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Abstract: Triptycenes are tridimensional molecular scaffolds with interesting properties for appli-
cations in materials science: molecular rigidity and preorganization, tailorable chromophores, and,
with an appropriate substitution pattern, chirality. The separation of the two enantiomers of chiral
triptycenes has been the subject of increasing interest in recent years, with limited success. Here, we
report the synthesis and characterization of a series of new organic compounds, in which a chiral
triptycene scaffold, derivatized in the 2 and 6 positions with amino groups, has been functionalized
with different enantiopure chiral auxiliaries, forming diastereoisomeric couples. The properties of
such compounds, in terms of the optimization of their chromatographic separation, are elucidated
with the aid of computational calculations of preferred conformations and molecular polarities.
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1. Introduction

Asymmetry, when inserted into supramolecular or nano-aggregate systems, can give
rise to sophisticated optical properties (electronic circular dichroism (ECD), vibrational
circular dichroism (VCD), and circularly polarized luminescence (CPL)), which can be
manipulated for a series of applied outputs [1–6]. Many examples have been reported in
the last decade concerning the use of chiral π-conjugated synthons, in which the chiroptical
output can be expressed in the chromophore region [7]. In this context, the relevance
of chiral synthons with C2 symmetry, such as binaphthyls, is now fully recognized [8];
they have been used as chiral subcomponents to dictate the stereochemical outcome of
self-assembled helicates, and for water-soluble enantiomeric macrocycles having excellent
enantioselectivity in water [9,10].

Triptycenes are instead an intriguing class of organic molecules with several unusual
characteristics [11–15]. When decorated with an appropriate substitution pattern, trip-
tycenes can be chiral, and can express chirality robustly, efficiently, and with relevance to
chiroptical spectroscopies (Figure 1) [16–18].

The field of chiral triptycene-containing supramolecular systems is “opening up”
as researchers exploit their unique properties to develop new chiral materials and
supramolecules. Selected chiral triptycenes have recently been successfully incorporated
into nanostructures as metallamacrocycles, π-conjugated oligomers or polymers, and
supramolecular receptors [18–24]; the applications of chiral triptycenes are still relatively
unexplored, due to the lack of useful strategies to obtain these synthons in enantiopure
form on a large scale.

Symmetry 2024, 16, 116. https://doi.org/10.3390/sym16010116 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16010116
https://doi.org/10.3390/sym16010116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0003-4818-7548
https://orcid.org/0000-0001-7501-5213
https://orcid.org/0000-0002-8273-3798
https://doi.org/10.3390/sym16010116
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16010116?type=check_update&version=3


Symmetry 2024, 16, 116 2 of 11
Symmetry 2024, 16, 116 2 of 11 
 

 

 
Figure 1. The structure of triptycene (left), and some of the substitution patterns affording chiral 
triptycene derivatives (right). 

Potential strategies for obtaining enantiopure chiral triptycenes are crystallization of 
diastereomeric salts, enantioselective synthesis, chiral HPLC, and resolution with chiral 
auxiliaries. Crystallization of diastereomeric salts has been used in the past to obtain the 
first chiral triptycenes [17,25–27], as well as in one more recent report [28]. Only two ex-
amples of enantioselective synthesis of chiral triptycenes have been reported to date, and 
although good enantiomeric excesses could be obtained, the syntheses were complex and 
the allowed structural variability (necessary for implementation in supramolecular sys-
tems) was limited [29,30]. In the majority of recent reports, resolution of chiral triptycenes 
was accomplished using chiral HPLC, with consequently limited the scalability of the res-
olution process [19–22,31–33]. 

Functionalization using chiral auxiliaries is probably the most promising approach 
to obtain large quantities of pure enantiomers of triptycene derivatives. It has been used 
in two cases: the resolution of triptycene-containing homochiral macrocycles [34] and the 
resolution of a chiral triptycene derivative [35]. In the latter case, recently reported by 
Mastalerz and coworkers, the separation of triptycenes enantiomers was performed using 
(R)-methoxy phenylacetic acid as the chiral auxiliary (Figure 2). 

 
Figure 2. The chiral auxiliary approach for the scalable separation of enantiomers reported by Mas-
talerz and coworkers. 

The separation of diastereoisomers using column chromatography could be achieved 
only on the derivative bearing bulky, polarizable bromine atoms on the 2,6-positions of 
the triptycene scaffold (compound B); in this case, the difference between the retention 
factors (DRf = 0.1) allowed a relatively large scale enantioseparation (>1 g). However, when 
working on the synthetically more accessible compound A (Figure 2) (bearing hydrogen 
atoms instead of bromine atoms) the chromatographic separation (DRf < 0.05) was ineffi-
cient. 

Figure 1. The structure of triptycene (left), and some of the substitution patterns affording chiral
triptycene derivatives (right).

Potential strategies for obtaining enantiopure chiral triptycenes are crystallization of
diastereomeric salts, enantioselective synthesis, chiral HPLC, and resolution with chiral
auxiliaries. Crystallization of diastereomeric salts has been used in the past to obtain
the first chiral triptycenes [17,25–27], as well as in one more recent report [28]. Only two
examples of enantioselective synthesis of chiral triptycenes have been reported to date, and
although good enantiomeric excesses could be obtained, the syntheses were complex and
the allowed structural variability (necessary for implementation in supramolecular systems)
was limited [29,30]. In the majority of recent reports, resolution of chiral triptycenes was
accomplished using chiral HPLC, with consequently limited the scalability of the resolution
process [19–22,31–33].

Functionalization using chiral auxiliaries is probably the most promising approach
to obtain large quantities of pure enantiomers of triptycene derivatives. It has been used
in two cases: the resolution of triptycene-containing homochiral macrocycles [34] and the
resolution of a chiral triptycene derivative [35]. In the latter case, recently reported by
Mastalerz and coworkers, the separation of triptycenes enantiomers was performed using
(R)-methoxy phenylacetic acid as the chiral auxiliary (Figure 2).
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Figure 2. The chiral auxiliary approach for the scalable separation of enantiomers reported by
Mastalerz and coworkers.

The separation of diastereoisomers using column chromatography could be achieved
only on the derivative bearing bulky, polarizable bromine atoms on the 2,6-positions of the
triptycene scaffold (compound B); in this case, the difference between the retention factors
(DRf = 0.1) allowed a relatively large scale enantioseparation (>1 g). However, when work-
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ing on the synthetically more accessible compound A (Figure 2) (bearing hydrogen atoms
instead of bromine atoms) the chromatographic separation (DRf < 0.05) was inefficient.

2,6-Diaminotriptycene and 2,6-dinitrotriptycene are easily achievable on a >10 g scale.
We believe that these synthons will play a pivotal role in the future, as amine groups can
provide extensive structural variability, giving access to numerous derivatives, such as
iodine, chlorine, bromine, and fluorine, just to mention some. From these derivatives, it
will be possible to develop several new chiral functional materials, exploit new or known
synthetic protocols, and take advantage of the peculiar properties of the triptycene skeleton,
as highlighted in recent reviews [12,36–38].

We have shown how it is possible to obtain the resolution of compounds related to
2,6-diaminotriptycene on an analytical scale via chiral HPLC, and studied them as probes to
study enantiorecognition properties of chiral stationary phases [39,40]. A practical, scalable
resolution procedure would, however, be advantageous, and open new and exciting hori-
zons in a variety of multidisciplinary fields, ranging from the construction of a new class of
chiral macrocycles, chiral organic nanotubes, to high-performance chiral polymers with
unique 3D-nanostructures. We recently reported the fusion of non-planar π-conjugated
triptycene synthon with quinacridone chromophore, which is potentially generalizable to
chiral small molecules or one-handed helical ladder polymers [41].

In this contribution, we report our efforts towards the resolution of the crucial chiral
synthon 2,6-diaminotriptycene through a scalable chiral auxiliary approach.

2. Materials and Methods
2.1. General Experimental

Racemic mixtures of simple triptycene were synthetized following a previously re-
ported procedure [41,42]. Tripty-NO2 and Tripty-NH2 were synthesized as reported
previously [21,43]. All commercially available reagents and solvents were purchased from
Sigma-Aldrich (Burlington, MA, USA), Fluorochem (Glossop, UK), TCI (Tokyo, Japan),
and Alfa Aesar (Ward Hill, MA, USA). They were all used as received. Anhydrous sol-
vents, such as THF and dichloromethane, were obtained using conventional methods
through distilling with drying agents (Na for THF and CaH2 for dichloromethane). Flash
chromatography was carried out using Merck silica gel 60 (Merck Millipore, Burlington,
MA, USA) (pore size 60 Å, 270–400 Mesh). 1H and 13C NMR spectra were recorded from
solutions in deuterated solvents using 300 Bruker or 400 Bruker spectrometers (Bruker,
Billerica, MA, USA) with the residual solvent as the internal standard. Mass spectra of pure
compounds were recorded using an Electron Spray Ionization Agilent Technologies mass
spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA), using direct exposure
probe mass spectrometry. Chromatographic conditions for Section 3.2 are reported in the
Supporting Information Section.

2.2. Synthetic Procedures

Synthesis of 1a. DCC (131 mg, 0.633 mmol, 3 eq) and N-hydroxy succinimide (73 mg,
0.633 mol, 3.00 eq) were added in small portions to a vigorously stirred solution of N-Boc-
protected L-tryptophan (193 mg, 0.633 mmol, 3.00 eq) and racemic 2,6-diaminotriptycene
(Tripty-NH2) (60 mg, 0.211 mmol, 1.00 eq) in dry DCM (10 mL). The mixture was stirred at
room temperature for 16 h, filtered on celite, and then concentrated in vacuo. The crude
product was purified via silica gel flash column chromatography (EtOAc/hexane 1/1, Rf
0.30) as the eluent mixture to give the product 1a (76 mg, 43%) as a white solid. 1H NMR
(400 MHz, DMSO-d6) δ 10.76 (s, 2 H), 9.92 (s, 2 H), 7.76 (s, 2 H), 7.62 (d, J = 7.9 Hz, 2 H),
7.43 (dd, J = 5.4, 3.3 Hz, 2 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.1 Hz, 2 H), 7.12–6.94
(m, 8 H), 6.87 (d, J = 7.9 Hz, 2 H), 5.56 (d, J = 8.0 Hz, 2 H), 5.54 (s, 2 H), 4.31 (dd, J = 7.6,
7.6 Hz, 2 H), 3.14–2.78 (m, 2 H), 1.31 (s, 18 H). 13C NMR (101 MHz, DMSO-d6) δ 170.88,
156.60, 155.21, 145.90, 145.34, 140.16, 135.98, 135.90, 127.26, 124.91, 123.75, 123.56, 123.47,
120.83, 118.55, 118.14, 115.56, 111.24, 109.86, 78.03, 52.17, 47.49, 33.33, 30.67. ESI-MS: 857.3
[M + 1]+. Anal. calcd. for C52H52N6O6: C, 72.9; H, 6.1. Found: C, 73.1; H, 6.0.
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Synthesis of 1b. A mixture of (1S)-(−)-camphanic chloride (152 mg, 0.703 mmol,
2.50 eq), 2,6-diaminotriptycene (Tripty-NH2) (80 mg, 0.281 mmol, 1.00 eq), and NEt3
(97.8 uL, 0.703 mmol, 2.50 eq) in anhydrous CH2Cl2 (10 mL) was stirred at room temperature
overnight. At this point water was added and the mixture was extracted 3 times using
CH2Cl2. The combined organic layers were washed with water, dried over Na2SO4, and
concentrated in vacuo. The resulting solid was purified via silica gel flash chromatography
with hexane/ethyl acetate 3/1 (Rf 0.35) as the eluent mixture to give 133 mg (73%) of the
product 1b as a white solid. 1H NMR (300 MHz, DMSO-d6) δ 9.74 (s, 2 H), 7.86 (s, 2 H),
7.45–7.43 (m, 2 H), 7.38 (d, J = 7.96 Hz, 2 H), 7.25–7.21 (m, 2 H), 7.02–6.99 (m, 2 H), 5.57 (s,
2 H), 2.50–1.16 (m, 26 H). 13C NMR (75 MHz, CDCl3) δ 177.92, 165.15, 145.60, 145.20, 141.17,
134.64, 124.96, 123.52, 123.40, 117.50, 117.28, 91.78, 59.74, 54.53, 53.54, 52.15, 29.30, 28.38,
20.75, 16.47, 16.26, 14.08, 9.55. ESI-MS: 645.5 [M + 1]+. Anal. calcd. for C40H40N2O6: C, 74.5;
H, 6.2. Found: C, 74.1; H, 6.4.

Synthesis of 1c. DCC (174 mg, 0.844 mmol, 3 eq) and N-hydroxy succinimide (97 mg,
0.844 mol, 3.00 eq) were added in small portions to a vigorously stirred solution of N-Boc
protected (S)-2-phenylglycine (212 mg, 0.844 mmol, 3 eq) and racemic 2,6-diaminotriptycene
(Tripty-NH2) (80 mg, 0.281 mmol, 1.00 eq) in dry DCM (10 mL). The mixture was stirred at
room temperature for 16 h, filtered on celite, and then concentrated in vacuo. The crude
product was purified via silica gel flash column chromatography (EtOAc/hexane 4/1, Rf
0.37) as the eluent mixture to give the product 1c (147 mg, 69%) as a white solid. 1H NMR
(300 MHz, DMSO-d6) δ 10.13 (s, 2 H), 7.74 (d, J = 5.29 Hz, 2 H), 7.46–7.38 (m, 6 H), 7.34–7.26
(m, 8 H), 7.06 (d, J = 7.91 Hz, 2 H), 6.98–6.96 (m, 2 H), 5.57 (d, J = 7.87 Hz, 2 H), 5.52 (s, 2 H),
5.30 (d, J = 7.77 Hz, 2 H), 1.38 (s, 18 H). 13C NMR (75 MHz, CDCl3) δ 168.87, 156.61, 155.04,
146.00, 145.18, 140.36, 138.10, 135.67, 128.32, 127.67, 127.25, 124.90, 123.67, 123.45, 115.26,
78.45, 59.73, 58.39, 55.83, 52.07, 47.50, 33.34, 29.59, 28.13, 25.31, 24.44. ESI-MS: 752.0 [M +
1]+. Anal. calcd. for C46H46N4O6: C, 73.6; H, 6.2. Found: C, 73.9; H, 6.4.

Synthesis of 1d. A mixture of 2,6-diaminotriptycene (Tripty-NH2) (90 mg, 0.316 mmol,
1.00 eq), (-)-menthyl chloroformate (460 mg, 2.10 mmol, 6 eq), and dry pyridine (170 µL,
2.10 mmol, 6.00 eq) in dry CH2Cl2 (10 mL) was stirred at room temperature for 5 h. The
mixture was quenched with water and NaOH (1 M). The aqueous layer was extracted
three times using diethyl ether, and the combined organic phases were washed with water
and then dried over Na2SO4. The solvents were removed in vacuo and the residue was
purified via silica gel flash column chromatography using hexane/ethyl acetate 9/1 (Rf
0.40) as the eluent mixture to give 164 mg (yield 80%) of product 1d as a white solid.
1H NMR (300 MHz, DMSO-d6) δ 9.48 (s, 2 H), 7.60 (s, 2 H), 7.43–7.39 (m, 2 H), 7.30 (dd,
J1 = 8.11 Hz, J2 = 2.31 Hz, 2 H), 7.01–6.97 (m, 4 H), 5.47 (s, 2 H), 4.53 (dt, J1 = 8 Hz,
J2 = 4.20 Hz, 2 H), 2.12–0.72 (m, 38 H). 13C NMR (75 MHz, CDCl3) δ 153.31, 146.08, 145.43,
145.41, 139.14, 139.13, 136.26, 124.81, 123.55, 123.36, 114.17, 114.10, 73.30, 55.82, 52.12, 46.86,
41.12, 33.75, 30.92, 29.58, 25.71, 22.99, 21.91, 20.52, 16.18. ESI-MS: 666.4 [M + 1 + H2O]+.
Anal. calcd. for C42H52N2O4: C, 77.7; H, 8.1. Found: C, 73.9; H, 8.3.

Synthesis of 1e. DCC (131 mg, 0.633 mmol, 3 eq) and N-hydroxy succinimide
(73 mg, 0.633 mol, 3.00 eq) in small portions were added to a vigorously stirred solu-
tion of (S)-mandelic acid (96 mg, 0.633 mmol, 3.00 eq) and racemic 2,6-diaminotriptycene
(Tripty-NH2) (60 mg, 0.211 mmol, 1.00 eq) in acetone (10 mL). The mixture was stirred at
room temperature for 16 h, filtered on celite and then concentrated in vacuo. The crude
product was purified via silica gel flash column chromatography (EtOAc/hexane 1/1,
Rf 0.43) as the eluent mixture to give the product 1e (55 mg, 48%) as a white solid. 1H
NMR (300 MHz, DMSO-d6) δ 9.80 (s, 2 H), 7.83 (s, 2 H), 7.47 (d, J = 7.17 Hz), 7.41–7.39
(m, 2 H), 7.34–7.26 (m, 6 H), 6.96–6.98 (m, 2 H), 6.35 (d, J = 4.64 Hz), 5.50 (s, 2 H), 5.05 (d,
J = 4.58 Hz, 2 H). 13C NMR (75 MHz, CDCl3) δ 170.95, 145.81, 140.83, 140.40, 135.41, 128.01,
127.52, 126.49, 124.88, 123.51, 123.45, 115.85, 115.73, 73.88, 55.83, 52.14. ESI-MS: 553.3 [M +
1]+. Anal. Calcd. for C36H28N2O4: C, 78.2; H, 5.1. Found: C, 77.9; H, 5.0.

Calculations. All calculations were carried out using the Gaussian 16 program pack-
age [44] using B3LYP as a hybrid functional for DFT calculation [45,46]. The chosen basis
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set was identical to all atoms as 6–31 g(d) [47–49]. With optimized structures, single points
calculations were performed using the M06-2X functional [50]. Moreover, a different basis
set was chosen for all atoms: def2SVPP [51,52]. The role of the dichloromethane solvent
was simulated using the SMD solvation model [53]. All data reported below are referred to
this level of theory, and discussions are based on the values of Gibbs relative energies in
kcal/mol. Boltzmann population analysis was performed at 298.15 K.

3. Results
3.1. Synthesis

A racemic mixture of 2,6-diaminotripticene (Tripty-NH2) was synthesized using pro-
cedures described by Swager and coworkers, as follows [21,43]. Briefly, synthesis starts
from anthracene, which, via a Diels–Alder reaction with benzyne (generated in situ from
anthranilic acid), yields unfunctionalized triptycene (Scheme 1). Triptycene is nitrated by
treatment with HNO3 in Ac2O to give a racemic mixture of 2,6-dinitrotriptycene, which is
readily reduced to Tripty-NH2.

Symmetry 2024, 16, 116 5 of 11 
 

 

basis set was identical to all atoms as 6–31 g(d) [47–49]. With optimized structures, single 
points calculations were performed using the M06-2X functional [50]. Moreover, a 
different basis set was chosen for all atoms: def2SVPP [51,52]. The role of the 
dichloromethane solvent was simulated using the SMD solvation model [53]. All data 
reported below are referred to this level of theory, and discussions are based on the values 
of Gibbs relative energies in kcal/mol. Boltzmann population analysis was performed at 
298.15 K. 

3. Results 
3.1. Synthesis 

A racemic mixture of 2,6-diaminotripticene (Tripty-NH2) was synthesized using 
procedures described by Swager and coworkers, as follows [21,43]. Briefly, synthesis starts 
from anthracene, which, via a Diels–Alder reaction with benzyne (generated in situ from 
anthranilic acid), yields unfunctionalized triptycene (Scheme 1). Triptycene is nitrated by 
treatment with HNO3 in Ac2O to give a racemic mixture of 2,6-dinitrotriptycene, which is 
readily reduced to Tripty-NH2. 

 
Scheme 1. Synthesis of 2,6-dinitrotriptycene Tripty-NO2 and its derivatives. 

Initial attempts to resolve a racemic mixture of Tripty-NH2 involved crystallization 
tests with enantiopure chiral acids such as L-tartaric acid, (S)-camphosulfonic acid, and 
(S)-mandelic acid. Tests were performed by dissolving the triptycene derivative with two 
equivalents of the enantiopure acids in low-polarity organic solvents, such as chloroform 
or dichloromethane, and leaving the solution to crystallize via slow evaporation. 
Amorphous powders were obtained in all attempts. 

We therefore turned our attention to the covalent functionalization of racemic Tripty-
NH2 with enantiopure chiral auxiliaries. This strategy should yield a mixture of two 
different diastereoisomers; once separated via column chromatography, hydrolysis and 
detachment of the chiral auxiliaries on the isolated single diastereoisomers afford the pure 
enantiomers of Tripty-NH2. The racemic mixture of Tripty-NH2 was successfully 
functionalized with five different enantiopure chiral auxiliaries (Scheme 2), which were 
selected based on their use as chiral auxiliaries in the literature and their commercial 
availability, as follows [54–57]: Boc-protected L-tryptophan, (1S)-(−)-camphanic chloride, 
Boc-protected (S)-2-phenylglycine, (-)-menthyl chloroformate, and (S)-mandelic acid. 

Scheme 1. Synthesis of 2,6-dinitrotriptycene Tripty-NO2 and its derivatives.

Initial attempts to resolve a racemic mixture of Tripty-NH2 involved crystallization
tests with enantiopure chiral acids such as L-tartaric acid, (S)-camphosulfonic acid, and
(S)-mandelic acid. Tests were performed by dissolving the triptycene derivative with two
equivalents of the enantiopure acids in low-polarity organic solvents, such as chloroform or
dichloromethane, and leaving the solution to crystallize via slow evaporation. Amorphous
powders were obtained in all attempts.

We therefore turned our attention to the covalent functionalization of racemic Tripty-
NH2 with enantiopure chiral auxiliaries. This strategy should yield a mixture of two
different diastereoisomers; once separated via column chromatography, hydrolysis and
detachment of the chiral auxiliaries on the isolated single diastereoisomers afford the
pure enantiomers of Tripty-NH2. The racemic mixture of Tripty-NH2 was successfully
functionalized with five different enantiopure chiral auxiliaries (Scheme 2), which were
selected based on their use as chiral auxiliaries in the literature and their commercial
availability, as follows [54–57]: Boc-protected L-tryptophan, (1S)-(−)-camphanic chloride,
Boc-protected (S)-2-phenylglycine, (-)-menthyl chloroformate, and (S)-mandelic acid.

All compounds (1a–1e) were obtained in fair to good yields using known coupling
procedures and reagents for the formation of amide (1a–1c and 1e) or carbamate (1d)
functionalities. In more detail, in the cases of 1a, 1d, and 1e, coupling was conducted
using DCC, N-hydroxysuccinimide using carboxylic acid functionalities on the chiral
auxiliary [58,59]; products were obtained in these cases in fair, similar yields. In the cases
of 1b and 1e, acid chloride or carbamoyl chloride were used, respectively, because of their
commercial availability, with substantial improvements in isolated yields.
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Scheme 2. Synthesis of 1a: Boc-protected L-tryptophan, DCC, N-hydroxysuccinimide, DCM,
0 ◦C; 1b: (1S)-(−)-camphanic chloride, NEt3, DCM, 0 ◦C; 1c: N-Boc protected (S)-2-phenylglycine,
DCC, N-hydroxysuccinimide, DCM, 0 ◦C; 1d: (-)-menthyl chloroformate, NEt3, DCM, 0 ◦C; and 1e:
(S)-mandelic acid, DCC, N-hydroxysuccinimide, DCM, 0 ◦C. Yields of isolated products are reported
in parentheses.

All compounds were initially purified via column chromatography using
hexanes/EtOAc mixtures in order to correctly identify the desired products via NMR
spectroscopy and mass spectrometry; such products were isolated by collecting all chro-
matographically homogeneous material (single spots in TLC, in the eluent mixture used
for the column). All other byproducts were analyzed to ascertain that one of the two
diastereoisomers of the target compound was not left behind due to potentially large
differences in retention times. Partial 1H NMR spectra of conjugates 1a–1e revealed no
splitting of the proton resonances associated with bridgehead carbon atoms at ca. 5.5 ppm,
which are the two formal centers of asymmetry in the triptycene scaffold (Figure 3). This
observation hinted at a not optimal effect of the chiral auxiliaries, whose chiral centers were
probably too far apart from the bridgehead carbon atoms, and thus exerted little shielding
or deshielding effects on these protons.

We screened several eluent mixtures via TLC to verify whether a tangible difference in
retention times could be obtained for any of the purified diastereomeric couples (1a–e), but
no positive results were obtained.
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Figure 3. Partial 1H NMR spectra of compounds 1a–1e (300 or 400 MHz, DMSO-d6 at 298 K).

3.2. Chromatographic Separation of Diastereoisomers

In order to explore the possibility of addressing the chromatographic separations of
the diastereoisomeric couples of conjugates 1a–e in a scalable way, we initially checked
the ability to resolve the mixtures using an achiral RP-18 stationary phase. Conjugates
1a–e were tested using an UHPLC equipped with a high performance column (see SI
for instrument details and column features), but only one (conjugate 1d) showed a small
separation with a low analyte concentration (Figure S1). The difference in retention times
was not practically useful in a preparative UHPLC column. Due to the low separation
tendency and poor interaction with C18 on the achiral phase, we decided to use chiral
stationary phases. Three different types of stationary phases were tested, as described in
the Supporting Information Section. Due to the large variability of polysaccharide-based
stationary phases, and based on previous work published by some of us [39], all conjugates
were tested on all stationary phases. The standard conditions employed (nHeptane/IPA
and nHexane/IPA as eluents) and the use of SFC (supercritical fluid chromatography:
CO2/IPA) did not show a significant increase in separation. Only OD3-type cellulose
tris(3,5-dimethylphenylcarbamate) coated on 3 µm silica-gel showed some effectiveness in
separating 1b (Figure S2). Using this stationary phase, the other conjugates did not show
suitable results for preparative applications.

3.3. Computational Investigation

A comprehensive analysis of the structures generated in the reaction was performed
using DFT calculations (see Supporting Information). Conjugate 1d was selected as the
most straightforward example to analyze. All conformational rotamers for product 1d
and its diastereomer 1d′ were thoroughly explored. The most stable conformations for the
two diastereomeric products are presented in Figure 4; a comprehensive overview of all
conformations is available in the Supporting Information.
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Figure 4. Most stable conformers for 1d and 1d′ diastereomers. The Boltzmann weighted molecular
dipole is reported below each structure, together with the weighted polarizability and the map of
electrostatic potential (MEP). [SMD(DCM)-M06-2X/def2svpp//B3LYP/6-31g(d)]. Red and blue
colors indicate the different electron densities (most electron density resides in the more red areas,
the least electron density resides in the blue areas).

The two systems were too similar in geometry to exert an efficient separation through
a chromatographic column. The molecular dipoles of both systems were very similar (i.e.,
3.59 Debye for 1d and 3.00 Debye for 1d′ weighted values, in accordance with Boltzmann
population analysis (see SI for more details)) and the polarizability appeared nearly iden-
tical, with a value close to 617 a.u. in both cases. The analysis of the map of electrostatic
potential (MEP) displays the same orientation of polar surfaces in both systems. A parallel
investigation was conducted on products 1a, 1b, 1c, and 1e, but no system was identified
with a stronger difference in terms of molecular dipole; in 1a chiral auxiliaries consistently
occupied the space around the triptycene core (see Supporting Information), but chromato-
graphic results showed no separation during all conditions performed. The conformational
study showed us that, although chiral auxiliaries are bulky in space, they do not lead to
situations in which the dipole moment and polarization of the molecule are sharply varied.
Hence, this results in a lack of resolving ability on the part of the interactions with the
stationary phase in the column.

4. Conclusions and Outlook

We successfully synthesized a library of conjugates formed via the coupling of 2,6-
diaminotriptycene with a series of enantiopure derivatives belonging to the natural chiral
pool, generating either amide or carbamate derivatives in fair to good isolated yields. The
stereogenic centers of the chiral auxiliaries were located in all cases at a distance greater
than 4 Angstrom from the stereocenter of the triptycene moieties, in their more stable confor-
mations, as shown using calculations. The conjugates appeared to operate in a completely
independent way: the nonpolar portion of the π-extended synthon was chemically linked
to an enantiopure side chain, which in some cases satisfied the requirements, but in others
was unsuitable for interacting efficiently with the stationary phase. Carbamate-containing
compound 1d showed the best performance in achiral HPLC conditions, probably suggest-
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ing a higher flexibility of this functionality with respect to amides. This study is for us,
and hopefully for other research groups involved in the use of chiral triptycenes, a starting
point for the elaboration of novel strategies for a more effective utilization of a chiral
auxiliary strategy for the enantioseparation of 2,6-diaminotriptycene. Potential strategies
involving a functionalization of the 1,5-positions of the triptycene scaffolds may be much
more powerful for addressing a large scale enantioseparation. Sugars have been recently
shown to effectively perform as chiral auxiliaries. Their large number of stereogenic centers,
together with their easy accessibility and low cost, can be the key for the scalable resolution
of triptycene derivatives [60,61].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/sym16010116/s1: Figures S1 and S2, and Table S1: additional
details for chromatographic analyses; Figures S3 and S4, Table S2: additional details for computational
analyses; Figures S5–S20: copies of the NMR; and mass spectra of the newly reported compounds.
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