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Abstract: Producers are encouraged to reduce their energy consumption of manufacturing systems
by applying less-energy-intensive modern technologies and advanced machine tools and operating
methods at the system level. In the paper, organizational and analytical solutions are combined
to model the sustainable production system. Managers can study the behavior of a production
system organized using energy-saving rules by changing key parameters of the input model (arrival
intensity, bottleneck service rate, buffer size, setup and shutdown time) to analyze the queue size
of the production system and therefore performance. A discrete-time queueing model of a single-
bottleneck production line with a finite input buffer capacity is proposed. Jobs occur according to a
binomial process and are processed individually, one by one, according to the natural FIFO service
discipline, with a general discrete-type cumulative distribution function. The total number of jobs
present in the system is bounded by a non-random fixed value N. Every time the system becomes
empty, an energy-saving mechanism is started: the processing machine (server) is turned off during
a geometrically distributed shutdown time. Similarly, the first job arriving into the empty system
initializes a geometrically distributed setup time. Identifying renewal moments in the evolution of the
model, a system of difference equations is built for the transient queue-size distribution conditioned
by the state of the system at the opening. The solution is obtained explicitly in terms of probability-
generating functions. In addition, the Drum-Buffer-Rope concept is proposed to reduce the energy
consumption of the production line. The throughput of the production system is maximized by
adjusting the time between the order arrivals and the size of the input buffer to the capacity of the
bottleneck. Turning off a machine under certain conditions and slowing down non-critical machines
are strategies to reduce energy consumption. A detailed illustrating numerical and simulation study
of the considered model is attached as well, in which the sensitivity of the queue-size behavior to
changes of the key input model parameters is investigated.

Keywords: energy saving; finite buffer; sustainable production line; drum-buffer-rope; discrete event
simulation; bottleneck; queue size; transient state

1. Introduction

The energy crisis is a very pressing problem due to the constant use of non-renewable
energy sources and the greenhouse effect [1]. Solving the problems of sequencing and
scheduling that focus on energy efficiency is a hot topic [2]. The accurate measurement
of energy consumption during operation is necessary to minimize energy [3,4]. Due to
rising energy prices, the reduction in energy consumption costs of production machines
is the subject of much research [5]. Machines operate in different processing modes,
consuming different levels of energy, which have different effects on the wear process of
the machines [6].
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Producers are encouraged to reduce their energy consumption of manufacturing sys-
tems by applying less-energy-intensive modern technologies and advanced machine tools
or operating methods at the system level, such as energy-efficient scheduling (EES) [7].
In the related literature, various models of energy consumption processes by machines [5]
and types of shop floors are analyzed. The models are classified according to computa-
tional complexity, such as scheduling individual machines [8–13], flow shops [1,2,6,14,15],
job shops [16–18], and flexible job shops [19], as well as hybrid systems for specific
issues [20–22]. No-wait flow shop scheduling is a hot topic in academic research due
to its wide applicability in industrial domains [6]. Including energy-efficient scheduling,
the complexity of the last problem is n!Lnl , where n, l and L are numbers of the production
tasks, machines and speed grades of the machines, respectively. Flow shop planning
problems are popular because more than 25% of production systems, assembly lines and
information services can be simplified to a flow shop problem [23]. No-wait flow shop
energy-efficient scheduling is rarely studied in academic research [2,6].

In the case of many machine tools, the power consumption at idle is only slightly
lower than the power consumption during operation [24]. Studies show that shutting down
the idle machine is a common measure that is appropriate for all types of workshops [24]
but requires more setup and shutdown operations than usual [25,26], which makes man-
agement difficult. Grouping different jobs into the batches and starting the production
for the sequenced batches called the blocking permutation flow shop scheduling problem
is also the strategy for energy cost reduction [27]. A batch stays on the machine after
processing until the next machine is available. Optimization of the machine amount for
each job in the distributed flow shop is proposed in [28]. For efficient energy consumption,
the energy consumption is analyzed not only during processing but also in the idle and
setup states [28]. In order to reduce processing, idle, and turnoff energy consumption, jobs
are processed in parallel in the first stage, and once assigned to a single batch, the batch is
processed in the second stage [14]. Of course, batch production involves more operational
and practical decisions, especially regarding how to form a batch when starting batch
processing [14].

Researchers also include time-dependent energy costs, such as time-of-use electric-
ity tariffs, as well as machine-based energy charges, such as processing, idle, setup and
close-down times [27,28]. The energy consumption is minimized based on the power
consumption of each machine, which is known and deterministic [29]. A very interesting
approach is to optimize the machine processing speed of non-critical operations from three
possible levels of operation: slow, fast and normal is proposed in [6,30]. Reducing the
processing speed of non-critical operations reduces energy consumption without compro-
mising the makespan. An energy-efficient permutation flow shop with sequence-dependent
setup times and transportation times is presented in [22]. However, transportation times
can be analyzed as operation times in flow shop problems.

The simplest mechanism for saving energy is to turn the machine off [15] if it has
been waiting for a relatively long time for a new job and then restart it when a new job is
available. When sequencing and selecting the size of a production batch, it is necessary
to analyze whether it is worth waiting for a certain number of tasks to accumulate in
the finite-capacity input buffer and releasing the batch at the right time to production to
save energy and complete tasks on time. Production in batches (repetitive) is popular,
an example being the automotive industry, but it is often overlooked in the flow problems
under consideration. The method of waiting (on the Kanban board) for the required
number of batches of a given type of product in the Kanban card control is known and
common [31], but energy-efficient analysis is strongly needed. Only a few examples of the
flow shop energy-efficient scheduling problem for a given batch size for serial flow, parallel
flow [27,32], and serial–parallel flow [33] are available in the related literature.

Taking into account the literature review, the research gap is related to the setup
and shutdown activities associated with more frequent machine starts and shutdowns,
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which are often overlooked. A batch size analysis is definitely needed for energy-efficient
sequencing and planning.

Enterprises try to minimize the number of orders lost due to input buffer overflow
by maximizing machine utilization. Increasing the processing capacity of machines and
devices for timely production increases energy consumption. Sustainable production
requires energy-efficient production, so optimization is key. Predicting the sojourn time
(waiting time + processing time) of a queued job helps to decide whether to accept a new job
and to plan production resources with limited capacity. Estimating the actual sojourn time
of production tasks should take into account the analysis of two objectives: energy-efficient
and timely production.

The use in the considered model of an energy-saving mechanism based on temporar-
ily turning off the machine and the associated setup and shutdown periods allows for
achieving a certain symmetry in the effective use of the machine. On the one hand, obvi-
ous benefits are achieved in terms of reducing the costs of system operation (during the
period when the machine is turned off). On the other hand, these periods can be used for
additional activities: checking the machine’s efficiency, installing additional components,
etc. Therefore, although no tasks are handled during the setup/closedown periods, which
results in a temporary extension of the queue, after a restart, the machine is, for example,
better prepared for possible failures and disruptions.

The analyzed studies show that the improvement of energy efficiency when using
EES is significant. The goal is to develop a research framework for energy-efficient plan-
ning using an original discrete simulation model for queueing analysis. A production
model including the Drum-Buffer-Rope concept as well as an energy-efficiency policy is
also proposed. The impact of the changes in the intensity of arrivals, service rate of the
bottleneck, input buffer size, and setup and shutdown time durations of the bottleneck on
the throughput of the production system is analyzed.

Most results regarding stochastic models describing task-processing processes concern
the steady state of the system under consideration (the limiting case in which time tends to
infinity). Mathematical analysis is then easier, but unfortunately in practice, the applicability
of this approach is not always justified. In a situation of less-intensive task input traffic,
an unexpected system failure, or a change in the process control regulations, the functioning
of the system destabilizes, and the steady state is no longer a determinant of its typical
behavior. One of the most important goals of the article was to build, solve and then
illustrate numerically a model in which the system is considered in a non-stationary
(transient) state, i.e., at a fixed moment in time.

1.1. Drum-Buffer-Rope Concept for Energy Reduction

The concept of Drum-Buffer-Rope (DBR) [34] is key when allocating buffers and
estimating buffer size. Interest in DBR began in the early 1980s, when many authors
attempted to apply the Theory of Constraint (TOC) to systems. The TOC core is based on
the identification and exploitation of system constraints. The exploitation of a constraint
is conducted by inserting buffers and their sizing for the production system. Buffers are
designed to protect the system from fluctuations caused by internal disturbances. The drum
states, as the constraint (the bottleneck and critical machine), the schedule that sets the
rate of production. The bottleneck is connected to the gate operation by a rope. Materials
are released for each machine at a rate that depends on the material consumption at the
bottleneck. The rope ensures a constant inventory level between the bottleneck and the gate
(material release). A buffer is placed before the bottleneck in order to protect the bottleneck
output against statistical fluctuations [35,36].

Machines need to be considered with setup and shutdown times for a flow shop
system in order to identify the bottleneck. The bottleneck can be different without the setup
and shutdown times analysis. The critical machine dictates the rhythm of production, and
therefore is necessary to analyze and enough to make operational decisions, including order
acceptance for fulfillment, order sequencing, batch sizing and operation scheduling. Orders
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are collected in batches of a certain size for release to production. The batch size should
be analyzed in terms of timeliness, efficient machines utilization, transport containers
capacity and energy consumption. The release time to production should depend on
energy tariffs depending on day or night shifts. A smaller batch size enables better agility
of the production system to satisfy client requirements and better non-critical machines
utilization. The operation times of non-critical machines can be increased to save energy
under the constraint that the takt time (cycle time) dictated by the drum (bottleneck) is not
exceeded. According to the TOC, any hour/minute saved on non-critical machines is only
delusion. And it is recommended to increase the operation times of non-critical machines
for energy reduction under the constraint that the machine operator is not machine bound.
The energy consumption and productivity analysis needs to be performed for each product
batch in a sequence, considering that each product can have different bottlenecks and a
number of bottlenecks are possible for a product.

Usually, energy reduction by extending the runtime on non-critical machines is not
possible for assembly lines. Almost all assembly stations consume takt time, except the
last one assigned in the balancing process. The takt time is estimated, taking into account
the quantity of required products and the time available (shift). With a takt time of less
than 10 s, the operator’s work is monotonous and stressful. Takt times greater than 120 s
increase the risk of errors. The number of procedures and activities can be so large that
workflows are difficult to standardize [37]. The takt time determines how often a finished
piece comes out at the end of the line. Processes should run in less than the takt time if the
system operates in three shifts. Otherwise, there is no time buffer in case of equipment
failure [37]. The cycle time of assembly stations should take into account the analysis
of energy consumption in the event of the incomplete use of the production capacity of
machines and/or production capacity of employees. This is the case when the production
capacity exceeds the load resulting from a decrease in demand for products. In this case,
the takt time for the assembly system is increased, and energy reduction is possible.

There are two ways to control a DBR system: using a time buffer or a work in pro-
cess buffer (WIP) [38,39]. The time buffer sets the input rate, while the WIP ahead of
the bottleneck varies according to the stochastic characteristics. The input rate must be
periodically updated to accommodate the rate dictated by the bottleneck to prevent infinite
WIP. The WIP buffer depends on the bottleneck, while the input rate varies. Upstream WIP
is constrained by a bottleneck that sends kanbans or conwips to release jobs and materials
in the systems. Ref. [40] proposed three types of buffers: capacity, time and stock. The time
buffer consists in introducing a time window in the production plan in order to secure
further production against downtime caused by a bottleneck disruption. The time buffer
can be reduced by extending the operating time of the upper flow machines to save energy.
Provided that bottleneck disruption is not anticipated, the constraint (WIP) buffer includes
the optimal number of intermediates (buffer capacity) waiting before the bottleneck and
protects them against inaction. A time buffer is recommended if a bottleneck is expected
to be disrupted. In the case study by [41], adding a time buffer was a better solution than
inventory buffers because they were not tied to specific parts. A master production sched-
ule proposed by [42] contained more than one bottleneck. The critical machine was set by
analyzing the biggest difference between actual and required performance. Two buffers
were placed: between the raw material release stage and the first bottleneck. The time
buffer was assumed to be the sum of the processing and setup times from the first machine
to the constraint. Authors [40] proposed a constraint buffer, assembly buffer and dispatch
buffer to the production system. The assembly buffer was at the bottleneck and was also
fed by the resource without limits without waiting. The shipping buffer was at the end of
the production line to ensure timely deliveries. They proposed an interesting approach
to the buffer size estimation related to machine reliability. Each parent machine could
fail at a different rate, and thus, MTTR had a different percentage effect on the buffer
size. Necessary analyses are needed to compare the advantages of setting time buffers
versus increasing operation times for energy reduction. In this paper, capacity buffers
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are recommended instead of time buffers due to the possibility of failure of non-critical
machines whose operating times have been extended to reduce energy consumption.

1.2. Problem Formulation

Including queues and work in process, other machines can act as bottlenecks. The
setup times, shutdown times, and operation times of the bottleneck impact the throughput
of the production line. The FIFO priority rule applies when products are assigned to ma-
chines. For the system, the input values constrained by the technology, reliability analysis,
and employee skills that would generate the best machine utilization and productivity need
to be analyzed. Furthermore, organizational improvements are proposed to reduce energy
consumption in order to generate a sustainable production model. Model assumptions are
presented in Figure 1.

 

 

 

 

 

 

Figure 1. Production system controlled based on the Drum-Buffer-Rope concept.

In the paper, a discrete-time queueing model of a production line with finite buffer
capacity is presented. Tasks arrive according to a binomial process and are processed
individually, one by one, according to the FIFO rule, with a general discrete-type cumulative
distribution function. The total number of tasks present in the production system is
described by a non-random fixed value N. Every time the system becomes empty, an energy-
saving mechanism is started: the processing machine is turned off during a geometrically
distributed shutdown time. After that, N tasks arrive into the empty initial buffer, and
a geometrically distributed setup time of the machine is initialized. Identifying renewal
moments in the evolution of the model, a system of difference equations is built for the
transient queue-size distribution conditioned by the state of the production system at the
opening. The solution is obtained explicitly in terms of probability generating functions.

In the considered model, we use geometric (discrete-type) probability distribution
describing the arrival process of jobs. Typically, discrete-time queueing systems are used in
telecommunication and computer science. They can, however, also be used in modeling
production processes, transport and logistics issues, in which the system status is monitored
at precisely defined times, e.g., at the end of each day or every hour.
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The aim of the paper is to analyze the impact of changes in key parameters of the
production model controlled by DBR theory, such as arrival intensity, bottleneck service
speed, buffer size, configuration and shutdown time. The question is how changing the
values of key parameters dictated by the desire to reduce energy consumption affects the
efficiency of the production system.

In the following sections, a detailed illustrating numerical and simulation study of the
considered model is attached as well, in which the sensitivity of the queue-size behavior to
changes of the key input model parameters—intensity of arrivals (interarrival time), rhythm of
production (processing rate), buffer size, and setup and shutdown duration—is investigated.

2. Mathematical Model Description

In this section, we present a detailed mathematical description of the considered
queueing model and, moreover, introduce some necessary notation. Let us assume that
incoming jobs arrive into the system in time intervals, being independent and identically
distributed geometric random variables with the probability mass function (PMF for short),
given by the formula

ak
de f
= a(1 − a)k−1, k = 1, 2, . . . , (1)

where a ∈ (0, 1) is a predefined parameter, and ak stands for the probability that the
interarrival time between two successive job occurrences equals k. So, the arrival stream of
jobs is governed by a binomial process. In consequence, the probability that during i time
slots (units of time) exactly j jobs arrive into the system is represented by the formula

p(i, j)
de f
= aj(1 − a)i−j

i

∑
l=j

(
l − 1
j − 1

)
, (2)

where we assume that (0
0) = 1 and 0 ≤ j ≤ i.

Jobs are processed one by one, according to the natural FIFO service discipline, with a
general discrete-type probability distribution described by a sequence (bk), k = 1, 2, . . . ,
where bk denotes the probability that a single service time duration equals k time slots (units).

The maximal system capacity is assumed to be N, i.e., we have an accumulating buffer
with N − 1 places for waiting jobs and one place at the service station (machine). Hence,
the arriving job is lost if only it finds the machine busy with processing and the buffer
being saturated.

Every time the system becomes empty, the machine is switched off; this process,
however, requires a certain shutdown (close-down) time, being a geometrically distributed
random variable with the PMF given by the formula

ck
de f
= c(1 − c)k−1, k = 1, 2, . . . , (3)

where c ∈ (0, 1) is a fixed parameter, and ck denotes the probability that the shutdown time
duration equals exactly k time slots.

Similarly, if a job enters into the empty system, the machine is switched on, and it
requires certain time (called setup time) for a machine to be ready for job processing. It is
assumed that the setup time is a geometrically distributed random variable with the PMF
of the form

sk
de f
= s(1 − s)k−1, k = 1, 2, . . . , (4)

where s ∈ (0, 1) is a predefined parameter, and sk stands for the probability that the setup
time duration is equal to k time units.
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In the case that the first arrival into the empty system occurs during the shutdown
time, then after its completion, the setup time begins immediately. During the setup and
shutdown times, the processing is blocked completely.

3. Non-Steady Equations For System Behavior

In this section, we investigate the queue-size distribution in the non-steady state of
the considered queueing model. Indicating renewal moments in the system operation,
we establish appropriate difference equations via the formula of total probability.

Let Lr denote the number of jobs present in the system exactly at time r, where
r = 0, 1, . . ., including a job, the service of which is in progress at time r, if any. Introduce
the following notation:

Li(r, m)
de f
= P{Lr = m | L0 = i}, (5)

where i, m ∈ {0, . . . , N} and r = 0, 1, . . .. So, Li(r, m) represents the probability that at
the fixed time r, the number of jobs present in the system equals m on the condition that
initially (at time 0), the system (the accumulating buffer, in fact) contains i jobs.

3.1. The Case of the System Being Empty at the Opening

Firstly, let us study the case of the system that is empty at the opening. At the starting
epoch r = 0, the service station encounters no jobs waiting for service, so the shutdown
time is initialized at once. At the completion moment of the shutdown time, the state of
the accumulating buffer is checked. If there is at least one job waiting for service, the setup
time begins immediately. Otherwise, the server “waits” for the first arrival, and at this
moment, the setup time is initialized.

To find the representation for L0(r, m), let us observe that, for a fixed value of time r, it
is possible to define the following set of pairwise disjoint random events Bk(r), k = 1, . . . , 6,
whose union is the entire sample space:

• B1(r)—This represents the situation where the first job arrives before time r and after,
or at the completion epoch of the shutdown time; moreover, the setup time also ends
before time r.

• B2(r)—This describes the case the the first arrival occurs before time r and after, or at
the completion epoch of the shutdown time. However, the setup time closes at time r
or later.

• B3(r)—This corresponds to the case where the first job enters before time r during the
shutdown time (before its completion), and the following setup time also completes
before r.

• B4(r)—This is related to the situation in which the first job comes before time r during
the shutdown time (before its completion), but the following setup time completes
exactly at time r or after this time.

• B5(r)—This describes the case where the first arrival occurs before r and during the
shutdown time. This time, however, completes after time r or exactly at this time.

• B6(r)—This represents the event in which the first job enters into the system exactly at
time r or later.

Let us note that, referring to the random event B1(r), the following representation
is true:

P{(Lr = m) ∩ B1(r) | L0 = 0} =
r−2

∑
k=1

ak

k

∑
i=1

ci

r−k−1

∑
j=1

sj

×
[

N−2

∑
l=0

p(j, l)Ll+1(r − k − j, m) + LN(r − k − j, m)
∞

∑
l=N−1

p(j, l)

]
. (6)
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Indeed, in Formula (6), the first job enters into the system at time k ≤ r − 2, and
the shutdown time completes at most at time k. Denoting by j the setup time duration,
the processing of jobs starts at time r − k − j. If during the setup time, the next l ≤ N − 2
jobs enter into the system, then the machine begins the service process with l + 1 jobs
present (including the one that “initializes” the setup time). If l ≥ N − 1, then the system
starts processing with N jobs present (some jobs entering into the system during the setup
time may be dropped because of the buffer overflow).

Arguing similarly, the following formula can be written in the case of the random
event B2(r):

P{(Lr = m) ∩ B2(r) | L0 = 0} =
r−1

∑
k=1

ak

k

∑
i=1

ci

∞

∑
j=r−k

sj

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
, (7)

where

1A(m)
de f
=

{
1, if m ∈ A
0, if m /∈ A (8)

is the indicator of the set A.
Let us comment (7) briefly. If m ∈ {1, . . . , N − 1}, then after the first arrival occurring

at time k < r, exactly m − 1 next jobs must enter into the system up to time r. In the case
m = N, the number of arrivals after the first job occurrence until time r must be equal to at
least N − 1. Evidently, in the case of l > N − 1 arrivals, the number l − (N − 1) of them
will be lost due to the buffer saturation.

Considering the random event B3(r), we obtain

P{(Lr = m) ∩ B3(r) | L0 = 0} =
r−3

∑
k=1

ak

r−2

∑
i=k+1

ci

r−i−1

∑
j=1

sj

×
[

N−2

∑
l=0

p(i + j − k, l)Ll+1(r − i − j, m) + LN(r − i − j, m)
∞

∑
l=N−1

p(i + j − k, l)

]
(9)

and the interpretation of the right side of (9) is similar to that for (6).
Let us note that, in relation to the definition of the random event B4(r), we obtain

P{(Lr = m) ∩ B4(r) | L0 = 0} =
r−2

∑
k=1

ak

r−1

∑
i=k+1

ci

∞

∑
j=r−i

sj

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
(10)

and we can explain the right side of (10) similarly to the comment on (7).
Referring to the definition of B5(r), we have

P{(Lr = m) ∩ B5(r) | L0 = 0} =
r−1

∑
k=1

ak

∞

∑
i=r

ci

[
1{1,...,N−1}(m)p(r − k, m − 1)

+ 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
. (11)

Indeed, two summands on the right side of (11) represent the cases in which at time
r, there is at least one place in the accumulating buffer and the buffer is saturated at this
time, respectively.
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Finally, referring to B6(r), we obtain

P{(Lr = m) ∩ B6(r) | L0 = 0} = 1{1}(m)ar + 1{0}(m)
∞

∑
k=r+1

ak. (12)

Obviously, the equation

L0(r, m) = P{Lr = m | L0 = 0} =
6

∑
k=1

P{(Lr = m) ∩ Bk(r) | L0 = 0} (13)

is the consequence of the formula of total probability.

3.2. The Case of the System Being Non-Empty at the Opening

Now, let us study the case of the system that contains at least one job accumulated in
the buffer initially (at time 0).

Due to the memoryless property of the geometric distribution of the interarrival times,
successive departure times are renewal moments in the evolution of the system. Hence, ap-
plying the formula of total probability with respect to the first departure epoch after the start-
ing of the system (we denote below this moment by j), we obtain the following equation:

Ln(r, m) =
r−1

∑
j=1

bj

[
N−n−1

∑
l=0

p(j, l)Ln+l−1(r − j, m) + LN−1(r − j, m)
∞

∑
l=N−n

p(j, l)

]

+ br

(
1{n−1,...,N−2}(m)p(r, m − n + 1) + 1{N−1}(m)

∞

∑
l=N−n

p(r, l)

)

+

(
1{n,...,N−1}(m)p(r, m − n) + 1{N}(m)

∞

∑
l=N−n

p(r, l)

)
∞

∑
j=r+1

bj, (14)

where n ∈ {1, . . . , N}.
Indeed, the first summand on the right side of (14) corresponds to the situation in

that the first service completes before time r: the first subsummand represents the case
where up to the first service-completion epoch, the accumulating buffer does not become
saturated, while the second one describes the opposite case. In the second summand on
the right side of (14), the first service completes exactly at time r, while in the last one, the
first job enters into the system after time r. In the above formula, we accept the general rule
“arrival first”, namely, if the service completion and the arrival occur at the same time, we
assume that the arrival precedes the departure.

4. Corresponding Equations Written for Discrete Transforms

In this section, we establish equations for the transient conditional state probabilities
of the considered queueing model in terms of discrete transformations.

So, we introduce the probability generating function of the conditional queue-size
distribution as follows:

L⋆
n(z, m)

de f
=

∞

∑
r=1

zrLn(r, m), (15)

where n ∈ {0, . . . , N} and |z| < 1.
Moreover, let us define

L⋆/Bk (z, m)
de f
=

∞

∑
r=1

zrP{(Lr = m) ∩ Bk(r) | L0 = 0}, (16)

where k = 1, . . . , 6 and |z| < 1.
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Referring to the representation (6), we obtain

L⋆/B1(z, m) =
∞

∑
r=3

zr
r−2

∑
k=1

ak

k

∑
i=1

ci

r−k−1

∑
j=1

sj

×
[

N−2

∑
l=0

p(j, l)Ll+1(r − k − j, m) + LN(r − k − j, m)
∞

∑
l=N−1

p(j, l)

]
. (17)

Changing the order of summation on the right side of (17) according to the scheme

∞

∑
r=3

r−2

∑
k=1

k

∑
i=1

r−k−1

∑
j=1

→
∞

∑
k=1

∞

∑
r=k+2

k

∑
i=1

r−k−1

∑
j=1

→
∞

∑
k=1

k

∑
i=1

∞

∑
j=1

∞

∑
r=j+k+1

, (18)

we obtain

L⋆/B1(z, m) =
∞

∑
k=1

zkak

k

∑
i=1

ci

∞

∑
j=1

zjsj

[
N−2

∑
l=0

p(j, l)
∞

∑
r=j+k+1

zr−k−jLl+1(r − k − j, m)

+
∞

∑
r=j+k+1

zr−k−jLN(r − k − j, m)
∞

∑
l=N−1

p(j, l)

]

=

[
az

1 − z(1 − a)
− az(1 − c)

1 − z(1 − a)(1 − c)

]
× s

∞

∑
j=1

zj(1 − s)j−1

[
N−2

∑
l=0

p(j, l)L⋆
l+1(z, m) + L⋆

N(z, m)
∞

∑
l=N−1

p(j, l)

]

=
N−2

∑
l=0

Gl(z)L⋆
l+1(z, m) + G⋆(z)L⋆

N(z, m), (19)

where we denote

Gl(z)
de f
= s

[
az

1 − z(1 − a)
− az(1 − c)

1 − z(1 − a)(1 − c)

] ∞

∑
j=1

zj(1 − s)j−1 p(j, l) (20)

and

G⋆(z)
de f
= s

[
az

1 − z(1 − a)
− az(1 − c)

1 − z(1 − a)(1 − c)

] ∞

∑
j=1

zj(1 − s)j−1
∞

∑
l=N−1

p(j, l). (21)

In the last transformation in (19), we use the fact that

∞

∑
k=1

zkak

k

∑
i=1

ci = a
∞

∑
k=1

zk(1 − a)k−1
k

∑
i=1

c(1 − c)i−1 = a
∞

∑
k=1

zk(1 − a)k−1
[
1 − (1 − c)k

]
=

az
1 − z(1 − a)

− az(1 − c)
1 − z(1 − a)(1 − c)

. (22)

Now, let us deal with the representation (7). Introducing probability generating
functions, we obtain

L⋆/B2(z, m) =
∞

∑
r=2

zr
r−1

∑
k=1

ak

k

∑
i=1

ci

∞

∑
j=r−k

sj

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
. (23)



Symmetry 2024, 16, 63 11 of 25

Let us change the order of summation in (23) as follows:

∞

∑
r=2

r−1

∑
k=1

k

∑
i=1

∞

∑
j=r−k

→
∞

∑
k=1

∞

∑
r=k+1

k

∑
i=1

∞

∑
j=r−k

→
∞

∑
k=1

k

∑
i=1

∞

∑
j=1

k+j

∑
r=k+1

, (24)

and we obtain

L⋆/B2(z, m) =
∞

∑
k=1

ak

k

∑
i=1

ci

∞

∑
j=1

sj

k+j

∑
r=k+1

zr

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]

= a
∞

∑
k=1

(1 − a)k−1
[
1 − (1 − c)k

] ∞

∑
j=1

s(1 − s)j−1
k+j

∑
r=k+1

zr

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
. (25)

Taking into consideration Equation (9), we have

L⋆/B3(z, m) =
∞

∑
r=4

zr
r−3

∑
k=1

ak

r−2

∑
i=k+1

ci

r−i−1

∑
j=1

sj

×
[

N−2

∑
l=0

p(i + j − k, l)Ll+1(r − i − j, m) + LN(r − i − j, m)
∞

∑
l=N−1

p(i + j − k, l)

]
. (26)

As in the previous two cases, let us change the order of summation on the right side
of (26) as given below:

∞

∑
r=4

r−3

∑
k=1

r−2

∑
i=k+1

r−i−1

∑
j=1

→
∞

∑
k=1

∞

∑
r=k+3

r−2

∑
i=k+1

r−i−1

∑
j=1

→
∞

∑
k=1

∞

∑
i=k+1

∞

∑
j=1

∞

∑
r=i+j+1

. (27)

After this transformation, we obtain the following formula:

L⋆/B3(z, m) =
∞

∑
k=1

ak

∞

∑
i=k+1

zici

∞

∑
j=1

zjsj

∞

∑
r=i+j+1

zr−i−j

×
[

N−2

∑
l=0

p(i + j − k, l)Ll+1(r − i − j, m) + LN(r − i − j, m)
∞

∑
l=N−1

p(i + j − k, l)

]

= a
∞

∑
k=1

(1 − a)k−1
∞

∑
i=k+1

zic(1 − c)i−1
∞

∑
j=1

zjs(1 − s)j−1

×
[

N−2

∑
l=0

p(i + j − k, l)L⋆
l+1(z, m) + L⋆

N(z, m)
∞

∑
l=N−1

p(i + j − k, l)

]

=
N−2

∑
l=0

Hl(z)L⋆
l+1(z, m) + H⋆(z)L⋆

N(z, m), (28)

where

Hl(z)
de f
= a

∞

∑
k=1

(1 − a)k−1
∞

∑
i=k+1

zic(1 − c)i−1
∞

∑
j=1

zjs(1 − s)j−1 p(i + j − k, l) (29)
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and

H⋆(z)
de f
= a

∞

∑
k=1

(1 − a)k−1
∞

∑
i=k+1

zic(1 − c)i−1
∞

∑
j=1

zjs(1 − s)j−1
∞

∑
l=N−1

p(i + j − k, l). (30)

Referring to the representation (10), we have

L⋆/B4(z, m) =
∞

∑
r=3

zr
r−2

∑
k=1

ak

r−1

∑
i=k+1

ci

∞

∑
j=r−i

sj

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
. (31)

Due to the fact that

r−1

∑
i=k+1

ci

∞

∑
j=r−i

sj = cs
r−1

∑
i=k+1

(1 − c)i−1
∞

∑
j=r−i

(1 − s)j−1

= c
r−1

∑
i=k+1

(1 − c)i−1(1 − s)r−i−1 =
c

1 − c
(1 − s)r−1

r−1

∑
i=k+1

(
1 − c
1 − s

)i

=
c(1 − s)r

(1 − c)(c − s)

(
1 − c
1 − s

)k+1
[

1 −
(

1 − c
1 − s

)r−k−1
]

, (32)

we can rewrite (31) in the following form:

L⋆/B4(z, m) =
c(1 − s)r

(1 − c)(c − s)

∞

∑
r=3

zr
r−2

∑
k=1

a(1 − a)k−1
(

1 − c
1 − s

)k+1
[

1 −
(

1 − c
1 − s

)r−k−1
]

×
[

1{1,...,N−1}(m)p(r − k, m − 1) + 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
. (33)

Next, taking into consideration the representation (11), we have

L⋆/B5(z, m) =
∞

∑
r=2

zr
r−1

∑
k=1

ak

∞

∑
i=r

ci

[
1{1,...,N−1}(m)p(r − k, m − 1)

+ 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]

= za
∞

∑
r=2

[z(1 − c)]r−1
r−1

∑
k=1

(1 − a)k−1

[
1{1,...,N−1}(m)p(r − k, m − 1)

+ 1{N}(m)
∞

∑
l=N−1

p(r − k, l)

]
. (34)

Lastly, referring to the Formula (12), we obtain

L⋆/B6(z, m) =
∞

∑
r=1

zr

[
1{1}(m)ar + 1{0}(m)

∞

∑
k=r+1

ak

]

=
1

1 − z(1 − a)

[
za1{1}(m) + z(1 − a)1{0}(m)

]
. (35)
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To write the results in a more compact form, let us introduce the following nomenclature:

Al(z, m)
de f
= Gl(z) + Hl(z),

B(z)
de f
= G⋆(z) + H⋆(z) (36)

and

C(z, m)
de f
= ∑

i∈{2,4,5,6}
L⋆/Bi (z, m). (37)

Let us note that the following equation is a consequence of the formula of total
probability (compare (13)):

L⋆
0(z, m) =

N−2

∑
l=0

Al(z)L⋆
l+1(z, m) + B(z)L⋆

N(z, m) + C(z, m). (38)

Now let us deal with the case of the system being non-empty at the opening.
Let us introduce now the following notation:

βl(z)
de f
=

∞

∑
j=1

zjbj p(j, l), (39)

where |z| ≤ 1.
Let us observe that

∞

∑
r=2

zr
r−1

∑
j=1

bjLi(r − j, m)∑
l

p(j, l)

= ∑
l

∞

∑
j=1

zjbj p(j, l)
∞

∑
r=j+1

zr−jL⋆
i (r − j, m) = ∑

l
βl(z)L⋆

i (z, m). (40)

In consequence, we obtain from (14) the following system of equations:

L⋆
n(z, m) =

N−n−1

∑
l=0

βl(z)L⋆
n+l−1(z, m) + L⋆

N−1(z, m)
∞

∑
l=N−n

βl(z) + εn(z, m), (41)

where n ∈ {1, . . . , N}, and (compare the right side of (14))

εn(z, m)
de f
=

∞

∑
r=1

zr

[
br

(
1{n−1,...,N−2}(m)p(r, m − n + 1) + 1{N−1}(m)

∞

∑
l=N−n

p(r, l)

)

+

(
1{n,...,N−1}(m)p(r, m − n) + 1{N}(m)

∞

∑
l=N−n

p(r, l)

)
∞

∑
j=r+1

bj

]
. (42)

5. Algebraic Solution in the Matrix Form

In this section, we present the algebraic solution of the system of Equations (38) and (41)
in the matrix form.

Rewriting Equation (38) in the expanded form gives

L⋆
0(z, m)− A0(z)L⋆

1(z, m)− A1(z)L⋆
2(z, m)− . . . − AN−2(z)L⋆

N−1(z, m)− B(z)L⋆
N(z, m) = C(z, m). (43)
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Similarly, expanding the successive equations of (41), we obtain

− β0(z)L⋆
0(z, m) + (1 − β1(z))L⋆

1(z, m)− . . . − βN−2(z)L⋆
N−2(z, m)− L⋆

N−1(z, m)
∞

∑
l=N−1

βl(z) = ε1(z, m),

− β0(z)L⋆
1(z, m) + (1 − β1(z))L⋆

2(z, m)− . . . − βN−3(z)L⋆
N−2(z, m)− L⋆

N−1(z, m)
∞

∑
l=N−2

βl(z) = ε2(z, m),

− β0(z)L⋆
N−3(z, m) + (1 − β1(z))L⋆

N−2(z, m)− L⋆
N−1(z, m)

∞

∑
l=2

βl(z) = εN−2(z, m),

− β0(z)L⋆
N−2(z, m) +

(
1 −

∞

∑
l=1

βl(z)

)
L⋆

N−1(z, m) = εN−1(z, m),

− L⋆
N−1(z, m)

∞

∑
l=0

βl(z) + L⋆
N(z, m) = εN(z, m). (44)

Now let us introduce the (N + 1)× (N + 1) matrix A(z) =
(
αi,j(z)

)
with the main

diagonal defined in the following way:

αi,i(z)
de f
=


1, i = 1,

1 − β1(z), 2 ≤ i ≤ N − 1,
1 − ∑∞

k=1 βk(z), i = N,
1 i = N + 1.

(45)

Entries of the “ribbon” under the main diagonal are defined as follows:

αi,i−1(z)
de f
=

{
−β0(z), 2 ≤ i ≤ N,

−∑∞
k=0 β0(z) i = N + 1.

(46)

Finally, the remaining entries of A(z) are given by the following formulae:

αi,j(z) =


−Aj−2(z), i = 1, 2 ≤ j ≤ N,
−B(z), i = 1, j = N + 1,

−β j−i+1(z), 2 ≤ i ≤ N − 2, i + 1 ≤ j ≤ N − 1,
−∑∞

k=N−i+1 βk(z), 2 ≤ i ≤ N − 1, j = N,
0, otherwise.

(47)

Introducing now the following one-column (N + 1)× 1 matrix of unknown functions,

L(z, m)
de f
= [L⋆

0(z, m), . . . , L⋆
N(z, m)]T (48)

and the one-column (N + 1)× 1 matrix of free terms,

Φ(z, m)
de f
= [C(z, m), ε1(z, m), . . . , εN(z, m)]T , (49)

we can present the system of Equations (38) and (41) in the following matrix form:

A(z)L(z, m) = Φ(z, m). (50)

Obviously, (50) represents Cramer’s system of equations, so the solution is unique.
In consequence, the following theorem is true.
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Theorem 1. In the considered discrete-time queueing model with capacity N and with the mecha-
nism of setup/close-down times, the queue-size distribution conditioned by the initial accumulation
buffer state can be represented in terms of probability generating functions as follows:

L(z, m) = A−1(z)Φ(z, m), (51)

where functional matrices A(z) and Φ(z, m) are defined in (45)–(47) and (49), respectively.

It is possible to find, just from Theorem 1, the appropriate result for the stationary

queue-size distribution. It is well known (Abelian Theorem) that if
∞
∑

n=0
anzn is convergent

for |z| < 1 and if lim
n→∞

an = a, then

lim
z↑1

(1 − z)
∞

∑
n=0

anzn = a. (52)

Since the stationary probabilities are independent on the initial condition (buffer state),
then defining

πm
de f
= lim

r→∞
P{Lr = m | L0 = n}, (53)

where n ∈ {0, . . . , N}, and using the above-mentioned Abelian theorem, we can formulate
the following corollary.

Corollary 1. The stationary queue-size distribution (πm), m ∈ {0, . . . , N}, in the considered
queueing system can be found in the following way:

πm = lim
z↑1

(1 − z)L⋆
n(z, m) = lim

z↑1

∞

∑
r=1

zrLn(r, m), (54)

where n can be taken arbitrarily from the set {0, . . . , N}.

6. Numerical Study and Discussion

In this section, we investigate numerically the impact of the main “input” parameters
of the production system, such as the intensity of job arrival, service time, and the setup
time and shutdown time of the bottleneck, as well as the size of the input buffer. Matlab is
used to obtain the transient queue-size distribution from Formula (51) for the individual
system parameters. The model is described as follows:

• Geometric arrivals of jobs with parameter ak = 0.1;
• Geometric processing time of arriving jobs with parameter bk = 0.1;
• Geometrically distributed random setup times with parameter sk = 0.3;
• Geometrically distributed random shutdown times with parameter ck = 0.2;
• Input buffer size N = 6.

In the considered discrete-time queueing model with capacity N and with the mecha-
nism of setup/close-down times, the queue-size distribution is conditioned by the initial
accumulation buffer state. First is the maximal system capacity, N = 6. Let Lr denote the
number of jobs present in the system exactly at time r, where r = 2, . . . , 10, including a
job whose service is in progress at time r, if any. Observe L6(r, 3), the probability that at
the fixed time r = 2, . . . , 10 the number of jobs present in the system equals m = 3 on the
condition that initially (at time 0) the system (the input buffer, in fact) contains i = 6 jobs,

Li(r, m)
de f
= P{Lr = 3 | L0 = 6}, (55)
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represented by Figure 2a. Similarly, L6(r, 4), the probability that at the fixed time r = 2, . . . , 10,
the number of jobs present in the system equals m = 4 on the condition that initially the system
contains i = 6 jobs, is presented in Figure 2b and L6(r, 5), L6(r, 6) in Figure 2c,d, respectively.

  

(a) Probability that there are 3 tasks in the 

production system 

(b) Probability that there are 4 tasks in the 

production system 

  
(c) Probability that there are 5 tasks in the 

production system 

(d) Probability that there are 6 tasks in the 

production system 

  

  

  

 

 

 

 

 

 

Figure 2. The probability that at the fixed time r the number of jobs present in the system equals m,
L6(r, m).

The probability that at the fixed time r = 2, . . . , 10 the number of jobs present in the
system equals m = 3, 4, 5, 6 decreases with time on the condition that initially the system
contains i = 6 jobs. The probability of more tasks present in a given time unit decreases as
the number of analyzed tasks increases.

6.1. Impact of Probability That Interarrival Time between Two Successive Jobs Equals k Time Units

Observe L6(r, 3), the probability that at the fixed time r = 2, . . . , 10 the number of jobs
present in the system equals m = 3 on the condition that initially (at time 0) the system
(the input buffer, in fact) contains i = 6 jobs, {Lr = 3 | L0 = 6}, and the probability that
the interarrival time between two successive jobs equals k time units, ak = 0.2 (Figure 3a).
The transient conditional distributions decrease after the production system is opened,
starting from the peak obtained at time r = 2.

Observe the influence of the probability that the interarrival time between two suc-
cessive jobs equals k time units ak = 0.2, 0.3, 0.4, 0.5 on the probability that at the fixed
time r = 2, . . . , 10 the number of jobs present in the system equals m = 3 (Figure 3a–d).
With the increase in ak, the probability that at the moment r = 2, . . . , 10 the number of jobs
present in the system equals to m = 3 decreases the most at the beginning of the production
system operation. Starting from r = 6, the effect of the probability that the interarrival time
between two successive jobs equals to k time units ak = {0.2, 0.3, 0.4, 0.5} becomes smaller
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and smaller. The longer the interarrival time between two successive jobs, the less impact
there is on the production system described by L6(r, 3).

Figure 3. Influence of the probability that the interarrival time between two successive jobs equals k
time units, L6(r, 3).

6.2. Impact of Probability That A Single Service Time Equals k Time Units

Observe L6(r, 3), the probability that at the fixed time r = 2, . . . , 10 the number of jobs
present in the system equals m = 3 on the condition that initially the input buffer contains
i = 6 jobs, {Lr = 3 | L0 = 6}, and the probability that a single service time duration equals
k time units bk = 0.2 (Figure 4a). The transient conditional distributions decrease most
when the production system is opened, starting from the peak obtained at r = 2. Given the
probability that the duration of a single service is two time units, the probability that there
are three jobs at this moment is 65%.

Observe the influence of the probability that a single service time equals k time units
bk = 0.2, 0.3, 0.4, 0.5 on the probability that at the fixed time r = 2, . . . , 10 the number of jobs
present in the system equals m = 3 (Figure 4a–d). With the increase in bk, the probability
that at the moment r = 2, . . . , 10 the number of jobs present in the system equals to m = 3
decreases the most at the beginning of the production system operation. The effect of the
probability that a single service time equals k time units bk = {0.2, 0.3, 0.4, 0.5} becomes
smaller and smaller. The longer a single service time of a job, the less impact there is on the
production system described by L6(r, 3).
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(a) Influence of probability that a single service time 

duration equals k time units, bk = 0.2  

(b) Influence of probability that a single service time 

duration equals k time units, bk = 0.3 

  

  
(c) Influence of probability that a single service time 

duration equals k time units, bk = 0.4 

(d) Influence of probability that a single service time 

duration equals k time unitsk, bk = 0.5 

  

  

  

 

 

 

 

 

 

Figure 4. Influence of the probability that a single service time duration equals k time units, L6(r, 3).

6.3. Impact of Probability That Shutdown Time Duration Equals Exactly k Time Slots

Observe L6(r, 3), the probability that at the fixed time r = 2, . . . , 10 the number of
jobs present in the system equals m = 3 on the condition {L0 = 6} and the probability
that the shutdown time duration of the bottleneck equals k time units ck = 0.1 (Figure 5a).
The transient conditional distributions decrease most when the production system is
opened, starting from the peak obtained at r = 2. Given the probability that the shutdown
time duration of the bottleneck is two time units, the probability that there are three jobs at
this moment is 76%.

Observe the influence of the probability that the shutdown time duration equals
k time units ck = 0, 1, 0.2, 0.4, 0.5 on the probability that at the fixed time r = 2, . . . , 10
the number of jobs present in the system equals m = 3 (Figures 2a and 5a–d). As ck
increases, the probability that at the moment r = 2, . . . , 10 the number of jobs present in
the system equals to m = 3 decreases the most at the beginning of the production system
operation. The effect of the probability that the shutdown time duration equals k time units
ck = {0.1, 0.2, 0.4, 0.5} becomes lower and lower until the time r = 5. The shutdown time
duration of the bottleneck has no effect on the production system operation after r = 5.
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Figure 5. The influence of the probability that the shutdown time duration equals exactly k time slots,
L6(r, 3).

6.4. Impact of Probability That Setup Time Duration Equals Exactly k Time Slots

Observe L6(r, 3), the probability that at the fixed time r = 2, . . . , 10 the number of
jobs present in the system equals m = 3 on the condition {L0 = 6} and the probability
that the setup time duration of the bottleneck equals k time units sk = 0.2 (Figure 6a).
Again, the transient conditional distributions decrease most when the production system is
opened. Given the probability that the setup time duration of the bottleneck is two time
units, the probability that there are three jobs at this moment is 71%.

Observe the influence of the probability that the setup time duration equals k time units
ck = 0.2, 0.3, 0.4, 0.5 on the probability that at the fixed time r = 2, . . . , 10 the number of jobs
present in the system equals m = 3 (Figures 2a and 6a–d). As sk increases, the probability
that at the moment r = 2, . . . , 10 the number of jobs present in the system equals to m = 3
decreases the most after opening the production system. The effect of the probability that
the setup time duration equals k time units sk = {0.2, 0.3, 0.4, 0.5} becomes lower and lower
until the time r = 4. Also, the setup time duration of the bottleneck has no effect on the
production system operation after r = 5.
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Figure 6. The influence of the probability that the setup time duration equals exactly k time slots,
L6(r, 3).

6.5. Impact of Input Buffer Size

Now observe the transient behavior of the considered probabilities, where the capacity
of the production system N = {3, 4, 5, 6, 7} (Figures 2a and 7a–d). The probability that
the interarrival time between two successive jobs equals k; the probability that a single
service time duration equals k time slots; the probability that the shutdown time duration
equals exactly k time slots; and the probability that the setup time duration is equal to k
time units are described by the parameters b = 0.1, a = 0.1, c = 0.2, and s = 0.3 as in
previous simulations.

In Figure 7a, the behavior of the system is considered for the maximal system capacity,
N = 3. The probabilities of three jobs m = 3 in the system at time r (two jobs in the
input buffer at the beginning, and one job in the bottleneck), provided that the input
buffer contains i = 3 jobs at time 1, decrease most when the production system is opened.
After r = 5, the production system is empty. The larger the input buffer capacity, the greater
the probability of three jobs occurring in the production system (Figures 2a and 7a–d).
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Figure 7. Influence of the input buffer capacity on Li(r, 3).

6.6. Comparative Discussion on Energy-Saving Methods

To reduce production costs, researchers are optimizing batch sizes [43], minimizing
losses [44], eliminating waste [45,46] and optimizing machine tools for efficient input and
output [5]. Brundage [47] presents the possibility of saving energy based on a window
calculated for on-line production data, which allows turning off a specific machine without
negatively affecting throughput. Temporarily switching off a machine and switching it back
on under a certain condition in order to save energy is also suggested by [48–50]. In our
approach, we propose the switching-off strategy for the critical machine (if necessary) and
extending the operating time of non-critical machines. Analyses are necessary to determine
the most effective energy-reduction strategy: switching off a machine or slowing down
its operation. The capacity and availability of a machine are reduced with the decision
of switching off the machine because operations cannot be performed during setup or
shutdown (warm up or cool down).

Continuous improvement and lean design for productivity and quality can lead
to improved energy efficiency [45,46]. The common nature of our approach is the use
of organizational improvement, i.e., the DBR concept, to reduce energy consumption.
The minimum number of capacity buffers has a positive effect on the energy efficiency.
By adjusting the interarrival time of orders and the input buffer size to the capacity of the
bottleneck, the production system is well balanced, and the throughput of the production
system is maximized. The opposite strategy is to add work-in-flow buffers between
machines in a production system to maximize throughput and to protect machines from
the consequences of failures and blocking [51,52]. According to the Theory of Constraints,
the throughput of a production lines is equal to the capacity of the bottleneck. Therefore,
the work-in-process buffer is necessary for the machine. However, the work-in-process
buffer for the critical machine is actually just another machine that has a negative impact
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on the energy efficiency and costs of the production line. The analyzed literature ignores
the impact of work-in-process buffers on the energy consumption. The advantage of
methods for finding the best buffer allocation and optimizing both the throughput and
energy consumption for serial production lines is the assumption that the machines are
unreliable [51,52]. In particular, bottleneck downtime is crucial to the performance of
production systems, upstream and downstream machine run times are shorter than cycle
times, and work-in-process buffers may not be necessary. The maximum possible downtime
of a non-critical machine without loss of production due to the i-th failure event is analyzed
in [47]. The energy gain bottleneck is identified, i.e., the machine that causes the greatest
loss of profit on the line. Downtime of the bottleneck and power bottleneck are analyzed to
improve the energy efficiency and productivity of a production line in [53].

7. Conclusions

The aim of the paper was to analyze the impact of changes in key parameters of the
production model controlled by DBR theory. The answer was sought to the question of how
changing the values of key parameters dictated by the desire to reduce energy consumption
affects the efficiency of the production system.

In the paper, a discrete-time queueing model of a production line with a single bottle-
neck and finite input buffer capacity was proposed. Jobs arrive according to a binomial
process and are processed individually, one by one, according to the FIFO rule. Every time
the system becomes empty, an energy-saving mechanism is started: the processing machine
is turned off during a geometrically distributed shutdown time. The short interarrival
time of jobs reduces the impact of the shutdown time of the bottleneck. The operation
times of non-critical machines can be slowed down to reduce energy up to the takt time of
the bottleneck.

The main analytic result of the article is a compact-form representation for the proba-
bility generating function of the transient queue-size distribution conditioned by the initial
accumulation buffer state. To obtain this result, a theoretical approach based on using the
total probability law, the method of generating functions, and linear algebra was applied.
The appropriate stationary queue-size distribution is found from the main result directly
by using the Abelian theorem.

The model of production system was built using Equations (20), (21), (25), (29), (30),
(33)–(35), (39), (42), (45)–(48) and (51). Managers can study the behavior of a produc-
tion system in terms of queue size by changing the key parameters of the input model
(arrival intensity, bottleneck service rate, buffer size, and setup and shutdown times) to
analyze the performance of the production system, including decisions regarding energy
reduction. By adjusting the time between order arrivals and the size of the input buffer
to the capacity of the bottleneck, the throughput of the production system is maximized.
Also, the proposed strategy of shutting down the production line and slowing down the
operation of non-critical machines balances the production system. One-piece flow with
no work-in-process buffers reduces costs, saves energy and eliminate waste. In the pa-
per, organizational and analytical solutions to model the sustainable production system
are combined.

In the future, the model will be adopted to the theory of production control using
Kanban cards. Possibilities of reducing energy consumption for the production system
controlled by Kanban cards will be proposed. Moreover, the next planned steps to extend
the considered model and obtain new results are the following:

• Modification of the energy-saving mechanism by adding a threshold discipline
(N-policy), according to which the processing of jobs is restarted after an idle pe-
riod if a fixed number of N jobs are accumulated in the buffer;

• Considering the case in which the arriving jobs occur in groups (batch arrival process),
which, in general, can have random capacities;
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• Investigating other stochastic and operational characteristic of the considered model,
namely queueing delay (waiting time) distribution, time to buffer overflow and
departure process.
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