.2.1. Definition of Local Differential Privacy

The differential privacy introduced in the previous section is centralized differen-
tial privacy, which is a protection model that assumes a trusted third party; however,
in real-world application scenarios, absolutely trusted third parties do not exist. With the
rapid development of crowdsourcing technology, IoT application devices are widely used.
A large number of mobile devices perform the function of data collection, uploading data
to untrustworthy third parties, posing a serious threat to the privacy of individuals. At this
time, local differential privacy (LDP) [43,44] came into being. Localized differential privacy
is a proposed data privacy protection framework based on differential privacy protection
techniques, and local differential privacy provides stronger privacy guarantees than cen-
tralized differential privacy. LDP does not require a trusted third party and directly adds
noise to private data locally to protect personal information from disclosure. At the same
time, third-party collectors can analyze and infer the statistical value of the group’s data.

Under the local differential privacy protection model [45], the possibility of third-
party data collectors stealing and disclosing user privacy is fully considered. In the local
differential privacy protection model, each user (collector) first perturbs their sensitive data
to ensure the privacy of their data, then transmits the perturbed data to the third-party
data collector, and finally, the data collector performs statistical analysis through the data
to obtain the value of the data information of the data collector community. In [44], a local
differential privacy protection model is defined as follows.

Definition 3. Local differential privacy [43,44]. Given n users, each corresponding to a record,
and given a privacy algorithm M, if the following inequality (7) is satisfied, then M satisfies ϵ- local
differential privacy.

Pr[M(t) = t∗] ≤ eϵ × Pr[M(t′) = t∗] (7)

In inequality (7), Pr denotes the probability of the risk of privacy being disclosed;
algorithm M has a definition domain of Dom(M) and a value domain of Ran(M); t and
t′(t, t′ ∈ Dom(M)) are any two records, and t∗(t∗ ∈ Ran(M)) is the same output of any
two records t and t′ on algorithm M. ϵ is the privacy budget: the smaller the value of ϵ,
the higher the degree of privacy protection.

In the local differential privacy preservation model, users perform data perturbation
in their local area to accomplish privacy preservation. However, different users have
different privacy requirements, promoting the emergence of personalized local differential
privacy [46].

Definition 4. Personalized local differential privacy [46]. The privacy setting preference of the
user ui(1 ≤ i ≤ n) is (τ, ϵi), τ is the security domain, and ϵi is the personalized privacy budget of
the user ui, for any two inputs t, t′(t, t′ ∈ τ), and any outputs t∗(t∗ ∈ Dom(M)); Algorithm M
satisfies the ϵ-personalized local differential privacy if it satisfies the following Equation (8):

Pr[M(t) = t∗] ≤ MAX(eϵi ) × Pr[M(t′) = t∗] (8)
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F.D. McSherry [47] proposed that differential privacy has composition properties,
namely sequential composition [47] and parallel composition [47]. Sequential composi-
tion ensures that the privacy budget can be distributed in different steps in the privacy
method, while parallel composition ensures that the privacy of the differential privacy
algorithm is satisfied over the disjoint subsets of the dataset. From the differential privacy
of Definition 1 and the local differential privacy of Definition 3, it follows that differential
privacy is defined on adjacent datasets, and the local differential privacy is defined on
two of the records, which do not undergo any transformation in their privacy guaranteed
form. Thus, local differential privacy also satisfies the sequential composition and paral-
lel composition [45,47]. The specific sequential composition and parallel composition are
described below.

Nature 1: Sequential composition [45,47]. Given a dataset D and n algorithms
Mi(1 ≤ i ≤ n), assuming that algorithm Mi(1 ≤ i ≤ n) satisfies ϵ-local differential
privacy, then the sequence combination of algorithms Mi(1 ≤ i ≤ n) on D satisfies ϵ-local
differential privacy, where ϵ = Σn

i=1ϵi.
Nature 2: Parallel composition [45,47]. Given a dataset D, partitioned into n mutually

disjoint subsets D = {D1, D2, . . . , Dn}, and algorithm Mi(1 ≤ i ≤ n) satisfying ϵi-local
differential privacy on the dataset Di, the composition operation of algorithm Mi(1 ≤ i ≤ n)
on D = {D1, D2, . . . , Dn} still satisfies ϵi-local differential privacy.

3.2.2. Randomized Response Mechanism

The dominant mechanism for local differential privacy implementation is the random-
ized response (RR) mechanism [43,44]. In 1965, S. L. Warner [48] proposed the randomized
response (RR) technique. Later, we called it W-RR. The main idea of W-RR is to use
uncertain responses to sensitive questions to achieve the effect of privacy protection for
the original data. The randomized response technique requires two main steps, namely
the perturbation statistics of the data and the data correction.

Because of the importance of the randomized response technique for local differential
privacy, this subsection details the data perturbations and statistical corrections for the
randomized response technique. To introduce the randomized response technique in
concrete terms, we introduce a problematic application scenario in which the proportion of
people who smoke is surveyed. However, for most people, the question of whether or not
they smoke is a sensitive one, and many users are reluctant to reveal private information
about whether or not they smoke. Suppose there are n1 users and the true percentage of
smokers is π, but we do not know that and need to count the percentage π̂. So a sensitive
question is asked: “Do you smoke?”. Each user responds to this, and the ith user answers
with “Yes” or “No”, assuming that with the help of a random device (e.g., a non-uniform
coin toss, Bernoulli distribution, etc.), their probability of answering the true answer is p,
with a 1− p probability of answering the opposite answer. First, perturbation statistics are
performed. The statistical value of the number of smokers can be obtained by counting the
responses of n users with the help of the perturbation method provided by the random
device. In the hypothesis that the number of people who answered “Yes” is n2, the number
of people who answered “No” is n1 − n2. The proportion of users who answered “Yes”
is shown in Equation (9), and the proportion of users who answered “No” is shown in
Equation (10).

Pr(Xi = “Yes”) = πp + (1− π)(1− p) (9)

Pr(Xi = “No”) = (1− π)p + π(1− p) (10)

Obviously, the proportions expressed in Equations (9) and (10) are not unbiased
estimates of the true proportions. Therefore, the next step is to correct the statistical results
by constructing a likelihood function, as in the following Equation (11):

L = [π + (1− π)(1− p)]n1 [(1− π)p + π(1− p)]n−n1 (11)
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The maximum likelihood estimate of π̂ for π is calculated as shown in Equation (12)
below:

π̂ =
p− 1

2p− 1
+

n2

(2p− 1)n1
(12)

Calculating the mathematical expectation of π̂ yields that π̂ is an unbiased estimate of
the true distribution π. The result of the calculation is shown in Equation (13).

E(π̂) =
1

2p− 1
[p− 1 +

1
n

n

∑
i=1

Xi]

=
1

2p− 1
[p− 1 + πp + (1− π)(1− p)]

= π

(13)

In summary, the proportion of true smokers π can be obtained based on the total
number of people n with a perturbation probability of p. If it is made to satisfy ϵ-local
differential privacy, its privacy budget can be set [43,44], as shown in (14). For example,
p = 0.75, and its privacy budget ϵ is the level of privacy protection of ln3.

ϵ = ln
p

1− p
(14)

The randomized response technique W-RR [48] is only applicable to respond to dis-
crete data with only two values, but not with other data types. Therefore, a large number
of scholars have improved on W-RR. For example, the stochastic response methods in-
clude RAPPOR [49], S-Hist [50], k-RR [51], and O-RR [52] for multi-valued discrete data,
and MeanEst [53,54] and Harmony-mean [55] for continuous data.

3.3. Location and Trajectory Privacy

Definition 5. Location points. The trajectory position point is represented by li =< Xi, Yi, timestamp >,
li denotes the position point of user ui at the timestamp moment, Xi denotes the longitude of the
position point, and Yi denotes the latitude of the position point.

Definition 6. Trajectory. A trajectory t is a sequence formed by a series of position points in
chronological order, which is denoted as Equation (15):

t = l1 → l2 → . . .→ la (15)

The a in Equation (15) represents the number of position points in trajectory t.

Definition 7. Trajectory dataset. A trajectory dataset T is a collection of combinations of a series of
trajectories, which is represented in Equation (16):

T = {t1, t2, . . . , tb} (16)

where b denotes the number of location points in the trajectory dataset.

Definition 8. Geo-indistinguishability (GI) [56]. A mapping mechanism K satisfies the definition
of geographical indistinguishability determined by the parameter on the set of locations X when and
only when the two location points x and x′ satisfy the following Equation (17):

K(x, z) ≤ eϵd(x,x′)K(x′, z) (17)

In Equation (17), x represents the set of locations in the region, x, x′, z ∈ X, and d( )
represents the Euclidean distance between two location points. In the case of the privacy
protection of location data, the risk of privacy leakage is limited to a defined range, which in
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turn is determined by the Euclidean distance d( ) and parameters ϵ. This privacy protection
mechanism is the geo-indistinguishability algorithm.

Definition 9. Location local differential privacy. Derived from Definition 3, assume that there
are n location points, each of which has a corresponding record. Given a privacy algorithm M,
i.e., a definition domain Dom(M) and a value domain Ran(M), if any two positional records l and
l′ (l, l′ ∈ Dom(M)) satisfy the same output result l∗(l∗ ∈ Ran(M)), and satisfy the following
inequality (18):

Pr[M(l) = l∗] ≤ eϵ × Pr[M(l′ = l∗)] (18)

where ϵ is the privacy budget. Satisfying inequality (18), the algorithm M satisfies the ϵ-location
local differential privacy.

4. Local Differential Privacy Protection Solutions for Carrier Sensitive Data
4.1. Scenario and Problem Description

The smart logistics scenario in this paper is shown in Figure 1. Figure 1 includes a
platform and three processes, one of which refers to the smart logistics platform, which
is the carrier and core of the smart logistics with the characteristics of informatization,
automation intelligence, etc. The smart logistics platform collects and integrates all the
logistics data as a way of providing users with better quality logistics services. Therefore,
the smart logistics platform needs to collect real-time logistics process data, with shippers
and recipients communicating using mobile devices (smartphones, ipad, etc.), logistics
stores and warehouses communicating using the Internet, and collection devices on carrier
equipment transmitting data using wireless communications (4G, 5G). An intelligent
logistics platform using logistics process data can realize the intelligent and automated
scheduling of logistics resources. The three processes refer to “consignment process,
transportation process, receiving process”, in the lower part of Figure 1 from left to right to
correspond to this, the core of the three processes of logistics transportation. Among them,
the consignment process is the shipper, which will need to consign the goods submitted to
the logistics company, the logistics company for unified distribution and scheduling to the
warehouse transit. The carrying process refers to the logistics company by the transport
requirements of the goods, scheduling the corresponding logistics transportation resources
for logistics transportation, and the consignment of goods transported to the destination
of the warehouse. The receiving process means that the logistics company distributes the
goods from the warehouse at the destination and delivers the consigned goods safely to
the consignee through the logistics distribution personnel. In Figure 1, the state data of the
transportation process is extremely important; in the transportation process, one or more
intelligent sensors are installed on each carrier equipment, and the state data of the carrier
equipment, such as load, position, speed, and temperature, are collected by the intelligent
sensors and transmitted to the cloud platform through the wireless network.

This paper analyzes several smart logistics systems, including the open source smart
logistics system and the smart logistics platform system of Chengdu Fankonghui Tech-
nology Co., Ltd. (Chengdu, China) which both collect and monitor real-time data on the
status of the logistics process, especially the status of the transportation process. In the
TCS cooperative transportation system provided by Fankonghui Technology Co., LTD.,
the status data of the logistics process is tested in real-time, as shown in Figure 2. Figure 2
shows a screenshot of a real logistics monitoring system, where the Chinese (non English)
expressions cannot be modified. The meanings of these expressions include carrier vehicle
information and logistics status information. In Figure 2a,b, the status data of the logistics
process contain the basic information of the carrier and the transportation equipment,
as well as the status data of the logistics process (load, position, speed, temperature, light,
etc.). In the TCS cooperative transportation system, these logistics process state data are
utilized to provide intelligent functions for logistics services, such as real-time monitoring,
historical track view, and alarm management.
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In the logistics process data, basic information about the carrier and carrier equipment,
including vehicle owner information, license plate number, length, axle, vehicle fuel type,
etc., is protected for data privacy using symmetric encryption algorithms. Among them,
symmetric encryption algorithms can choose encryption algorithms such as SM4 and AES.
The intelligent logistics platform binds the symmetric encryption key to the computers of
the carrier equipment. The symmetric encryption key is generated by the intelligent logistics
platform and embedded in the computers of the carrier equipment during production.
Therefore, this plan will focus on the real-time data privacy protection issues collected by
intelligent sensors in logistics process status data, including numerical and positional data.
The analysis is as follows.

Shippers

Logistics
shops

Warehouses 

intelligent Logistics

Platform Big DataArtificial
Intelligence

Cloud
Computing

Internet

Internet of Things

Carrier
device

Collecte

Smart
sensors

Location

Speed

Illumination

Temperature

··· Consignees

Distribution

Cloud

cloud

Warehouses 

Distribution

Distribution

Carrier
device

Logistics
shops

Figure 1. Model of the logistics process and its data collection in an intelligent logistics platform.

Figure 2. Diagram of the logistics process state collection data of the TCS collaborative transport sys-
tem.

Question 1: Numerical data leakage problems for carriers. The intelligent logistics
platform collects the state data of the logistics process in real-time, which includes data on
speed, load, temperature, humidity, light, etc. The intelligent collection device installed on
the carrier equipment collects these data and transmits the data to the intelligent logistics
platform through the wireless communication network. However, the data such as speed,
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load, temperature, humidity, light, etc. were directly transmitted to the smart logistics
platform without any privacy protection processing, as shown in Figure 2 these data were
collected in the smart logistics system.

Question 2: Location data leakage problems for carriers. The smart logistics platform
collects real-time data on the status of the logistics process, including location data, which
are collected by the intelligent collection device installed on the carrier equipment and
transmitted to the smart logistics platform through the wireless communication network.
However, these location data are directly transmitted to the smart logistics platform without
any privacy protection processing, as shown in Figure 2, and the location data are collected
in the smart logistics system.

As can be summarized from questions 1 and 2, it can be concluded that the intelligent
logistics platform does not provide privacy protection for the carrier’s status data (such
as location, speed, load, temperature, humidity, light, etc.), which poses a risk of private
data leakage for carriers. Malicious people obtaining logistics process data through untrust-
worthy third-party data servers, using data mining, big data, machine learning, and other
methods, can obtain sensitive information such as the carrier’s driving habits, behavioral
preferences, home address, religious beliefs, and even health status, which can be used
to precisely hinder or hijack the specified logistics activity services, which will directly or
indirectly affect the logistics efficiency of the entire intelligent logistics platform, as well
as cause the leakage of sensitive information about the carrier. Therefore, the privacy
protection objectives are not only protecting the carrier’s sensitive information based on
the privacy requirements of the carrier company, but also satisfying the privacy preferences
of the individual carrier, the statistical characteristics of the multidimensional numerical
data available to the intelligent logistics system, as well as the availability of the carrier’s
trajectory routes. In non-absolutely trusted third-party data servers, the central differential
privacy model is collected in a way that is vulnerable to attacks. Therefore, this paper
proposes a local differential privacy protection solution for carrier-sensitive data, including
a local differential privacy protection algorithm for a carrier’s multidimensional numerical
data and a local differential privacy protection algorithm for carrier location-based data.

In the logistics industry, transport modes include land, sea, and air transport, of which
land transport is one of the most common and dominant modes in the global transport
industry. Therefore, the local differential privacy protection solution for carrier-sensitive
data designed in this paper focuses on the logistics process of land transport modes. First,
we define the carrier set in detail as follows.

Definition 10. Carrier. The carrier is the person who enters into a contract of the transport of goods
with the shipper in their own name or entrusts others in one’s own name. In the process of logistics
transportation, the main responsibility of the carrier is to ensure that the transported goods reach
their destination on time and safely and are finally delivered to the consignee. Carrier users are made
up of individual transporters and carrier companies registered on the intelligent logistics platform.
The basic information of individual transport operators includes name, ID number, contact details,
vehicle information (license plate number, vehicle fuel type, vehicle load), and length of employment.
The basic information about the carrier company includes the company name, the company address,
the type of vehicle and its number, the number of registered transporters, and the geographical area
of the company. Basic information about a carrier’s transport staff includes the carrier to which they
belong, name, ID number, contact details, vehicle information (license plate number, vehicle fuel
type, vehicle load), and length of employment. Assuming a total of n carrier users are registered on
the intelligent logistics platform, a carrier set U = (u1, u2, . . . , un), where ui(1 ≤ i ≤ n) can be
either an individual in the transport industry or a carrier company.
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4.2. Local Differential Privacy Preservation Algorithm for Carrier Multidimensional Numerical
Data ϵ-L_LDP
4.2.1. The General Idea of ϵ-L_LDP

To design a local differential privacy protection algorithm for the carrier multidimen-
sional numerical data, it is first necessary to analyze the logistics process data in the data
collection device, and then extract the numerical data related to carrier privacy to obtain
the definition of the carrier multidimensional numerical data as follows.

Definition 11. Multidimensional numerical data of carriers. In the multidimensional set of
numerical attributes A = {A1, A2, . . . , A10}, numerical attribute A1 represents the speed of the
carrier; numerical attribute A2 represents the load of the carrier; numerical attribute A3 represents
the temperature in the carrier’s load compartment; numerical attribute A4 represents the light in the
carrier’s load compartment; numerical attribute A5 represents the number of times that the carrier’s
load compartment has been hit; numerical attribute A6 represents the humidity in the carrier’s
device; numerical attribute A7 represents the age of the carrier; numerical attribute A8 represents
the length of time the carrier has been in employment; and numerical attributes A9 and A10 are
reserved for the addition of numerical data at a later date, where the attributes are independent
of each other. The set of attribute safety domains Γ = {τ1, τ2, . . . , τ10}, τj(1 ≤ j ≤ 10) is the
numerical safety range of attribute Aj(1 ≤ j ≤ 10) that can be disclosed by the carrier ui, e.g., speed
attribute A1 has a safety domain of [0,130] in km/h.

According to the characteristics of carrier multidimensional numerical data, this paper
designs a local differential privacy protection algorithm model for carrier multidimensional
numerical data, which is shown in Figure 3. The local differential algorithm ϵ-L_LDP is
formed in the local differential privacy protection model.

Logistics

process data

Real numerical

data

Extraction Numerical data

after perturbationDisturbance

L-PM algorithm:

1. normalize to [−1,1]
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numerical dataIntegration
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Figure 3. Diagram of the local differential privacy protection algorithm model for multidimensional
numerical data for carriers.

The overall idea of the ϵ-L_LDP algorithm can be derived from Figure 3 as follows.
First, a personalized local differential privacy budget approach is introduced, allowing
carriers to set a personalized privacy budget for sensitive data based on their own or their
carrier’s privacy needs. Then, the data are normalized to [−1, 1], using the individual
attribute data security domain values to introduce a uniform random variable x of [0, 1].
Next, the PM segmentation mechanism is used to set the interval of data perturbation
response values, compare the uniform random variable x with eϵi/2

eϵi/2−1
, and use the result of

this comparison to determine the interval from which the response values returned after
data perturbation, yielding the numerical data personalization perturbation mechanism
algorithm L-PM based on the PM segmentation mechanism. Finally, the L-PM perturbation
algorithm is used to perturb the carrier’s multidimensional data type data, and the per-
turbed data are collated and aggregated to obtain the perturbed numerical dataset, which
is the local differential privacy protection algorithm for the carrier’s multidimensional
numerical data ϵ-L_LDP. The intelligent logistics platform receives the perturbed multidi-
mensional numerical data, then performs the data reduction and normalization operation,
and finally collates and aggregates the data into the logistics process data. Finally, the data
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are collated and aggregated into a logistics process dataset. Therefore, the next section will
focus on the L-PM perturbation algorithm and the ϵ-L_LDP local differencing algorithm.

4.2.2. Perturbation Algorithm L-PM

The most important thing in the local differential privacy protection model is the
algorithm that provides random perturbation to the data. In this scheme, the segmented
perturbation algorithm L-PM consists of three processes, as follows.

The first process is the normalization of the numerical data, where the data are nor-
malized to [−1, 1] using the individual attribute data safety domain values. The value
of attribute Aj(1 ≤ j ≤ 10) of the carrier ui(1 ≤ i ≤ n) is denoted by ti[Aj] and the
range of the security domain of the value of attribute Aj(1 ≤ j ≤ 10) is denoted by by τj.
We calculate the normalization calculation factor k based on the maximum value τj_max
and the minimum value τj_min of the security domain τj interval, and K is shown in the
Equation (19).

k = [1− (−1)]/(τj_max − τj_min) (19)

The data are then normalized to the interval [−1, 1] using the normalization calculation
factor k; the specific steps are shown in Equation (20).

Norti[Aj]

= −1 + k(ti[Aj]− τjmin)

= 2(ti[Aj]− τjmin)/(τjmax − τj_min)− 1.

(20)

The normalization reduction operation can be deduced from the normalization process,
and the specific steps are shown in the Formula (21).

(zj + 1)× (τjmax − τjmin)/2 + τjmin (21)

In Formula (21), 1 ≤ j ≤ 10.
The second process is the PM mechanism of the numerical data. The PM segmentation

mechanism was introduced because it is more data-worthy to count the mean value of
the carrier’s multidimensional numerical data of the logistics process in the intelligent
logistics platform. In academia, studies on local differential privacy for numerical data have
focused on local differential privacy for frequency estimation. However, it is more data-
worthy to count the mean value of the multidimensional numerical data of the logistics
process of carriers in an intelligent logistics platform. The mean estimation algorithms
used in local differential privacy protection studies are the MeanEst algorithm [53,54],
Harmony-mean algorithm [55], Duchi algorithm [57], and PM algorithm [58]. The MeanEst
algorithm is higher in terms of communication cost, release error, and time complexity.
The harmony algorithm is a partial improvement on the MeanEst method but still suffers
from the problem of large deviations of individual data from the original data. The Duchi
method has an absolute value greater than 1 for both values of its perturbed output, making
the variance of the perturbed values always greater than 1. In 2019, N. Wang et al. [58]
proposed a PM segmentation mechanism to improve the drawbacks of the Duchi method
obtain very accurate results when the privacy budget is large, so we design a personalized
perturbation mechanism algorithm called L-PM for carrier multidimensional numerical
data based on the PM segmentation mechanism. This is achieved by introducing a uniform
random variable x of [0, 1], comparing the uniform random variable x with eϵi/2

eϵi/2+1
, and then

perturbing it according to the result of the comparison to obtain the perturbed response
value as a way to satisfy the privacy of the local differential privacy-preserving model.

The third process is data perturbation. The output of the data perturbation results in a
response value which is a segment of continuous values [−C, C], where C = eϵi/2+1

eϵi/2−1
. Here,
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the perturbed value t∗i [Aj] has a higher probability of occurring in the middle segment of the
value domain and a lower probability of occurring in the values at the ends. Equation (22)
is its probability density function.

pd f (t∗i [Aj] = x|ti[Aj])

=

p, x ∈ [l(Ti[Aj]), r(Ti[Aj])];
p

eϵi
, x ∈ [−C, l(Ti[Aj])) ∪ (r(Ti[Aj]), C];

(22)

In Equation (22), p = eϵi−eϵi/2

2eϵi+2 , l(Ti[Aj]) =
C+1

2 ×Norti[Aj]− C−1
2 ,r(Ti[Aj]) = (l(Ti[Aj]) +

C− 1.
The perturbation mechanism algorithm L-PM for the carrier multidimensional numer-

ical data is described in Algorithm 1.

Algorithm 1 Algorithm L-PM
Input: ti[Aj], ϵi, τj;
Output: t∗i [Aj];
1: Use τj to normalize ti[Aj] to [−1,1] and obtain Norti[Aj];
2: Draw x uniformly at random from [0,1];
3: if x < eϵi /2

(eϵi+1) then
4: Randomly draw t∗i [Aj] from [l(Ti[Aj]), r(Ti[Aj])];
5: else
6: Randomly draw t∗i [Aj] from [−C, l(Ti[Aj]))

⋃
(r(Ti[Aj]), C];

7: end if
8: return t∗i [Aj];

In Algorithm 1, there are three input parameters in algorithm L-PM, ti[Aj] is the value
of attribute Aj(1 ≤ j ≤ 10) for carrier ui(1 ≤ i ≤ n); ϵi is a restriction on the attacker’s lack
of ability to discriminate any two values within the security domain range τi, and is the
personalized privacy budget of carrier ui(1 ≤ i ≤ n); τj is the security domain range for the
value of attribute Aj(1 ≤ j ≤ 10). The output of the L-PM algorithm is a data-perturbed
response value t∗i [Aj]. In algorithm L-PM, line 1 normalizes ti[Aj] to the interval [−1, 1],

lines 2–6 use the extraction of [0,1] uniform random variables x compared with eϵi/2

eϵi/2+1
for

data segmentation perturbation purposes.

4.2.3. Local Differential Privacy Protection Algorithm ϵ-L_LDP

There are three input parameters in Algorithm 2, T = {t1, t2, . . . , t10} is the set of
carrier data tuples, e.g., data tuple ti = {ti[A1], ti[A− 2], . . . , ti[A10](1 ≤ i ≤ n)} of carrier
ui; Γ = {τi, τi, . . . , τ10} is the set of security domain value ranges for each attribute; and ϵi
is the personalized privacy budget of the carrier ui(1 ≤ i ≤ n).

Algorithm 2 Algorithm ϵ-L_LDP
Input: T = {t1, t2, . . . , tn}, Γ = {τi, τ2, . . . , τd}, ϵi;
Output: zj(1 ≤ j ≤ d);
1: for i = 1 to n do
2: for j = 1 to d do
3: t∗i [Aj] = L−MP(ti[Aj],ϵi,τj);
4: end for
5: send t∗i = { t∗i [A1], t∗i [A2], . . . , t∗i [Ad]} to Server;
6: end for
7: Aggregate data, calculate mean zj =

1
n ∑n

i=1 t∗j [Aj], and do a normalized reduction of
the mean;
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The local privacy protection algorithm for carrier multidimensional numerical sensi-
tive data ϵ-L_LDP is described in Algorithm 2.

From Algorithm 2, the algorithm ϵ-L_LDP can be divided into three overall steps as
below, where lines 1–6 are executed on the computer on the carrier’s device, and line 7 is
executed on the data server of the intelligent logistics platform.

S-1: In lines 2–4, the multidimensional numerical attributes of the carrier’s logistics
process are subjected to data perturbation by the L-PM algorithm.

S-2: Line 5 is where the carrier sends the perturbation values for the 10 attributes to
the data server of the intelligent logistics platform.

S-3: Line 7 is where the server aggregates the perturbation data sent by all the carriers,
counts the mean value of each attribute data for each carrier separately, and performs
a normalized reduction operation on the mean value to finally obtain the mean value
estimation result of the attribute data.

4.3. Local Differential Privacy Protection Model for Location Data of Carriers
4.3.1. The General Idea of ϵ-LT_LDP

To design a local differential privacy protection algorithm for carrier location-based
data, it is first necessary to analyze the logistics process data in the data collection device
and then extract the location-based data to obtain the definition of carrier location-based
data as follows.

Definition 12. Location data of the carriers. The carrier’s location dataset L = {< Xi,Yi, timestamp >
} (1 ≤ i ≤ n), Xi denotes the longitude of the location data, Yi denotes the latitude of the location
data, timestamp denotes an instantaneous moment, and the location data security field τ.

According to the characteristics of the carrier location-based data, we design a local
differential privacy protection model for the carrier location-based data, as shown in
Figure 4, in which the local differential algorithm ϵ-LT_LDP is the core.
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Figure 4. Diagram of the local differential privacy protection algorithm model for carrier location-
based data.

The overall idea of the ϵ-LT_LDP algorithm can be obtained from Figure 4. Firstly,
this paper chooses the location area index partitioning method of the quadtree matrix
partitioning to implement the encoding of geolocation data and obtain the location data
vector. Secondly, a personalized local differential privacy budget approach is introduced,
allowing carriers to set personalized privacy budgets for sensitive data according to their
own or their carrier’s privacy needs. Thirdly, the elements of the geographic location
encoding are normalized to [−1, 1] and a Bernoulli variable with a certain probability
is introduced, which perturbs the elements of the location encoding vector based on the
vector values of the privacy budget and the geographic location encoding, resulting in a
personalized perturbation mechanism algorithm L-RR for the location vector based on the
RR random perturbation mechanism. Finally, the L-RR perturbation algorithm is invoked to
perturb the carrier’s geographic location encoding vector data and return the area code and
response vector, i.e., the perturbed location data are obtained, and the whole process above
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is the personalized local differential privacy protection algorithm for the carrier location-
based data ϵ-LT_LDP. Then, the perturbed location data are received by the intelligent
logistics platform, collated, and put into the logistics process dataset. Subsequently, this
subsection will detail the quadtree index construction method for location data, the L-RR
algorithm, and the ϵ-LT_LDP algorithm.

4.3.2. Quadtree Index Construction Method for Location Data

When performing local differential privacy on location data, the direct data per-
turbation of the longitude and latitude of the location data would greatly affect the us-
ability of the location data. Therefore, we design a local differential privacy protection
algorithm for carrier location data using a location region segmentation encoding fol-
lowed by the data perturbation of the encoded vector. There are many studies on the
geographic region segmentation in academia, the uniform grid partitioning method (UG
method) [59], the adaptive grid partitioning method (AG method) [59], the Kd-tree par-
titioning method [60], the Quad-tree partitioning method [61], and the QLP method [62].
Among them, the method of Z. Yang et al. [62] using quad-trees and matrices can encode
the geographic location of geographic regions on location data with high efficiency and
rationality, and its segmentation of geographic regions is also applicable to the local differ-
ential privacy model, which uses matrices to segment the location regions, and then indexes
the location regions after the matrix segmentation using quad-trees. Therefore, the geo-
graphic location coding of the location data in this paper uses the method in the paper [62].
The intelligent logistics platform performs the matrix partitioning of the geographical area
as widely as possible and establishes a quad-tree index structure, which is then sent to
all the smart collection devices of the logistics process. In the logistics process, real-time
locations are obtained in the smart collection devices through DBS, GPS, etc. The location
data are indexed according to the location area after the quad-tree matrix partitioning to
obtain the code of the generalization unit in which it is located. The matrix partitioning
and indexing of the quad-tree is constructed as shown in Figure 5, with the process and
method proved by the paper [62].

Figure 5. Grid matrix partitioning and quadtree indexing.

4.3.3. Perturbation Algorithm L-RR

The implementation of local differential privacy algorithms requires a perturbation
mechanism algorithm to perturb the data in order to obtain the effect of privacy protection
for a single dataset while ensuring that the statistical properties of some or all of the datasets
remain largely unchanged. As seen in the previous section, it is not possible to directly
perturb the latitude and longitude data, but rather encode the location dataset using grid
matrix partitioning and quadtree indexing to obtain the encoded vector of location data
before perturbation.
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We designed the L-RR algorithm which is divided into three steps. The first step is
performing a [−1, 1] normalization operation on the elements of the encoded vector of
location data. The second step is introducing a Bernoulli variable with a certain probability
which is based on the privacy budget and the vector value of the geolocation encoding.
The third step is that each element of the coded vector is perturbed according to the value
of the resulting Bernoulli variable u.

The personalized perturbation mechanism algorithm L-RR for location-based data is
shown in Algorithm 3.

Algorithm 3 Algorithm L-RR
Input: B, ϵi;
Output: S;
1: Initialize vector S;
2: for j = 1 to length(B) do
3: z = −1 + 2× Bj;

4: Introduction of Bernoulli variables, Pr[u = 1] = z×(eϵi−1)+eϵi+1
2eϵi+2 ;

5: if u = 1 then
6: Sj ← 1;
7: else
8: Sj ← 0;
9: end if

10: end for
11: return S;

In Algorithm 3, there are two input parameters, one is the carrier’s position vector
B, and the other is the privacy budget ϵi. The output parameter is the perturbed position
vector S.

4.3.4. Local Differential Privacy Protection Algorithm ϵ-LT_LDP

In the algorithm ϵ-LT_LDP, the location data are firstly encoded using grid matrix
partitioning and quadtree indexing to obtain a location data encoding vector; then, the
L-RR perturbation mechanism algorithm is invoked to perturb each element of the location
data vector, and the perturbed location data (i.e., the area code vector and the perturbed
response vector) are obtained.

In algorithm ϵ-LT_LDP, there are five input parameters: < Xi, Yi, timestamp > is the
location data of the carrier ui(1 ≤ i ≤ i) at a given moment; τ is the security domain of
the location data; ϵi is the privacy budget of the carrier ui(1 ≤ i ≤ i); m is the number of
perturbation layers; and l is the number of generalization layers. The output is a vector
of zone codes H and a vector of instantaneous randomized response S. The ϵ-LT_LDP
algorithm is shown in Algorithm 4.

From Algorithm 4, the ϵ-LT_LDP algorithm can be divided into four steps, as follows:
S-1: Initialize the vectors M and H and use the latitude and longitude of the carrier

location data to generate the area code H and the inner code C, where H and C form the
unit code M.

S-2: Convert C into a 2h-bit vector B, such that B[t + 1] = 1 and B[i] = 0(i‘t + 1),
where t is the decimal number corresponding to the binary sequence C.

S-3: Randomized response. Execute the algorithm L-RR to perturb the inner code B
into a response vector S of equal length.

S-4: The area code H and the perturbed position vector S are returned and sent to the
data server in the intelligent logistics platform.



Symmetry 2024, 16, 68 20 of 29

Algorithm 4 Algorithm ϵ-LT_LDP
Input: < Xi, Yi, timestamp >, ϵi, τ, m, l;
Output: H, S;
1: Initialize 2(l − 1)-bit vector M← 0;
2: Initialize 2h-bit vector H← 0;
3: Mx ← min(2l−1(x− τx_min)/(τx_max − τx_min), 2l−1 − 1);
4: My ← min(2l−1(y− τy_min)/(τy_max − τy_min), 2l−1 − 1);
5: M[oddbits]← convert Mx to a 2(l − 1)-bit vector;
6: M[evenbits]← Convert My to a 2(l − 1)-bit vector;
7: H← First, 2(m− 1)bits of M;
8: C← Last, 2(l −m)bits of M;
9: t← Convert C to decimal number;

10: B[t + 1]←1;
11: S← L-RR(B,ϵi);
12: return S, H;

4.4. Model Algorithmic Analysis

In the carrier’s multidimensional numerical data local differential privacy protection
algorithm ϵ-L_LDP, according to the definition of local differential privacy (LDP), attributes
ti[Aj](1 ≤ i ≤ n, 1 ≤ j ≤ 10) are independent of each other, ti[Aj], t

′
i[Aj] ∈ τi, the perturbed

data t∗i [Aj] ∈ [−C, C], and the privacy budget ϵi(ϵ/
√

n ≤ ϵi ≤ ϵ) is set by the carrier user
ui. The L-PM uses a security domain τ to normalize the original data to [−1, 1]. From the
local differential privacy definition shown in Equations (7) and (23) can be obtained from it,
as follows.

Pr[L− PM(ti[Aj], ϵi, τi) = t∗i [Aj]]

Pr[L− PM(t′i[Aj], ϵi, τi) = t∗i [Aj]]
= eϵi (23)

The derivation from Equation (23) leads to Equation (24) as follows.

Pr[L− PM(ti[Aj], ϵi, τi) = t∗i [Aj]]

Pr[L− PM(t′i[Aj], ϵi, τi) = t∗i [Aj]]
≤ eϵ (24)

Thus, the ϵ-L_LDP algorithm satisfies the protection model of the local differential
privacy algorithm.

From the paper [58], in the PM algorithm, the maximum absolute error bound is
O(

√
d log(1/β)/ϵ

√
n), and the maximum absolute value error under individual attribute per-

turbation is O(
√

log(1/β)/ϵ
√

n). Since the carrier’s privacy budget is set by itself, the max-

imum absolute value error of the ϵ-L_LDP algorithm is O
(√

d log(d/β)/
(

min
i∈[n]

ϵi
√

n
))

.

When min
i∈[n]

ϵi = ϵ/
√

n, the maximum absolute value error of the ϵ-L_LDP algorithm is

O(
√

d log(d/β)/ϵ
√

n). The maximum absolute value error under individual attribute
perturbation is O(

√
log(1/β)/ϵ

√
n).

In the carrier’s location data local differential privacy protection algorithm ϵ-LT_LDP,
according to the definition of local differential privacy (LDP), the number of carriers is
n, the attributes < Xi, Yi, timestap > (1 ≤ i ≤ n) are independent of each other, and any
j(1 ≤ j ≤ n), < Xj, Yj, timestamp >,< Xj, Yj, timestamp >′∈ τ, H∗, S∗ is the output of the
algorithm ϵ-LT_LDP. If the algorithm is M, as proved and given in the paper [62], then
Si = M(Bi). It can be obtained that Equation (25), as follows.

Pr[ϵ− LT_LDP(li, ϵi, τ, m, l) = (H∗, S∗)]
Pr[ϵ− LT_LDP(l′i , ϵi, τ, m, l) = (H∗, S∗)]

≤ eϵ (25)
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In Equation (25), li = ⟨Xi, Yi, timestamp⟩ , l
′
i = ⟨Xi, Yi, timestamp⟩′ , and the pri-

vacy budget ϵi(ϵ/
√

n ≤ ϵi ≤ ϵ) set by the carrier ui. The proof proceeds as shown
in Equation (26) below. So, the ϵ-LT_LDP algorithm satisfies the protection model of the
local differential privacy algorithm.

Pr[ϵ− LTLDP(⟨Xi, Yi, timestamp⟩, ϵi, τ, m, l) = (H∗, S∗)]
Pr[ϵ− LTLDP(⟨Xi, Yi, timestamp⟩′ , ϵi, τ, m, l) = (H∗, S∗)]

=
Pr[L− RR(B, ϵi) = S∗]
Pr[L− RR(B′ , ϵi)] = S∗

=
Pr[L− RR(Bj, ϵi) = S∗j ]

Pr[L− RR(B′j, ϵi) = S∗j ]

=
z× (eϵi − 1) + eϵi + 1
z′ × (eϵi − 1) + eϵi + 1

≤ max(z× (eϵi − 1) + eϵi + 1)
min(z′ × (eϵi − 1) + eϵi + 1)

=
1× (eϵi − 1) + eϵi + 1
−1× (eϵi − 1) + eϵi + 1

= eϵi

≤ eϵ

(26)

5. Experimental Results and Analysis
5.1. Experimental Environment

The computer parameters on the carrier equipment are CPU, Intel Core(TM) i5-
10500CPU×6 @ 3.1GHz (Intel, USA), 32G RAM (KingSton, USA), 500G storage (KingSton,
USA), Windows 10 (Microsoft, USA). The experimental data include both open source
datasets and simulated datasets. The experimental programming software is MATLAB
R2020b and PyCharm Community Edition 2021.2. The algorithms are implemented by
Python 3.6, and the logistics platform of Fankong Hui Network Technology Co., Ltd
(Chengdu, China) is used as the intelligent logistic platform.

5.2. Experimental Analysis of ϵ-L_LDP Algorithms

In this section, we experimentally study the effect of the number of attributes and
privacy budget on the usability of the ϵ-L_LDP algorithm, and the evaluation criterion
used in the experiment is the mean square error (MSE), which is defined as follows (27).

MSE =
1
n

n

∑
i=1

(ti − t̂i)
2 (27)

where ti is the real data and t̂i is the estimated data. The Harmony mean algorithm [55],
the Duchi algorithm [57], and the PM multidimensional data mean estimation algo-
rithm [58] are chosen for the comparison experiments. Since the concept of attribute
safety domain is not defined in the algorithms [55,57,58], the maximum range of all possi-
ble values of the attributes in the dataset was taken as the safety domain of the attributes,
and the safety domain τ in the ϵ-L_LDP algorithm was used for the normalization process.
In the mean estimation experiments, each method was repeated 100 times to take its mean
value in order to eliminate the effect of randomly generated errors.

5.2.1. The Impact of the Number of Attributes on Usability

In order to investigate the effect of the number of attributes on the usability of the
algorithm, a randomly generated simulation dataset with 5000 carriers and a range of
attributes [2, 4, 6, 8, 10] was used. Let ϵ = 0.5, and each carrier generates a random value
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in the interval [ϵ/
√

d, ϵ] as their personalized privacy budget. The randomly generated
simulation datasets are the GAUSS dataset and the UNIFORM dataset. The GAUSS dataset
is a dataset that follows a Gaussian distribution with a mean of 60 and a standard deviation
of 1. The UNIFORM dataset is a dataset that follows a uniform distribution with a mean in
the range of [30, 70]. The experimental results are shown in Figure 6. From the experimental
results, it can be seen that the MSE of the Harmony mean algorithm, the Duchi algorithm,
the PM algorithm, and the ϵ-L_LDP algorithm gradually increase with the increase in the
number of attributes for both the GUASS dataset and the UNIFORM dataset. The Harmony-
mean algorithm shows a more significant increase in MSE with the increase in the number
of attributes. When the number of attributes is 2, the MSE of the PM algorithm, the Duchi
algorithm, and the ϵ-L_LDP algorithms is not significantly different, and when the number
of attributes is greater than 2, the MSE of the ϵ-L_LDP algorithm is lower, indicating that
the ϵ-L_LDP algorithm is better in terms of usability.
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Figure 6. Experimental results for the UNIFORM dataset and the GUASS dataset.

5.2.2. The Impact of Privacy Budgets on Usability

Real datasets were used for the experimental data in studying the impact of privacy
budget on algorithm usability. The reason why we chose the numerical data from public
datasets to replace numerical data from carriers for our experiment is to facilitate the
comparison between our proposed algorithm and other algorithms. Two public datasets,
BR and MX, i.e., the Brazilian and Mexican census survey records, were extracted from
IPUMS [63]. In total, 16 attributes are included in BR, among which 6 are numerical
attributes, and 19 attributes are included in MX, among which 5 are numerical attributes.
The data of the 5 numerical attributes in the BR dataset and MX dataset are selected for
the experiment, and the range of values of the privacy budget was set to [0.5, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0, 4.5, 5.0]. Personalization is applied in the ϵ-L_LDP algorithm designed to
set their personalized privacy budget ϵi, with ϵi randomly drawn values in the interval
[ϵ/
√

d, ϵ]. Experiments with these algorithms were carried out on data with numerical
attributes in the BR dataset and the MX dataset, and the results are shown in Figure 7. In the
experimental results of the MX public dataset, the MSE of the ϵ-L_LDP algorithm is slightly
lower than that of the PM algorithm at a privacy budget of 0.5. At a privacy budget of 1.0,
the MSE of the ϵ-L_LDP algorithm and the PM algorithm are very close to each other. At a
privacy budget of 1.5, the MSE of the ϵ-L_LDP algorithm is significantly lower than that of
the PM algorithm. At such privacy budgets, the MSE of the harmony-mean algorithm is
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significantly higher than that of the ϵ-L_LDP algorithm, and the MSE of the Duchi and PM
algorithms is slightly higher than that of the ϵ-L_LDP algorithm. At privacy budgets greater
than 2.0, the MSE of the Duchi algorithm, PM algorithm, and ϵ-L_LDP algorithm gradually
approached each other. In the results for the BR dataset, it is obtained that the MSE of
ϵ-L_LDP is the smallest for any privacy budget case, and the MSE of the harmony-mean
algorithm is larger for both, especially for the privacy budget in the [0.5, 2.0] interval class,
the MSE of the harmony-mean algorithm is a bit too large, resulting in a lower usability
of the harmony-mean algorithm low. Overall, the MSE of the harmony-mean algorithm,
the PM algorithm, the Duchi algorithm, and the algorithm all gradually decreased as
the privacy budget increased, and the MSE of the four algorithms differed less when the
privacy budget was greater than 3.0.
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Figure 7. Experimental results for the MX dataset and the BR dataset.

In summary, the ϵ-L_LDP algorithm proposed in this paper can meet the carrier’s
multidimensional numerical sensitive dataset privacy protection, in which it can achieve
the carrier’s on-demand individually set level of privacy protection ϵi. Moreover, the MSE
of the data after perturbation protection by the ϵ-L_LDP algorithm is low, indicating that
the numerical data received by the server also have good usability.

5.3. Experimental Analysis of ϵ-LT_LDP Algorithms

Two performance metrics are specified in this experiment to study the locations re-
ceived at the data server side compared to the original dataset, namely the performance
of the trajectory proportion estimation and the performance of the location proportion
estimation. In order to visualize the estimation performance, this experiment uses the
trajectory (location) proportion rather than the trajectory (location) frequency as the per-
formance metric. The evaluation criteria used in the experiment are the mean absolute
percentage error (MAPE) and root mean square error (RMSE), which are defined as follows
(28) and (29).

MAPE =
1
n

n

∑
t=1
| pt − p̂t

pt
| (28)

RMSE =

√√√√ 1
n

1

∑
t=1

(pt − p̂t)2 (29)
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where pt is the true proportion of the t trajectory (position) and p̂t is the estimated propor-
tion of the t trajectory (position). The QLP algorithm and the QJLP algorithm from the [62]
were chosen for the comparison experiments. The range of values for the privacy budget
was set to [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]. Here, personalization is applied in the
ϵ-LT_LDP algorithm designed in this paper to set their privacy budget ϵi, ϵi in the interval
[ϵ/
√

d, ϵ] of randomly selected values. In the experiments to estimate the performance,
each method was repeated 100 times to take the mean value in order to eliminate the effect
of randomly generated errors.

For the experiments, we used GPS data from over 14,000 taxis in Chengdu from
3 August to 30 August 2014. The original dataset includes more than 1.4 billion GPS
records, and each record has a total of six attributes, namely vehicle ID, latitude, longi-
tude, passenger load, date, and time. After removing the obviously invalid track records,
we selected a rectangular geographical area with high coverage track records, a total of
49,851,265 track records, and set the time resolution to 300 s to obtain a spatio-temporal
dataset of 9858 × 265 GPS points.

5.3.1. The Performance of the Trajectory Proportion Estimation

In experiments researching the performance of trajectory proportion estimation,
the MAPE and RMSE of the ϵ-LT_LDP algorithm, the QLP algorithm, and the QJLP
algorithm for trajectories of length 3 are shown in Figure 8a,b, and the MAPE and RMSE
of the ϵ-LT_LDP algorithm, the QLP algorithm, and the QJLP algorithm for trajectories
of length 2 are shown in Figure 8c,d. In Figure 8a, the MAPE of both the QLP algorithm
and the QJLP algorithm are greater than that of the ϵ-LT_LDP algorithm for the same
privacy budget, indicating that the availability of the ϵ-LT_LDP algorithm data are overall
higher than that of the QLP algorithm and the QJLP algorithm. The MAPE of the ϵ-LT_LDP
algorithm decreased significantly for privacy budgets of 0.5–3.5, and slowly decreased
for privacy budgets greater than 3.5. In Figure 8b, the RMSE of the ϵ-LT_LDP algorithm,
QLP algorithm, and QJLP algorithm decrease and eventually converge as the privacy
budget increases. The privacy budget has a small effect on the RMSE of the ϵ-LT_LDP
algorithm and the QJLP algorithm, which slowly decreases as the privacy budget increases.
In Figure 8c, the MAPE of the ϵ-LT_LDP algorithm, QLP algorithm, and QJLP algorithm
gradually decrease and converge as the privacy budget increases. With the same privacy
budget, the MAPE of the ϵ-LT_LDP algorithm is significantly lower than that of the QLP
algorithm and QJLP algorithm, indicating that their data availability is higher. In Figure 8d,
the RMSE of the ϵ-LT_LDP algorithm and the QJLP algorithm are very close when the
privacy budget is 0.5. With such a privacy budget, the RMSE of the ϵ-LT_LDP algorithm is
significantly smaller than the RMSE of the QLP algorithm. As the privacy budget increases,
the RMSE of the ϵ-LT_LDP algorithm, the QLP algorithm, and the QJLP algorithm all
gradually decrease.
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Figure 8. Experimental results of trajectory proportion estimation performance.

5.3.2. The Performance of the Location Proportion Estimation

Since the trajectory is a sequence of position points combined according to a temporal
rule, experiments on the performance of position scaling estimation are conducted in
this experiment. In the evaluation of the position proportion performance, the evaluation
annotation was only chosen for the mean absolute percentage error MAPE. The experiments
on the position proportion estimation performance of the ϵ-LT_LDP algorithm, the QLP
algorithm, and the QJLP algorithm were conducted to compare the error between the
perturbed position points and the true position points, and the experimental results are
shown in Figure 9a,b. In Figure 9a,b, for the same privacy budget, the QLP algorithm has
the lowest MAPE and the ϵ-LT_LDP algorithm has an MSPE that is again lower than the
MAPE of the QJLP algorithm but higher than the MAPE of the QLP algorithm. The QLP
algorithm has the highest availability of data for the same privacy budget and the ϵ-LT_LDP
algorithm again has better availability than the QJLP algorithm. This is because both the ϵ-
LT_LDP algorithm and the QJLP algorithm are privacy-protection algorithms for trajectory
data, and privacy protection for individual location points results in lower data availability.
However, the QLP algorithm is a privacy-protection algorithm for location point data.
The MAPE of the ϵ-LT_LDP algorithm, the QLP algorithm, and the QJLP algorithm all
gradually decrease as the privacy budget increases.

In summary, the ϵ-LT_LDP algorithm proposed in this paper can satisfy the privacy
protection of the carrier’s location track data, where ϵi can achieve the degree of privacy
protection set by the carrier on demand, and the MAPE and RMSE of the location track
data after perturbation protection by the ϵ-LT_LDP algorithm are both low, indicating that
the location track data received by the server also have good usability.
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Figure 9. Experimental results of the location proportion estimation performance.

6. Conclusions

With the continuous improvement in people’s living standards, new requirements
for the logistics industry in terms of intelligence, information technology, and low cost
have been put forward, promoting the creation and development of an intelligent logistics
platform. The intelligent logistics platforms use smart collection devices to collect logistics
process status data, and to provide users with better and more stable intelligent logistics
services. At the same time, with the progress of a humanistic society, personal privacy
awareness has begun to awaken, and the carrier in the intelligent logistics platform is
one of the important components of the people object entity, so the carrier’s privacy
information needs to be effectively protected. The smart collection device collection of
the logistics process state data contains the carrier’s sensitive sense data, which if not for
its privacy protection, will not only expose the carrier’s private information, and even
directly or indirectly affect the efficiency of the intelligent logistics platform. Of course,
as an intelligent logistics system is a production system, when privacy protection is applied
to its carrier data, a balance between the privacy protection and the visibility of production
operations should be considered.

This paper proposes a privacy protection scheme for the sensitive data of carriers in
an intelligent logistics system, which ensures that the logistics process data do not expose
the carrier’s private information under the condition of ensuring the availability of logistics
process data. In this way, the privacy of the data in the intelligent logistics platform is
improved while protecting the privacy of the carrier, which is conducive to the efficient
and stable operation of the intelligent logistics platform. In this paper, we design the local
differential privacy protection algorithm ϵ-L_LDP (ϵ-logistic local differential privacy, ϵ-
L_LDP) for the carrier’s multidimensional numerical data, and the local differential privacy
protection algorithm ϵ-LT_LDP (ϵ-logistic trajectory local differential privacy, ϵ-LT_LDP)
for the carrier’s location data. Both the ϵ-L_LDP algorithm and the ϵ-LT_LDP algorithm
allow carrier users to set personalized privacy budgets according to their privacy needs,
and rigorously prove the privacy of both algorithms in terms of privacy theory. In the
experiments, real and simulated datasets were used as experimental data, mean square
error (MSE), mean absolute percentage error (MAPE), and root mean square error (RMSE)
were used as evaluation criteria. Both the ϵ-L_LDP algorithm and the ϵ-LT_LDP algorithm
were not only proved to have good usability and can be used for the privacy protection
of the sensitive data of carriers in the intelligent logistics system to prevent the sensitive
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data of carriers from being leaked; however, it also maintains the balance between privacy
protection and the visibility of production operations.
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