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Abstract: The enhanced hypercube is a well-known variant of the hypercube and can be constructed
from a hypercube by adding an edge to every pair of vertices with complementary addresses. Let Fv

denote the set of faulty vertices in an n-dimensional enhanced hypercube Qn,k (1 ≤ k ≤ n − 1). In
this paper, we conclude that if n ≥ 2, then every fault-free edge of Qn,k − Fv lies on a fault-free cycle
of every even length from 4 to 2n − 2|Fv|, and if n (≥ 2) and k have the different parity, then every
fault-free edge of Qn,k − Fv lies on a fault-free cycle of every possible odd length from n − k + 4 to
2n − 2|Fv| − 1, where |Fv| ≤ n − 2.
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1. Introduction

The well-known hypercue has several excellent properties, such as recursive structure,
regularity, symmetry, small diameter, low degree, and logarithmic diameter [1]. One variant
of the hypercube that has been the focus of a great deal of research is the enhanced hypercube
Qn,k [2,3], which can be obtained from the well-known n-dimensional hypercube Qn by
adding each edge from the vertex x1x2 . . . xk−1xk . . . xn to the vertex x1x2 . . . xk−1x̄k . . . x̄n. The
n-dimensional enhanced hypercube Qn,k (1 ≤ k ≤ n − 1) is proposed to improve the
efficiency of the hypercube structure Qn, as it possesses many attractive properties that are
superior to that of the hypercube [4–11]. Moreover, the folded hypercube FQn is the special
case of the enhanced hypercube Qn,k when k = 1 [12–21].

In computer network topology design, one of the central issues in evaluating a network
is to study the network embedding problem. The embedding of one guest graph G1 into
another host graph G2 is a one-to-one mapping m from the vertex set of G1 to the vertex set
G2 [1]. Recently, the multiprocessor system is becoming prevalent and significant. Using the
fault-tolerant embedding properties to evaluate the reliability of a parallel computing sys-
tem is a significant issue. Therefore, many research fields and topics focus on the reliability
analysis problems regarding the fault-tolerant embedding of distributed networks [19].

The concept of ISTs was first introduced by Itai and Rodeh [22]. At a later time, a
large number of researchers were attracted by the problems regarding the reliability of
parallel and distributed networks. The construction of ISTs is obtained to receive high
levels of fault-tolerant properties and security. To pursue the above goals, one is to design
an efficient construction or investigate the fault-tolerant embedding properties. Note that
the class of enhanced hypercube is a general case of the folded hypercube. The enhanced
hypercubes have attracted much attention, e.g., the diagnosability, embedding, and others.
Fault-tolerant cycle embedding with respect to vertex is related to investigating the property
of a more cost-effective constructure.

Problems regarding the fault-tolerant embedding for hypercubes and folded hyper-
cubes have been studied in [14,15,23,24]. Let Fv and Fe be the sets of faulty vertices and
faulty edges, respectively. Tsai [25] proved that every fault-free edge of Qn − Fv lies on
a fault-free cycle of every even length from 4 to 2n − 2|Fv| inclusive, where |Fv| ≤ n − 2.
Furthermore, Hsieh and Shen [26] extended the above result to show that every fault-free
edge of Qn − Fe − Fv lies on a fault-free cycle of every even length from 4 to 2n − 2|Fv|,
where |Fv| + |Fe| ≤ n − 2 and n ≥ 3. Xu et al. [21] showed that every fault-free edge
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of FQn − Fe lies on a fault-free cycle of every even length from 4 to 2n and also lies on a
fault-free cycle of every odd length from n + 1 to 2n − 1 if n is even, where |Fe| ≤ n − 1.
Cheng et al. [13] proved that every fault-free edge of FQn − Fv lies on a fault-free cycle of
every even length from 4 to 2n − 2|Fv| if n ≥ 3, and also lies on a fault-free cycle of every
odd length from n + 1 to 2n − 2|Fv| − 1 if n is even and n ≥ 2, where |Fv| ≤ n − 2. After
that, Kuo and Stewart [16] further proved that every fault-free edge of FQn − Fv − Fe lies
on a fault-free cycle of every even length from 4 to 2n − 2|Fv| if n ≥ 3, and also lies on a
fault-free cycle of every odd length from n + 1 to 2n − 2|Fv| − 1 if n ≥ 2 is even, where
|Fv|+ |Fe| ≤ n − 2. Due to the above motivations, in this paper, we consider the faulty
enhanced hypercube Qn,k (1 ≤ k ≤ n − 1) with |Fv| ≤ n − 2, where Fv denotes the set of
faulty vertices of Qn,k (1 ≤ k ≤ n − 1), proving that every fault-free edge of Qn,k − Fv lies
on a fault-free cycle of every even length from 4 to 2n − 2|Fv| if n ≥ 2, and every fault-free
edge of Qn,k − Fv lies on a fault-free cycle of every possible odd length from n − k + 2 to
2n − 2|Fv| − 1 if n (≥ 2) and k have different parity.

The remainder of this paper is organized as follows. In Section 2, we introduce some
basic definitions and lemmas used in our discussion. We give the main results related to
even cycles and odd cycles embedding in the faulty enhanced hypercube in Sections 3 and 4
respectively. Finally, we conclude this paper in Section 5.

2. Preliminaries

For the graph theoretical terminology and notations not mentioned here, see [27].
A graph G = (V, E) is an ordered pair in which V is a finite set and E is a subset of
{(u, v)|(u, v) is an unordered pair of V}. We call V as the vertex set and E as the edge set.
For a set of edges or vertices S in G, the graph G − S is a subgraph of G by deleting all
elements in S from G. Two vertices u and v are adjacent if (u, v) ∈ E. A path, represented
as P[v0, vm] = ⟨v0, v1, v2, . . . , vm⟩, is a sequence of distinct vertices in which any two
consecutive vertices are adjacent. We call v0 and vm the end-vertices of the path P[v0, vm].
A path P[v0, vm] forms a cycle if v0 = vm and m ≥ 3. The length of a path P (respectively, a
cycle C) is denoted by l(P) (respectively, l(C)). Let Fv and Fe be the sets of faulty vertices
and faulty edges in G, where Fv ⊆ V(G), Fe ⊆ E(G). A vertex v is fault-free if v ∈ Fv. An
edge e ∈ E(G) is fault-free if the two end-vertices and the edge between them are not faulty,
i.e., e ∈ Fe. A path (respectively, a cycle) is fault-free if it contains no faulty edges.

The n-dimensional hypercube, denoted by Qn, is a graph with 2n vertices which
are labeled as binary strings of length n from 00 . . . 0︸ ︷︷ ︸

n

to 11 . . . 1︸ ︷︷ ︸
n

. Two vertices u and

v in Qn are linked by an edge if and only if u and v differ exactly on one bit posi-
tion. For convenience, we define the vertex u = x1x2 . . . xi−1xixi+1 . . . xn and the ver-
tex ui = x1x2 . . . xi−1 x̄ixi+1 . . . xn, where x̄i is the complement of xi, i.e., x̄i = 1 − xi for
some 1 ≤ i ≤ n and xi ∈ {0, 1}. In other words, u and ui have the different binary
strings exactly on the ith position. We call the edge (u, ui) as an ith dimension edge which
is along dimension i. Let Ei be the set of ith dimensional edges. Clearly, |E(Qn)| =
n · 2n−1. For a given integer i (1 ≤ i ≤ n), partition Qn along dimension i into two
(n − 1)-dimensional cubes, then Qi0

n−1 (respectively, Qi1
n−1) denotes the subgraph of Qn in-

duced by x1x2 . . . xi−10xi+1 . . . xn (respectively, x1x2 . . . xi−11xi+1 . . . xn), where xj ∈ {0, 1},
1 ≤ j ≤ n j ̸= i. Obviously, we have Qi0

n−1 and Qi0
n−1 being isomorphic to Qn.

A graph G is bipartite if the vertex set V can be divided into two disjoint partite
subsets V0 and V1 such that each edge in G connects one end-vertex in V0 and another in V1.
A bipartite graph G = (V0 ∪ V1, E) is hyper-Hamiltonian laceable if for any vertex v ∈ Vi,
i = 0, 1, there exists a Hamiltonian path of G − {v} between any two vertices in V1−i.

The distance between u and v denoted by dG(u, v) is the length of the shortest path
between u and v in G. The Hamming distance between two vertices u = x1x2 . . . xn
and v = y1y2 . . . yn in Qn is denoted by dH(u, v) = ∑n

i=1 |xi − yi|, where xi ∈ {0, 1} and
yi ∈ {0, 1}. The Hamming weight of the vertex u = x1x2 . . . xn, denoted by hw(u), is the
number of i’s such that xi = 1. We can use hw(u) to check the parity of the vertex u, i.e., u is
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an even vertex (respectively, an odd vertex) if hw(u) is even (respectively, hw(u) is odd). Note
that Qn is a bipartite graph with two disjoint partite subsets {u| hw(u) is odd} and {u| hw(u)
is even}. Clearly, dQn(u, v) = dH(u, v), Ei = {(u, ui)| dH(u, ui) = 1, i ∈ {1, 2, . . . , n}}.

Definition 1. Ref. [2] Enhanced hypercube Qn,k (1 ≤ k ≤ n − 1) is an undirected simple graph.
Its vertex set is V(Qn,k) = {x1x2 · · · xn : xi = 0 or 1, 1 ≤ i ≤ n}. Its edge set is E(Qn,k) =
{(x, y)}; for clarity, x = x1x2 · · · xn, xi ∈ {0, 1}, and y satisfies one of the following two
conditions: (1) y = x1x2 · · · xi−1 x̄ixi+1 . . . xn, 1 ≤ i ≤ n or (2) y = x1x2 · · · xk−1 x̄k x̄k+1 . . . x̄n.

One can observe that the enhanced hypercube Qn,k (1 ≤ k ≤ n − 1) is obtained
from the well known hypercube by adding the edges in the set {(x1x2 · · · xn, x1x2 · · · xk−1
x̄k x̄k+1 · · · x̄n), ∀k, 1 ≤ k ≤ n − 1}, which is called the set of complementary edges, denoted
by Ec = {(u, ū ) ∈ E(Qn,k)| dH(u, ū ) = n − k + 1, u = x1x2 · · · xn, ū = x1x2 · · · xk−1 x̄k
x̄k+1 · · · x̄n}. As mentioned above, |V(Qn,k)| = 2n and |E(Qn,k)| = (n + 1)2n−1. We can
define the edge set of Qn,k as E(Qn,k) = E(Qn) ∪ Ec = {(u, v)| dH(u, v) = 1, (u, v) ∈
E(Qn)} ∪ {(u, v)| dH(u, v) = n − k + 1, (u, v) ∈ Ec}. Note that Qn,k (1 ≤ k ≤ n − 1)
is (n + 1)-regular, vertex-transitive, but not edge-transitive [3]. For three-dimensional
enhanced hypercubes Q3,1 and Q3,2, see Figure 1.

010 011

110 111

000 001

100
101

3,1
Q

010

011

110 111

000 001

100
101

3,2
Q

Figure 1. Illustrations of Q3,1 and Q3,2.

Definition 2. Ref. [6] An i-partition on Qn,k (1 ≤ k ≤ n − 1), where 1 ≤ i ≤ n, is a partition of
Qn,k (1 ≤ k ≤ n − 1) along dimension i into two (n − 1)-dimensional cubes.

For k ≤ i ≤ n, 1 ≤ k ≤ n − 1, Qn,k (1 ≤ k ≤ n − 1) can be partitioned into two (n − 1)-
dimensional hypercubes, we call Qi0

n−1 (respectively, Qi1
n−1) as the subgraph of Qn,k induced by

x1x2 . . . xk . . . xi−10xi+1 . . . xn (respectively, x1x2 . . . xk . . . xi−11xi+1 . . . xn). And all the edges
in Ec are between Qi0

n−1 and Qi1
n−1, i.e., E(Qn,k) = E(Qi0

n−1) ∪ E(Qi1
n−1) ∪ Ec ∪ Ei.

For 1 ≤ i ≤ k − 1, 2 ≤ k ≤ n− 1, Qn,k (1 ≤ k ≤ n− 1) can be partitioned into two (n− 1)-
dimensional enhanced hypercubes, we call Qi0

n−1,k−1 (respectively, Qi1
n−1,k−1) as the subgraph

of Qn,k induced by x1x2 . . . xi−10xi+1 . . . xk . . . xn (respectively, x1x2 . . . xi−11xi+1 . . . xk . . . xn).
And we have E(Qn,k) = E(Qi0

n−1,k−1) ∪ E(Qi1
n−1,k−1) ∪ Ei.

Lemma 1. Ref. [8] For any positive integers i, j ∈ {1, 2, . . . , n, c}, an automorphism σ of
Qn,k (1 ≤ k ≤ n − 1) is denoted as σ(Ei) = Ej . Moreover, if i ∈ {k, k + 1, k + 2, . . . , n}, it
follows that Qn,k − Ei = Qi0

n−1 ∪ Qi1
n−1 ∪ Ec is isomorphic to Qn (represented as Qn,k − Ei

∼= Qn,
k ≤ i ≤ n). Particularly, if i = c, Qn,k − Ec ∼= Qn. However, if i ∈ {1, 2, . . . k − 1}, it implies
that Qn,k − Ei = Qi0

n−1,k−1 ∪ Qi1
n−1,k−1 is a disconnected graph.

Let Fv and Fe denote the sets of faulty vertices and faulty edges, respectively.

Lemma 2. Ref. [25] Let Qn (n ≥ 3) be with |Fv| ≤ n − 2 , every fault-free edge of Qn − Fv lies
on a fault-free cycle, whose length is of every even length from 4 to 2n − 2|Fv| inclusive.

Lemma 3. Ref. [28] Assume that u and v are any two distinct vertices in Qn (n ≥ 2). Thus, there
exists a path of length l joining u and v with dH(u, v) ≤ l ≤ 2n − 1 and 2|(l − dH(u, v)).
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Lemma 4. Ref. [29] Let Qn be with n ≥ 2 and |Fv| ≤ n − 2. Assume that u and v are any two
distinct fault-free vertices in Qn. Thus, Qn − Fv contains a fault-free path joining u and v, whose
length l satisfies that dH(u, v) + 2 ≤ l ≤ 2n − 2|Fv| − 1 and 2|(l − dH(u, v)).

Lemma 5. Ref. [30] Let X and Y be any two partite subsets of Qn (n ≥ 2). Assume x and u
are two distinct vertices of X, and y and v are two distinct vertices of Y. Then there exist two
vertex-disjoint paths P1 and P2 such that P1 connects x and y, P2 connects u and v. Moreover,
P1[x, y] and P2[u, v] spanning V(Qn), i.e., V(P1[x, y]) ∪ V(P2[u, v]) = V(Qn).

Lemma 6. Ref. [31] Let Qn (n ≥ 3) be with |Fe| ≤ n−3 . Then Qn − Fe is hyper-Hamiltonian-laceable.

3. Even Cycles Embedding in Qn,k with |Fv| ≤ n − 2

Theorem 1. Let Qn,k (1 ≤ k ≤ n − 1) be with |Fv| ≤ n − 2, n ≥ 2. Then every fault-free edge of
Qn,k − Fv lies on a fault-free cycle of every even length from 4 to 2n − 2|Fv|.

Proof. Applying Definition 1, it follows that E(Qn,k) = E(Qn) ∪ Ec, and V(Qn,k) = V(Qn).
Let e ∈ E(Qn,k) be an arbitrary fault-free edge. In Q2,1, since |Fv| = 0, two 4-cycles,
(00, 01, 11, 10, 00) and (00, 11, 10, 01, 00), contain all the edges of Qn,k; i.e., every edge of
Q2,1 lies on a fault-free cycle of length 4. Now we consider the case n ≥ 3. We have the
following two subcases according to the distributions of the fault-free edge e.

Case 1: e ∈ E(Qn).
Lemma 2 ensures that the theorem holds.
Case 2: e ∈ Ec.
For any arbitrary edge e′ ∈ E(Qn), applying Lemma 1, we know that there exists an

automorphism σ ∈ Aut(Qn,k) such that σ(e′) = e. Since e = σ(e′) ∈ E(σ(Qn)), and σ(Qn)
is isomorphic to Qn, it implies that V(σ(Qn)) = V(Qn) = V(Qn,k). Note that e is a fault-
free edge, so it implies that e ∈ E(σ(Qn)− Fv). Lemma 2 indicates that e ∈ E(σ(Qn)− Fv)
lies on a fault-free cycle of every even length from 4 to 2n − 2|Fv|.

In summary, all cases have been concerned, so the proof is completed.

4. Odd Cycles Embedding in Qn,k with |Fv| ≤ n − 2

In this section, let Fv denote the set of faulty vertices in Qn,k (1 ≤ k ≤ n − 1). We will
prove that every fault-free edge of Qn,k − Fv lies on a fault-free cycle of every possible odd
length from n − k + 4 to 2n − 2|Fv| − 1 if |Fv| ≤ n − 2 and n(≥ 2), k have different parity.
We first give three useful lemmas as follows.

Lemma 7. Partition Qn,k (1 ≤ k ≤ n − 1, n ≥ 3) along dimension n into two (n − 1)-
dimensional hypercubes Qn0

n−1 and Qn1
n−1 by Definition 2. Let (u, v) be a jth dimensional edge in

Qn,k such that (u, v) ∈ E(Qn0
n−1) and {ū, un, v̄, vn} ⊆ V(Qn1

n−1), where 1 ≤ j ≤ n − 1. Then, for
1 ≤ j ≤ k − 1, 2 ≤ k ≤ n − 1, we have dH(ū, vn) = n − k + 1 and dH(un, v̄ ) = n − k + 1; for
k ≤ j ≤ n − 1, 1 ≤ k ≤ n − 1, we have dH(ū, vn) = n − k − 1 and dH(un, v̄ ) = n − k − 1.

Proof. Assume (u, v) is an arbitrary jth dimensional edge in E(Qn0
n−1). Note that Qn,k

is partitioned along dimension n. Obviously, {ū, un, v̄, vn} ⊆ V(Qn1
n−1). We check two

possible situations regarding dimensions of the selected edge (u, v).

(i) For 1 ≤ j ≤ k − 1, 2 ≤ k ≤ n − 1. We can denote the two vertices in V(Qn0
n−1)

by the binary strings as u = x1x2 . . . xj−1xjxj+1 . . . xk−1xkxk+1 . . . xn−10 and v =
x1x2 . . . xj−1 x̄jxj+1 . . . xk−1xk xk+1 . . . xn−10. By the definition and connection of the
binary strings of two vertices, we have ū = x1x2 . . . xj−1xjxj+1 . . . xk−1 x̄k x̄k+1 . . . x̄n−11
and vn = x1x2 . . . xj−1 x̄jxj+1 . . . xk−1xkxk+1 . . . xn−11. Accordingly, by the calculating
of the numbers of the different bits in the binary bits of the two selected vertices, we
can conclude that dH(ū, vn) = (n− k + 1)− 1+ 1 = n− k + 1. As an immediate result,
we have dH(un, v̄ ) = (n − k + 1)− 1 + 1 = n − k + 1.
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(ii) For k ≤ j ≤ n − 1, 1 ≤ k ≤ n − 1. We can denote the two vertices in V(Qn0
n−1)

by the binary strings as u = x1x2 . . . xk−1xkxk+1 . . . xj−1xjxj+1 . . . xn−10 and v =
x1x2 . . . xk−1xkxk+1 . . . xj−1 x̄j xj+1 . . . xn−10. By the definition and connection of the bi-
nary strings of two vertices, we have ū = x1x2 . . . xk−1 x̄k x̄k+1 . . . x̄j−1 x̄j x̄j+1 . . . x̄n−11
and vn = x1x2 . . . xk−1xkxk+1 . . . xj−1 x̄jxj+1 . . . xn−11. Similarly as above, it follows
that dH(ū, vn) = (n − k + 1) − 2 = n − k − 1 and dH(un, v̄) = (n − k + 1) − 2 =
n − k − 1.

In summary, for any u ∈ V(Qn0
n−1), there exist n − 1 distinct vertices v’s in V(Qn0

n−1),
such that dH(un, v̄ ) = n − k − 1 or dH(un, v̄ ) = n − k + 1 (respectively, dH(ū, vn) =
n − k − 1 or dH(ū, vn) = n − k + 1).

Lemma 8. Partition Qn,k (1 ≤ k ≤ n − 1, n ≥ 4) along dimension n into two (n − 1)-
dimensional hypercubes Qn0

n−1 and Qn1
n−1 by Definition 2. Assume (u, v) is an ith dimensional

edge in Qn0
n−1, where 1 ≤ i ≤ n − 1. Then we can select n − 2 distinct w’s in Qn0

n−1 such
that w ̸= v, and the edges (ū, wn) and (un, w̄) are both the jth dimension edges in Qn,k and
{(ū, wn), (un, w̄)} ⊆ E(Qn1

n−1); i.e., dH(ū, wn) = 1 and dH(un, w̄) = 1, where 1 ≤ i ≤ n − 1,
1 ≤ j ≤ n − 1 and j ̸= i.

Proof. Let (u, v) be an arbitrary ith dimensional edge in E(Qn0
n−1). We distinguish two

possible situations regarding dimensions of the selected edge (u, v) as follows:
When 1 ≤ i ≤ k − 1, 2 ≤ k ≤ n − 1, we can select (n − 2) w’s in V(Qn0

n−1) such that
{(un, w̄), (ū, wn)} ⊆ E(Qn1

n−1) are both the jth dimensional edges, 1 ≤ j ≤ n − 1, j ̸= i. We
distinguish the following two subcases:

• For 1 ≤ i ≤ k − 1, we can select (k − 2) distinct w’s in Qn0
n−1 such that (un, w̄) and

(ū, wn) are both the jth dimensional edges in Qn1
n−1, i.e., 1 ≤ j ≤ k − 1, and j ̸= i. For

clarity, let u = x1x2 . . . xi . . . xj . . . xk . . . xn−10 and v = x1x2 . . . x̄i . . . xj . . . xk . . . xn−10
be two vertices in Qn0

n−1. Thus (u, v) ∈ E(Qn0
n−1) is an ith dimensional edge. We can se-

lect a vertex w = x1x2 . . . xi . . . xj−1 x̄jxj+1 . . . xk−1 x̄k . . . x̄n−10, 1 ≤ j ≤ k − 1 and j ̸= i.
It implies that dH(u, w) = n − k + 1 and dH(v, w) = n − k + 2. It follows that the ver-
tices {un, w̄, wn, w̄} ⊆ V(Qn1

n−1) can be denoted as un = x1 . . . xi . . . xj . . . xk . . . xn−11,
w̄ = x1x2 . . . xi . . . xj−1 x̄jxj+1 . . . xk . . . xn−11, ū = x1 . . . xi . . . xj . . . xk−1 x̄k . . . x̄n−11,
and wn = x1 . . . xi . . . xj−1 x̄jxj+1 . . . xk−1 x̄k . . . x̄n−11. As an immediate result, we
have dH(un, w̄) = 1 and dH(ū, wn) = 1.

• For 1 ≤ i ≤ k − 1, we can select (n − k) distinct w’s in Qn0
n−1 such that (un, w̄) and

(ū, wn) are both the jth dimensional edges in Qn1
n−1, i.e., k ≤ j ≤ n − 1. For clarity, let

u = x1x2 . . . xi . . . xk . . . xj . . . xn−10 and v = x1x2 . . . xi−1 x̄ixi+1 . . . xk . . . xj . . . xn−10 be
two vertices in Qn0

n−1. Thus, (u, v) ∈ E(Qn0
n−1) is an ith dimensional edge. We can select

a vertex w = x1x2 . . . xi . . . xk−1 x̄k . . . x̄j−1xj x̄j+1 . . . x̄n−10, k ≤ j ≤ n − 1. It implies
that dH(u, w) = n − k − 1 and dH(v, w) = n − k. Subsequently, we have dH(un, w̄) = 1
and dH(ū, wn) = 1.

When k ≤ i ≤ n − 1, 1 ≤ k ≤ n − 1, we can select (n − 2) w’s in V(Qn0
n−1) such that

{(un, w̄), (ū, wn)} ⊆ E(Qn1
n−1) are both the jth dimensional edges, 1 ≤ j ≤ n − 1, j ̸= i. We

distinguish the following two subcases:

• For k ≤ i ≤ n − 1, we can select (k − 1) distinct w’s in Qn0
n−1 such that (un, w̄) and

(ū, wn) are both the jth dimensional edges in Qn1
n−1, i.e., 1 ≤ j ≤ k − 1. For clarity, let

u = x1x2 . . . xj . . . xk . . . xi . . . xn−10 and v = x1x2 . . . xj . . . xk . . . xi−1 x̄ixi+1 . . . xn−10 be
two vertices in Qn0

n−1. Thus (u, v) ∈ E(Qn0
n−1) is an ith dimensional edge. We can select

a vertex w = x1x2 . . . xj−1 x̄jxj+1 . . . xk−1 x̄k . . . x̄i . . . x̄n−10, 1 ≤ j ≤ k − 1. It implies
that dH(u, w) = n − k + 1 and dH(v, w) = n − k. It is easy to see that dH(un, w̄) = 1
and dH(ū, wn) = 1.

• For k ≤ i ≤ n − 1, we can select (n − k − 1) distinct w’s in Qn0
n−1 such that (un, w̄) and

(ū, wn) are both the jth dimensional edges in Qn1
n−1, i.e., k ≤ j ≤ n− 1, and j ̸= i. For clar-
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ity, let u = x1x2 . . . xk . . . xi . . . xj . . . xn−10 and v = x1x2 . . . xk . . . xi−1x̄ixi+1 . . . xj . . . xn−10
be two vertices in Qn0

n−1. Thus, (u, v) ∈ E(Qn0
n−1) is an ith dimensional edge. We can select

a vertex w = x1x2 . . . xk−1x̄k . . . x̄i−1x̄i x̄i+1 . . . x̄j−1xj x̄j+1 . . . x̄n−10 in Qn0
n−1, k ≤ j ≤ n−1.

Accordingly, we have dH(u, w) = n− k− 1 and dH(v, w) = n− k− 2. As a consequence,
we have dH(un, w̄) = 1 and dH(ū, wn) = 1.

In summary, for any ith dimension edge (u, v) in Qn0
n−1, there exist n − 2 distinct w’s

in Qn0
n−1 such that w ̸= v, and dH(ū, wn) = 1, dH(un, w̄) = 1 simultaneously.

Lemma 9. Let Qn,k (1 ≤ k ≤ n − 1) be with |Fv| = 1, where n (≥ 3) and k have the different
parity. Let (u, v) be an ith dimensional fault-free edge in E(Qn,k). If i ∈ {k, k + 1, . . . , n, c}
(respectively, i ∈ {1, 2, . . . , k − 1}), then the edge (u, v) lies on a fault-free cycle of every possible
odd length l with n − k + 2 ≤ l ≤ 2n − 1 (respectively, n − k + 4 ≤ l ≤ 2n − 1).

Proof. The proof of this lemma is in Appendix A.

Theorem 2. Let Qn,k (1 ≤ k ≤ n − 1) be with |Fv| = fv ≤ n − 2, where n (≥ 2) and k have the
different parity. For an ith dimensional edge (u, v), if i ∈ {k, k + 1, . . . , n, c}, then the edge lies on
a fault-free cycle of every possible odd length l with n − k + 2 ≤ l ≤ 2n − 2 fv − 1 in Qn,k − Fv;
if i ∈ {1, 2, . . . , k − 1}, then the edge lies on a fault-free cycle of every possible odd length l with
n − k + 4 ≤ l ≤ 2n − 2 fv − 1 in Qn,k − Fv.

Proof. The proof of this theorem is by induction on n. It is trivial to check the theorem
holds for Q2,1 and Q3,2. Assume the theorem holds for 3 ≤ m < n, where m and k have
the different parity. We now would like to show the theorem holds for every m = n ≥ 4,
where m and k have the different parity. Recall that Lemma 9 proved the theorem holds
for |Fv| ≤ 1. In the following, we consider 2 ≤ |Fv| ≤ n − 2. Let f = x1x2 . . . xn, xi ∈ {0, 1}
and f ′ = y1y2 . . . yn, yi ∈ {0, 1} be two arbitrary distinct faulty vertices in Qn,k. Thus, there
exists an integer i, 1 ≤ i ≤ n, such that xi + yi = 1. Applying Definition 2, if we partition
Qn,k along dimension i, where 1 ≤ i ≤ n, then we can obtain two (n − 1)-dimensional
cubes, and each of the cubes contains at least one faulty vertex. Let e = (u, v) be an arbitrary
fault-free edge in Qn,k. We distinguish the following subcases according to the partition of
Qn,k (see Table 1).

Table 1. Cases in Theorem 2 for the desired cycle containing the edge e.

Case The Distribution of e The Desired Cycle of Length l

Case 1.1 e ∈ E(Q10
n−1,k−1) ∪ E(Q11

n−1,k−1) n − k + 2 ≤ l ≤ 2n − 2 fv − 1
Case 1.2 e ∈ E1 n − k + 4 ≤ l ≤ 2n − 2 fv − 1
Case 2.1 e ∈ E(Qn0

n−1) ∪ E(Qn1
n−1) n − k + 2 ≤ l ≤ 2n − 2 fv − 1

Case 2.2 e ∈ En n − k + 4 ≤ l ≤ 2n − 2 fv − 1
Case 2.3 e ∈ Ec n − k + 4 ≤ l ≤ 2n − 2 fv − 1

Case 1: 1 ≤ i ≤ k − 1, 2 ≤ k ≤ n − 1. Without loss of generality, we can assume
i = 1. Definition 2 ensures that Qn,k is partitioned into two (n − 1)-dimensional enhanced
hypercubes, denoted as Q10

n−1,k−1 and Q11
n−1,k−1. Denote F0

v = Fv ∩ V(Q10
n−1,k−1), F1

v = Fv ∩
V(Q11

n−1,k−1), f 0
v = |F0

v |, and f 1
v = |F1

v |. By the partition of Qn,k, it follows that 1 ≤ f 0
v ≤

n − 3 and 1 ≤ f 1
v ≤ n − 3. We have two subcases according to the distributions of the

fault-free edge e.

• First, e ∈ E(Q10
n−1,k−1) ∪ E(Q11

n−1,k−1). By the symmetric structure of Q10
n−1,k−1 and

Q11
n−1,k−1, and the distribution of faulty vertices, without loss of generality, we can

assume that e ∈ E(Q10
n−1,k−1). On one hand, in Q10

n−1,k−1, f 0
v ≤ n − 3, by induction

hypothesis, the edge e lies on a fault-free cycle of every possible odd length from
n − k + 2 to2n−1 − 2 f 0

v − 1 in Q10
n−1,k−1 − F0

v . Let C0 be a cycle of length 2n−1 −
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2 f 0
v − 1 in Q10

n−1,k−1 − F0
v containing the edge e. Let (s, t) ̸= (u, v) denote that

({s} ∩ {u, v}) ∪ ({t} ∩ {u, v}) = ∅. Note that we can select an edge (s, t) ̸= (u, v)
such that (s, t) ∈ E(C0), (s1, t1) ∈ E(Q11

n−1,k−1) and {s1, t1} ∩ F1
v = ∅. (If not, it implies

that f 1
v ≥ (2n−1−2 f 0

v−1)−3
2 . Thus, we have fv = f 0

v + f 1
v ≥ 2n−2 − 2 > n − 2 for n ≥ 5, a

contradiction. Specially, for Q4,3, Lemma 9 implies that Q10
3,2 contains a cycle of length

7 when f 0
v = 1 and f 1

v = 1. Thus, it is easy to select the desired edge (s, t) on the cycle.)
For clarity, we set C1 = ⟨s1, P1[s1, t1], t1, s1⟩, and 1 ≤ l1 = l(P1[s1, t1]) ≤ 2n−1 − 2 f 1

v − 1.
On the other hand, we can construct the desired cycle as ⟨s, P0[s, t], t, t1, P1[t1, s1], s1, s⟩,
whose length is l = l0 + l1 + 2, i.e., 2n−1 − 2 f 0

v + 1 ≤ l ≤ 2n − 2 fv − 1.
• Now, e ∈ E1. C0 = ⟨s, P0[s, t], t, s⟩, and l0 = l(P0[s, t]) = 2n−1 − 2 f 0

v − 2. Recall
that f 1

v ≤ n − 3, Theorem 1 implies that the fault-free edge (s1, t1) lies on a fault-
free cycle C1 of every even length from 4 to 2n−1 − 2 f 1

v in Q11
n−1,k−1. Assume that

u ∈ V(Q10
n−1,k−1) and v ∈ V(Q11

n−1,k−1). Thus, v = u1. Note that u have n neighbors
in Q10

n−1,k−1, i.e., wj, j ∈ {2, 3, 4, . . . , n, c}, where wc = ū, and wj = uj, j ∈ {2, 3, . . . , n}.
We can observe that there exist n cycles of length four containing the edge e = (u, u1)
in common, i.e., ⟨u, wj, w1

j , u1, u⟩, j ∈ {2, 3, . . . , n, c}. Recall that fv ≤ n − 2. Thus,

there exists at least one fault-free pair (wj, w1
j ), j ∈ {2, 3, . . . , n, c} such that the cy-

cle of length 4 is fault-free. Assume ⟨u, w, w1, u1, u⟩ forms such a fault-free cycle of
length 4 containing the edge e = (u, u1). Obviously, dH(u1, w1) = 1. On one hand,
by induction hypothesis, (u, w) lies on a fault-free cycle C0 of every odd length from
n − k + 2 to 2n−1 − 2 f 0

v − 1. For clarity, C0 = ⟨u, P0[u, w], w, u⟩. Therefore the de-
sired cycle of every odd length from n − k + 4 to 2n−1 − 2 f 0

v + 1 can be constructed
as ⟨u, P0[u, w], w, w1, u1, u⟩. On the other hand, we can construct the desired cycle
of every odd length from 2n−1 − 2 f 0

v + 3 to 2n − 2 fv − 1. Let C0 be a fault-free cy-
cle of length 2n−1 − 2 f 0

v − 1 in Q10
n−1,k−1, which contains the edge (u, w). Denote

l0 = l(P0[u, w]) = 2n−1 − 2 f 0
v − 2. Applying Theorem 1, (u1, w1) lies on a cycle C1 of

every even length from 4 to 2n−1 − 2 f 1
v . For clarity, C1 = ⟨u1, P1[u1, w1], w1, u1⟩, and

3 ≤ l1 = l(P1[u1, w1]) ≤ 2n−1 − 2 f 1
v − 1. Subsequently, merging the two paths P0[u, w]

and P1[w1, u1] as well as the two fault-free edges (u, u1) and (w, w1), the desired cycle
can be constructed as ⟨u, P0[u, w], w, w1, P1[w1, u1], u1, u⟩, and the cycle is of every odd
length from 2n−1 − 2 f 0

v + 3 to 2n − 2 fv − 1.

Case 2: k ≤ i ≤ n, 1 ≤ k ≤ n − 1. Without loss of generality, we can select i = n.
Definition 2 ensures that Qn,k can be partitioned into two (n − 1)-dimensional hypercubes,
denoted as Qn0

n−1 and Qn1
n−1. Denote F0

v = Fv ∩ V(Qn0
n−1), F1

v = Fv ∩ V(Qn1
n−1), |F0

v | = f 0
v and

|F1
v | = f 1

v . It follows that 1 ≤ f 0
v ≤ n − 3 and 1 ≤ f 1

v ≤ n − 3. We have three subcases
according to the distributions of the fault-free edge e.

• First, e ∈ E(Qn0
n−1) ∪ E(Qn1

n−1). Without loss of generality, we can assume that
e = (u, v) ∈ E(Qn0

n−1).

(i) 1 ≤ f 0
v ≤ n − 4 and 2 ≤ f 1

v ≤ n − 3. Lemma 8 ensures that there exist (n − 2)
distinct vertices wj’s such that wj ̸= v, and dH(un, w̄j) = 1 or dH(ū, wn

j ) = 1.

Assuming the vertex u as a faulty vertex temporarily, since 1 ≤ f 0
v ≤ n − 4, we

obtain |Fv ∩ Qn0
n−1) ∪ {u}| ≤ n − 3 for n ≥ 4. Lemma 4 implies that Qn0

n−1 −
F0

v − {u} contains a fault-free path P0[v, wj] joining v and wj. Merging the
path P0[v, wj] and the edges (u, un), (wj, w̄j) and (un, w̄j) (respectively, (u, ū),
(wj, wn

j ) and (ū, wn
j )), there exist 2(n − 2) cycles Cj’s containing the edge (u, v),

i.e., Cj = ⟨u, v, P0[v, wj], wj, w̄j, un, u⟩, or Cj = ⟨u, v, P0[v, wj], wj, wn
j , ū, u⟩. Obvi-

ously, the cycles Cj’s have the common vertices in the path P0[v, wj]. We can
observe that there are at most 2 f 0

v cycles Cj’s with faulty vertices in P0[v, wj].
Since fv = f 0

v + f 1
v ≤ n − 2, we have 2(n − 2) ≥ 2( f 0

v + f 1
v ). It implies there

are at least 2 f 1
v cycles Cj’s with fault-free vertices in Qn0

n−1. Since f 0
v ≤ f 1

v , there
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exist at least f 1
v fault-free cycles Cj’s in Qn,k. Without loss of generality, we can

assume that ⟨u, v, P0[v, w], w, w̄, un, u⟩ is such a fault-free cycle and dH(un, w̄) = 1.
Lemma 8 indicates that dH(v, w) = n − k − 2, n − k, or n − k + 2. Obviously,
n − k ≤ l0 = l(P0[v, w]) ≤ 2n−1 − 2( f 0

v + 1) − 1. In Qn1
n−1, f 1

v ≤ n − 3 and
dH(un, w̄) = 1, applying Lemma 4, there exists a fault-free path P1[un, w̄] of every
odd length l1 joining un and w̄ , where 1 ≤ l1 ≤ 2n−1 − 2 f 1

v − 1. As an immediate
result, ⟨u, v, P0[v, w], w, w̄, P1[w̄, un], un, u⟩ forms the desired cycle of every pos-
sible odd length l = l0 + l1 + 3 in Qn,k − Fv. Since n − k ≤ l0 ≤ 2n−1 − 2 f 0

v − 3
and 1 ≤ l1 ≤ 2n−1 − 2 f 1

v − 1, we can obtain n − k + 4 ≤ l ≤ 2n − 2 fv − 1 (see
Figure 2a). (In Figures 2–5, we use white vertices and black vertices to distinguish
the different parity of the vertices, and we use gray vertices to denote the vertices
with unknown parity.)
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Figure 2. Illustrations of (a) Case 2, (b) Case 2, and (c) Case 2 in the proof of Theorem 2 .
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Figure 3. Illustrations of (a) Subcase 1.1, (b) Subcase 1.2, and (c) Subcase 2.1 in the proof of Lemma 9 .
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Figure 5. Illustrations of (a) Subcase 3.2.1, (b) Subcase 3.2.2, and (c) Subcase 4.2.1 in the proof
of Lemma 9.

(ii) f 0
v = n − 3 and f 1

v = 1. Specially, Lemmas 3 and 7 imply that we can construct
the cycles ⟨u, v, vn, P1[vn, ū], ū, u⟩ and ⟨u, v, v̄, P1[v̄, un], un, u⟩, whose length is
n − k + 2 or n − k + 4. Since f 1

v = 1, it follows that there exists at least one
of the above fault-free cycle of odd length n − k + 2 or n − k + 4 containing
the edge (u, v). Generally, we construct the desired cycle of every odd length
from n − k + 6 to 2n − 2 fv − 1. Since f 0

v = n − 3, applying Lemma 2, (u, v)
lies on a fault-free cycle C0 of length l′0 in Qn0

n−1, where 4 ≤ l′0 ≤ 2n−1 − 2 f 0
v .

Assume that (s, t) is an edge on C0, (s, t) ̸= (u, v). For clarity, C0 = ⟨s, P0[s, t], t, s⟩,
3 ≤ l0 = l(P0[s, t]) ≤ 2n−1 − 2 f 0

v − 1. Since f 1
v = 1, we have {sn, t̄ } ∩ F1

v = ∅
or {s̄, tn} ∩ F1

v = ∅. It implies that we can assume sn and t̄ are both fault-free
vertices in V(Qn1

n−1). Note that dH(sn, t̄ ) = n − k − 1 or dH(sn, t̄ ) = n − k + 1.
Lemma 4 ensures that Qn1

n−1 − F1
v contains a fault-free path P1[sn, t̄ ] of every

even length l1, where n − k + 1 ≤ l1 ≤ 2n−1 − 2 f 1
v − 2. Accordingly, merging

the two paths P0[s, t] and P1[sn, t̄ ] as well as the two edges (s, sn) and (t, t̄ ), we
can construct the desired cycle as ⟨s, P0[s, t], t, t̄, P1[t̄, sn], sn, s⟩, whose length is
n − k + 6 ≤ l = l0 + l1 + 2 ≤ 2n − 2 fv − 1.

• Next, e ∈ En. Obviously, v = un. Applying Lemma 7, we can select n − 1 distinct
vertices wj adjacent to u in Qn0

n−1 such that dH(un, w̄j) = n − k − 1 or dH(un, w̄j) =

n − k + 1, and wj = uj for j ∈ {1, 2, . . . , n − 1}. Since f 1
v ≤ n − 3, Lemma 4 implies

that Qn1
n−1 contains a path P1[un, w̄j] joining un and w̄j. Subsequently, there exist n − 1

cycles Cj’s denoted as Cj = ⟨u, wj, w̄j, P1[w̄j, un], un, u⟩, where j ∈ {1, 2, . . . , n − 1}.
Note that fv ≤ n− 2. It implies that there exists at least one fault-free cycle Cj. Assume
⟨u, w, w̄, P1[w̄, un], un, u⟩ is such a fault-free cycle. For clarity, l1 = l(P1[un, w̄]), it
follows that n − k + 1 ≤ l1 ≤ 2n−1 − 2 f 0

v − 2. Recall that f 0
v ≤ n − 3, Lemma 4 ensures

that Qn0
n−1 contains a fault-free path P0[u, w] of every odd length l0 joining u and v,

where 1 ≤ l0 ≤ 2n−1 − 2 f 1
v − 1. Accordingly, the desired cycle containing the edge e

can be constructed as ⟨u, P0[u, w], w, w̄, P1[w̄, un], un, u⟩, whose length is l = l0 + l1 + 2.
As a result, n − k + 4 ≤ l ≤ 2n − 2 fv − 1 (see Figure 2b).

• Finally, e ∈ Ec. Note that Ec is the set of complementary edges between Qn0
n−1 and Qn1

n−1.
It follows that v = ū. Lemma 7 implies that Qn0

n−1 contains n − 1 distinct vertices wj’s,
which are adjacent to u and satisfy dH(ū, wn

j ) = n− k− 1 or dH(ū, wn
j ) = n− k+ 1, and

wj = uj for j ∈ {1, 2, . . . , n − 1}. As mentioned above, there exist n − 1 cycles Cj’s de-
noted as Cj = ⟨u, wj, wn

j , P1[wn
j , ū ], ū, u⟩, where j ∈ {1, 2, . . . , n − 1}. Since fv ≤ n − 2,

there exists at least one fault-free cycle Cj. Assume ⟨u, w, wn, P1[wn, ū ], ū, u⟩ is such a
fault-free cycle in Qn,k. Lemma 4 indicates that there exists a fault-free path P1[ū, wn] of
every even length l1 in Qn1

n−1, and there also exists a fault-free path P0[u, w] of every odd
length l0 in Qn0

n−1, where n − k + 1 ≤ l1 ≤ 2n−1 − 2 f 1
v − 2 and 1 ≤ l0 ≤ 2n−1 − 2 f 0

v − 1.
It is easy to see that ⟨u, P0[u, w], w, wn, P1[wn, ū ], ū, u⟩ forms the desired odd cy-
cle, whose length is l = l0 + l1 + 2. It follows that n − k + 4 ≤ l ≤ 2n − 2 fv − 1
(see Figure 2c).
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In summary, all cases have been concerned, so the proof is completed.

5. Concluding Remarks

Let Fv be the set of faulty vertices in Qn,k (1 ≤ k ≤ n − 1). In this paper, we consider
the faulty enhanced hypercube Qn,k (1 ≤ k ≤ n − 1) with |Fv| ≤ n − 2 faulty vertices. For
a fault-free edge (u, v) of Qn,k − Fv, we show that it lies on a fault-free cycle of every even
length from 4 to 2n − 2|Fv|, where n ≥ 2; moreover, it lies on a fault-free cycle of every
possible odd length from n − k + 4 to 2n − 2|Fv| − 1 in Qn,k − Fv, where n (≥ 2) and k have
different parity.
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Appendix A. The proof of Lemma 9

Proof. Since n (≥ 3) and k have the different parity, we first need to check the lemma
holds for Q3,2. Since Q3,2 is vertex-transitive [3], we can assume the vertex 000 is faulty.
For i ∈ {2, 3, c}, we can find the cycles of length n − k + 2 = 3 containing all the ith di-
mensional fault-free edges of Q3,2 − {000}, i.e., (010, 001, 011, 010), (110, 101, 111, 110),
(100, 101, 110, 100), (100, 101, 111, 100). For i ∈ {1, 2, 3, c}, we can find the cycles of
length n − k + 4 = 5 containing all the ith dimensional fault-free edges of Q3,2 − {000},
i.e., (010, 110, 101, 111, 011, 010), (010, 001, 101, 100, 110, 010), (001, 011, 111, 100, 101, 001),
(110, 111, 101, 001, 010, 110). For i ∈ {1, 2, 3, c}, we can find the cycles of length 7 containing
all the ith dimensional fault-free edges of Q3,2 − {000}, i.e., (010, 001, 101, 110, 100, 111, 011,
010), (010, 001, 011, 111, 101, 100, 110, 010). It implies that for each ith dimensional edge in Q3,2,
if i = 1, it lies on a cycle of length 5 and 7; if i ∈ {2, 3, c}, it lies on a cycle of length 3, 5 and 7.

Now we consider the cases that n ≥ 4. Definition 2 ensures Qn,k can be partitioned
along dimension n into two (n − 1)-dimensional hypercubes, denoted as Qn0

n−1 and Qn1
n−1.

Let f be the faulty vertex in Qn,k, i.e., Fv = { f }. Recall that Qn,k is vertex-transitive [3].
Without loss of generality, we may assume that f ∈ V(Qn0

n−1). Choose an ith dimensional
arbitrary fault-free edge e = (u, v) in Qn,k, i ∈ {1, 2, . . . , n, c}. Let l be the length of
the desired fault-free cycle. We have four subcases according to the distributions of the
fault-free edge e (see Table A1).

Table A1. Cases in Lemma 9 for the desired cycles containing the edge e.

Case The Distribution of e The Length l of the Desired Cycle

Case 1 e ∈ E(Q0
n−1) n − k + 2 ≤ l ≤ 2n − 1

Case 2 e ∈ E(Q1
n−1) n − k + 2 ≤ l ≤ 2n − 1

Case 3 e ∈ En n − k + 2 ≤ l ≤ 2n − 1
Case 4 e ∈ Ec n − k + 2 ≤ l ≤ 2n − 1

Case 1: e ∈ E(Qn0
n−1). Obviously, i ∈ {1, 2, . . . , n − 1}. We distinguish two subcases

according to the length l.

Subcase 1.1: n− k+ 2 ≤ l ≤ 2n − 3 (respectively, n− k+ 4 ≤ l ≤ 2n − 3), for the ith dimen-
sional edge (u, v), where i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}).

• Since (u, v) ∈ E(Qn0
n−1), it follows that {un, v̄ } ⊆ V(Qn1

n−1). When i ∈ {k, k +
1, . . . , n − 1} and k = n − 1, we have dH(un, v̄) = 0. Thus, ⟨u, v, v̄, u⟩ forms
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the desired cycle of length n − k − 1 = 3. Lemma 2 implies that (u, v) lies on
a fault-free cycle C0 in Qn0

n−1 of every even length from 4 to 2n−1 − 2. Select
(s, t) ̸= (u, v) in C0. For clarity, C0 = ⟨s, P0[s, t], t, s⟩, where l0 = l(P0[s, t]) sat-
isfies 3 ≤ l0 ≤ 2n−1 − 3. Since k = n − 1, we have dH(sn, t̄) = n − k − 1 = 0.
Thus, ⟨s, P0[s, t], t, t̄, s forms the desired cycle of length l = l0 + 2, i.e., n− k + 4 =
5 ≤ l ≤ 2n−1 − 1. Let C0 be a cycle of length 2n−1 − 2. We can select three
distinct edges (s1, t1), (s2, t2) and (s3, t3) which satisfies that (si, ti) ̸= (u, v) and
|{si, ti} ∩ {sj, tj}| ≤ 1, where i ∈ {1, 2, 3} and j ∈ {1, 2, 3}. Since k = n − 1, we
have sn

i = t̄i, i ∈ {1, 2, 3}. Thus, ⟨s1, P0[s1, t3], t3, tn
3 , s3, P1[s3, t2], t2, tn

2 , s2, P1[s2, t1],
t1, tn

1 , s1⟩ forms the desired cycle of length (2n−1 − 2)− 3 + 6 = 2n−1 + 1.
• Now we consider the case k ̸= n− 1. Specially, Lemmas 3 and 7 ensure that Qn1

n−1
contains a fault-free path P1[un, v̄ ] of length l1 with n − k − 1 ≤ l1 ≤ 2n−1 − 2
(respectively, n − k + 1 ≤ l1 ≤ 2n−1 − 2) when (u, v) is an ith dimensional
edge, where i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}). Then
⟨u, un, P1[un, v̄], v̄, v, u⟩ forms the desired cycle containing the edge (u, v) of
length l = l1 + 3 with n − k + 2 ≤ l ≤ 2n−1 + 1 (respectively, n − k + 4 ≤
l ≤ 2n−1 + 1) when (u, v) is the ith dimensional edge, where k ̸= n − 1 and
i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}).

• Generally, applying Lemma 2, Qn0
n−1 − { f } contains a fault-free cycle C0 of

every even length from 4 to 2n−1 − 2 containing the edge e = (u, v). Se-
lect an edge (s, t) ̸= (u, v) in C0. For clarity, C0 = ⟨s, P0[s, t], t, s⟩, where
l0 = l(P0[s, t]) satisfies 3 ≤ l0 ≤ 2n−1 − 3. Lemma 3 indicates that Qn1

n−1 con-
tains a fault-free path P1[sn, t̄] of even length l1 with l1 = 2n−1 − 2. Conse-
quently, ⟨s, P0[s, t], t, t̄, P1[sn, t̄ ], sn, s⟩ forms the desired fault-free cycle of length
l = l0 + l1 + 2, i.e., 2n−1 + 3 ≤ l ≤ 2n − 3 (see Figure 3a).

Subcase 1.2: l = 2n − 1.

Applying Lemma 2, the edge e = (u, v) lies on a fault-free cycle C0 of length 2n−1 − 2.
Note that |V(Qn0

n−1)| = 2n−1 and |V(Qn0
n−1)| − |V(C0)| − |{ f }| = 1. It implies that

there must exist a fault-free vertex w ∈ V(Qn0
n−1)− V(C0)− { f }. Note that w and

f have different parity. Since l(C0)− 3 = 2n−1 − 5 ≥ 3 for n ≥ 4, we can select an
edge (s, t) ̸= e on the cycle C0, such that (sn, tn) ∈ E(Qn1

n−1) and {sn, tn} ∩ {w̄} = ∅
(or we can select an edge (s, t) ̸= e on the cycle C0, such that (s̄, t̄ ) ∈ E(Qn1

n−1) and
{s̄, t̄ } ∩ {wn} = ∅). Without loss of generality, we can assume the first situation
holds. For clarity, C0 = ⟨s, P0[s, t], t, s⟩ and l0 = l(P0[s, t]) = 2n−1 − 3. Without
loss of generality, we can assume dH(s, w) is even. Since dH(s, t) is odd, it fol-
lows that dH(sn, w̄) is odd, and dH(tn, wn) is odd. Lemma 5 indicates that there
exist two vertex-disjoint paths P1[sn, w̄] and P2[tn, wn] spanning V(Qn1

n−1), that is,
V(P1[sn, w̄]) ∪ V(P2[tn, wn]) = V(Qn1

n−1). For clarity, l(P1[sn, w̄]) + l(P2[tn, wn]) =

l1 + l2 = 2n−1 − 2. So the desired cycle containing the edge e can be constructed as
⟨s, P0[s, t], t, tn, P2[tn, wn], wn, w, w̄, P1[w̄, sn], sn, s⟩, whose length is l0 + l1 + l2 + 4 =
(2n−1 − 3) + (2n−1 − 2) + 4 = 2n − 1 in Qn,k − Fv (see Figure 3b).

Case 2: e ∈ E(Qn1
n−1). Obviously, i ∈ {1, 2, . . . , n − 1}. We distinguish two subcases

according to the length l.

Subcase 2.1: n − k + 2 ≤ l ≤ 2n − 3. (respectively, n − k + 4 ≤ l ≤ 2n − 3), for the ith
dimensional edge, where i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}).

• First, we consider the case k = n − 1. Lemma 7 indicates that dH(un, v̄) =
dH(ū, vn) = 0. Since |Fv| = 1, with out loss of generality, we can assume
{un, v̄} ∩ Fv = ∅. Obviously, we have dH(un, v̄) = 0 (respectively, dH(un, v̄) =
n − k + 1 = 2) when i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}).
For clarity, ⟨un, u, v, un⟩ (respectively, ⟨u, un, vn, v̄, v, u⟩) forms the desired cycle
of length n− k+ 2 = 3 (respectively, n − k + 4 = 5) when i ∈ {k, k+ 1, . . . , n− 1}
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(respectively, i ∈ {1, 2, . . . , k − 1}). Lemma 2 indicates that (u, v) lies on a fault-
free cycle C1 of length l′1, where 4 ≤ l′1 ≤ 2n−1. We can select an edge (s, t) ̸=
(u, v) on C1 such that (s, t) is an jth dimensional edge, where j ∈ {1, 2, . . . , n− 1}.
Note that 1 ≤ l(P1[s, t]) ≤ 2n−1 − 1 and dH(sn, t̄) = n − k − 1 = 0 (respectively,
dH(sn, t̄) = n − k + 1 = 2) when j ∈ {k, k + 1, . . . , n − 1} (respectively, j ∈
{1, 2, . . . , k − 1}). Thus, ⟨sn, s, P1[s, t], t, t̄⟩ (respectively, ⟨sn, tn, t̄, t, P1[t, s], s, sn)
forms the desired cycle, whose length is l = l(P1[s, t]) + 2, i.e., n − k + 2 ≤ l ≤
2n−1 + 1 (respectively, l = l(P1[s, t]) + 4, i.e., n − k + 4 ≤ l ≤ 2n−1 + 3).

• Now we construct the desired cycle of every odd length from 2n−1 + 3 to 2n − 1.
Let C1 be a cycle of length 2n−1 and contains the edge (u, v). If every edge (s, t) ̸=
(u, v) on the cycle C1 are the ith dimensional edge, i ∈ {k, k + 1, . . . , n − 1}, then
we can replace the edge (s, t) by the path ⟨sn, s, t, sn⟩. Thus, the desired cycle
is of length l = 2(l1 − 1) + 1 = 2l1 − 1 = 2n−1 − 1. If there exists an edge
(s, t) ̸= (u, v) is an ith dimensional edge, i ∈ {1, 2, . . . , k − 1}, then we have
dH(sn, t̄) = n − k + 1 ̸= 0 and is even. Lemma 2 implies that (sn, t̄) lies on a
cycle of length l0 = l(P0[sn, t̄]) = 2n−1 − 2. Thus, ⟨sn, P0[sn, t̄], t̄, t, P1[t, s], s, sn⟩
forms the desired cycle of length l = l0 + l1 + 2, i.e., 2n−1 + 3 ≤ l ≤ 2n − 1.

• Finally, we consider k ̸= n − 1, since n and k have different parity, we have
1 ≤ k ≤ n − 3. Note that n ≥ 4 and Qn1

n−1 is fault-free. Let (u, v) be an
ith dimensional edge in Qn1

n−1, where i ∈ {k, k + 1, . . . , n − 1} (respectively,
i ∈ {1, 2, . . . , k − 1}). Lemma 8 implies that there exist n − k − 1 ≥ 2 distinct
vertices wj’s in V(Qn1

n−1) such that wj ̸= v, (un, w̄j) is a fault-free jth dimensional
edge in E(Qn0

n−1), where j ∈ {k, k+ 1, . . . , n− 1}. Note that dH(v, wj) = n− k− 2
(respectively, dH(v, wj) = n − k) when i ∈ {k, k + 1, . . . , n − 1} (respectively,
i ∈ {1, 2, . . . , k − 1}). Since |Fv| = 1, for the ith dimensional edge (u, v), i ∈
{k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}), we can choose such
a vertex w ∈ V(Qn1

n−1) satisfies dH(un, w̄) = 1 and {un, w̄} ∩ { f } = ∅. It
follows thatthe edge (un, w̄) is a jth dimensional edge in Qn,k, where j ∈ {k, k +
1, . . . , n − 1, c}. Obviously, Lemma 3 ensures that Qn1

n−1 contains a fault-free
path P1[v, w] joining v and w, whose length is n − k − 2 (respectively, n − k)
when i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈ {1, 2, . . . , k − 1}). Specially,
by Lemma 8, if the fault-free path P1[v, w] is of length n − k − 2 (respectively,
n − k), then it does not contain the vertex u. Assuming u as a faulty vertex
temporarily, we can conclude that |(Fv ∩ V(Qn1

n−1)) ∪ {u}| = 1. Lemma 4
implies that there exists a fault-free path P1[v, w] of every possible odd length
l′1 joining v and w in Qn1

n−1 − {u}, where n − k ≤ l′1 ≤ 2n−1 − 3 (respectively,
n − k + 2 ≤ l′1 ≤ 2n−1 − 3). Consequently, n − k − 2 ≤ l1 = l(P1[v, w]) ≤
2n−1 − 3 (respectively, n − k ≤ l1 = l(P1[v, w]) ≤ 2n−1 − 3). Since dH(un, w̄) = 1,
by Lemma 4, there exists a fault-free path P0[un, w̄] of every odd length l′0 joining
un and w̄ in Qn0

n−1 − { f }, where 3 ≤ l′0 ≤ 2n−1 − 3. Note that (un, w̄) is a
fault-free edge in Qn0

n−1. Thus, 1 ≤ l0 = l(P0[un, w̄]) ≤ 2n−1 − 3. As a result,
for the ith dimensional edge (u, v), i ∈ {k, k + 1, . . . , n − 1} (respectively, i ∈
{1, 2, . . . , k − 1}), ⟨un, P0[un, w̄], w̄, w, P1[w, v], v, u, un⟩ forms the desired cycle of
every possible odd length l = l0 + l1 + 3 in Qn,k − F∗

v , i.e., n − k + 2 ≤ l ≤ 2n − 3
(respectively, n − k + 4 ≤ l ≤ 2n − 3)(see Figure 3c).

Subcase 2.2: l = 2n − 1.

Lemma 2 ensures that there exists a cycle C1 containing e of length 2n−1 in Qn1
n−1. Since

l(C1)− 3 = 2n−1 − 3 ≥ 5 for n ≥ 4, we can select an edge (s, t) ∈ E(C1) such that
(s, t) ̸= e, {sn, s̄, tn, t̄} ∩ { f } = ∅. For clarity, C1 = ⟨s, P1[s, t], t, s⟩, l1 = l(P1[s, t]) =
2n−1 − 1. Note that dH(t̄, sn) is even, dH(s̄, tn) is even and dH(s̄, sn) is odd. Without
loss of generality, we can assume dH(sn, f ) is odd and dH(t̄, f ) is odd. Lemma 6
indicates that Qn0

n−1 − { f } contains a fault-free Hamiltonian path P0[sn, t̄ ] joining
sn and t̄ with length l0 = 2n−1 − 2 . As a consequence, ⟨sn, P0[sn, t̄ ], t̄, t, P1[t, s], s, sn⟩
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forms the desired cycle containing the edge e of odd length l = l0 + l1 + 2 = 2n − 1
in Qn,k − Fv (see Figure 4a).

Case 3: e ∈ En. Obviously, i = n. Assume that u ∈ V(Qn0
n−1) and v ∈ V(Qn1

n−1). Obviously,
v = un. We distinguish two subcases according to the length l.

Subcase 3.1: n − k + 2 ≤ l ≤ 2n − 3.

Note that (u, v) is a nth dimensional edge between Qn0
n−1 and Qn1

n−1. Specially, if
k = n − 1, we can find that dH(un, ū) = n − k. Lemma 3 indicates that there exists
a fault-free path P1[un, ū] of length n − k in Qn1

n−1. Thus, ⟨u, un, P1[un, ū], ū, u⟩ forms
the desired cycle of length n − k + 2. Lemma 7 ensures that there exist n − 1 distinct
vertices xj’s adjacent to u in V(Qn0

n−1) for n ≥ 4, such that dH(un, x̄j) = n − k − 1
or dH(un, x̄j) = n − k + 1. Generally, since |Fv| = 1, we can select a fault-free
vertex x ∈ V(Qn0

n−1) such that (u, x) is a jth dimensional edge in Qn0
n−1, where j ∈

{k, k + 1, . . . , n − 1} and k ̸= n − 1. Lemma 7 indicates that dH(un, x̄) = n − k − 1.
Lemma 4 indicates that Qn0

n−1 contains a fault-free path P0[u, x] of every odd length
from 3 to 2n−1 − 3. For convenience, we denote l0 = l(P0[u, x]), 1 ≤ l0 ≤ 2n−1 − 3.
In Qn1

n−1, Lemma 3 ensures that Qn1
n−1 contains a path P1[un, x̄] of every even length

l1 joining un and x̄, where n − k − 1 ≤ l1 ≤ 2n−1 − 2. Accordingly, the desired cycle
can be constructed as ⟨u, P0[u, x], x, x̄, P1[x̄, un], un, u⟩ with every possible odd length
l = l0 + l1 + 2 in Qn,k − Fv, n − k + 2 ≤ l ≤ 2n − 3 (see Figure 4b).

Subcase 3.2: l = 2n − 1.

By Lemma 2, Qn0
n−1 contains a fault-free cycle C0 of length 2n−1 − 2 . Note that

|V(Qn0
n−1)| = 2n−1 and |V(Qn0

n−1)| − |V(C0)| − |{ f }| = 1. It implies that there must
exist a fault-free vertex w ∈ V(Qn0

n−1)− V(C0)− { f }. According to the distribution
of the node u ∈ V(Qn0

n−1), we consider the following subcases:

Subcase 3.2.1 u ̸= w, i.e., u ∈ V(C0).
Since the number of vertices that adjacent to the vertex u in C0 is 2, there must
exist such a vertex s ∈ C0 adjacent to the vertex u such that sn ̸= w̄. Hence,
the cycle C0 ∈ Qn0

n−1 can be represented as C0 = ⟨u, P0[u, s], s, u⟩. Therefore,
l0 = l(P0[u, s]) = 2n−1 − 3. Considering the relationship between un and w̄, we
distinguish the following subcases:

• First, we consider the case that un ̸= w̄. One can observe that we may as-
sume dH(u, w) is odd and dH(s, w) is even. It implies that dH(un, wn) is odd
and dH(sn, w̄) is odd. Applying Lemma 5, there exist two vertex-disjoint
paths P1[un, wn] and P2[sn, w̄] spanning V(Qn1

n−1), whose length totally is
2n−1 − 2 . For clarity, l(P1[un, wn]) + l(P2[sn, w̄]) = l1 + l2 = 2n−1 − 2. Con-
sequently, ⟨u, P0[u, s], s, sn, P2[sn, w̄], w̄, w, wn, P1[wn, un], un, u⟩ forms the de-
sired cycle with length l = l0 + l1 + l2 + 4. Since l0 = 2n−1 − 3, l1 + l2 =
2n−1 − 2, it follows that l = 2n − 1 (see Figure 4c).

• Now, we consider the case that un = w̄. Note that dH(wn, sn) is even. Apply-
ing Lemma 6, Qn1

n−1 −{un} contains a fault-free Hamiltonian path P1[wn, sn]

joining wn and sn with length l1 = 2n−1 − 2. As a result, ⟨u, P0[u, s],
s, sn, P1[sn, wn], wn, w, un, u⟩ forms the desired cycle containing the edge
e, whose length is l = l0 + l1 + 4 = 2n − 1 (see Figure 5a).

Subcase 3.2.2: u = w, i.e., u ∈ V(Qn0
n−1)− V(C0)− { f }.

Recall that l(C0) = 2n−1 − 2 ≥ 6 for n ≥ 4. It follows that we can select an
edge (s, t) ∈ E(C0) such that {sn, tn} ∩ {ū} = ∅. For convenience, we may
assume that dH(u, s) is even and dH(u, t) is odd. It implies that dH(un, tn) is odd
and dH(ū, sn) is odd. Lemma 5 indicates that Qn1

n−1 contain two vertex-disjoint
paths P1[sn, ū] and P2[tn, un] with total length 2n−1 − 2, that is, l(P1[sn, ū]) +



Symmetry 2024, 16, 44 14 of 15

l(P2[tn, un]) = l1 + l2 = 2n−1 − 2. For clarity, l(P0[s, t]) = l0 = 2n−1 − 3. As
an immediate result, ⟨s, P0[s, t], t, tn, P2[tn, un], un, u, ū, P1[ū, sn], sn, s⟩ forms the
desired cycle of length l with l = l0 + l1 + l2 + 4 = 2n − 1 (see Figure 5b).

Case 4: e ∈ Ec. Obviously, i = c. Note that Ec is the set of complementary edges between
Qn0

n−1 and Qn1
n−1. Without loss of generality, we can assume u ∈ V(Qn0

n−1) and v ∈ V(Qn1
n−1).

Obviously, v = ū. We distinguish two subcases according to the length l.

Subcase 4.1: n − k + 2 ≤ l ≤ 2n − 3.

Specially, when k = n − 1, one can observe that dH(ū, un) = n − k. Lemma 3
indicates that Qn1

n−1 contains a fault-free path P1[ū, un] of length n− k. Thus, ⟨u, ū, P1[ū,
un], un, u⟩ forms the desired cycle of length n − k + 2. In Qn0

n−1, Lemma 7 ensures
that there exists n − 1 distinct vertices wj’s adjacent to the vertex u in V(Qn0

n−1) such
that dH(ū, wn

j ) = n − k − 1 or dH(ū, wn
j ) = n − k + 1. Generally, since |Fv| = 1,

we can select a fault-free vertex w ∈ V(Qn0
n−1) such that (u, w) is a jth dimensional

edge in Qn0
n−1 when j ∈ {k, k + 1, . . . , n − 1} and k ̸= n − 1. Lemma 7 indicates

that dH(ū, wn) = n − k − 1. Applying Lemma 4, Qn0
n−1 − { f } contains a fault-free

cycle P0[u, w] of every odd length from 3 to 2n−1 − 3 joining u and w. For clarity,
l0 = l(P0[u, w]), 1 ≤ l0 ≤ 2n−1 − 3. In Qn1

n−1, Lemma 3 indicates that there exists a
fault-free path P1[ū, wn] of every even length l1 joining ū and wn, where n − k − 1 ≤
l1 ≤ 2n−1 − 2. Consequently, ⟨u, P0[u, w], w, wn, P1[wn, ū], ū, u⟩ forms the desired
cycle of length l with l = l0 + l1 + 2 in Qn,k − Fv. Since 1 ≤ l0 ≤ 2n−1 − 3, n − k − 1 ≤
l1 ≤ 2n−1 − 2, it follows that n − k + 2 ≤ l ≤ 2n − 3.

Subcase 4.2: l = 2n − 1.

Applying Lemma 2, Qn0
n−1 contains a fault-free cycle C0 of length 2n−1 − 2 . Note

that |V(Qn0
n−1)| − |V(C0)| − |{ f }| = 1. It implies that there must exist a fault-free

vertex w ∈ V(Qn0
n−1) − V(C0) − { f }. Considering the distribution of the vertex

u ∈ V(Qn0
n−1), we distinguish the following subcases:

Subcase 4.2.1: u ̸= w, i.e., u ∈ V(C0).
Since the number of vertices that adjacent to the vertex u in C0 is 2, there must
exist such a vertex s ∈ C0 adjacent to the vertex u such that s̄ ̸= wn. For clarity,
C0 = ⟨u, P0[u, s], s, u⟩, l0 = l(P0[u, s]) = 2n−1 − 3. According to the relationship
between ū and wn, we distinguish the following subcases:

• First, we consider the case that ū ̸= wn. Note that we can assume dH(ū, w̄)
is odd and dH(s̄, wn) is odd. Lemma 5 ensures that there exist two vertex-
disjoint paths P1[ū, w̄] and P2[s̄, wn] spanning V(Qn1

n−1), that is, l(P1[ū, w̄]) +

l(P2[s̄, wn]) = l1 + l2 = 2n−1 − 2. Accordingly, ⟨u, P0[u, s], s, s̄, P2[s̄, wn], wn,
w, w̄, P1[w̄, ū], ū, u⟩ forms the desired cycle of length l = l0 + l1 + l2 + 4 =
2n − 1 in Qn,k − Fv (see Figure 5c).

• Now, we consider the case that ū = wn. Note that dH(w̄, s̄ ) is even,
dH(ū, w̄) is odd and |Fv ∪ {ū}| = 1. Lemma 6 indicates that Qn1

n−1 − {ū}
contains a fault-free Hamiltonian path P1[w̄, s̄] joining w̄ and s̄ with length
l1 = 2n−1 − 2. As a result, ⟨u, P0[u, s], s, s̄, P1[s̄, w̄], w̄, w, wn, u⟩ forms the
desired cycle with length is l = l0 + l1 + 4 = 2n − 1.

Subcase 4.2.2: u = w, i.e., u ∈ V(Qn0
n−1)− V(C0)− { f }.

This proof is similar to that in Case 3.2.2.

In summary, all cases have been concerned, so the proof is completed.
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