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Abstract: The topic of gravitational lensing in the Mannheim–Kazanas solution of Weyl conformal
gravity and the Schwarzschild–de Sitter solution in general relativity has featured in numerous publi-
cations. These two solutions represent a spherical massive object (lens) embedded in a cosmological
background. In both cases, the interest lies in the possible effect of the background non-asymptotically
flat spacetime on the geometry of the local light curves, particularly the observed deflection angle of
light near the massive object. The main discussion involves possible contributions to the bending
angle formula from the cosmological constant Λ in the Schwarzschild–de Sitter solution and the
linear term γr in the Mannheim–Kazanas metric. These effects from the background geometry, and
whether they are significant enough to be important for gravitational lensing, seem to depend on
the methodology used to calculate the bending angle. In this paper, we review these techniques and
comment on some of the obtained results, particularly those cases that contain unphysical terms in
the bending angle formula.
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1. Introduction

During the last decade, the subject of the bending of light by a gravitational lens
embedded in a non-asymptotically flat spacetime, particularly the effect of the background
spacetime on the light bending angle, has attracted a lot of interest. One of the most
discussed issues is that of whether the cosmological constant Λ in the Schwarzschild–de
Sitter (SdS) spacetime contributes to the bending of light. It has been claimed [1,2] that since
the constant Λ drops out of the null geodesic equations for the Schwarzschild–de Sitter
spacetime then it should not feature in the formula for the bending angle, even though its
effect would still be indirectly used in gravitational lensing, considering that the angular
diameter distances in the lensing formula depend on Λ. However it was Rindler and
Ishak [3,4] who first suggested that the bending angle of light in asymptotically non-flat
spacetimes cannot be simply calculated by finding the angle between the asymptotes r → ∞
of the photon’s trajectories (commonly referred to as Weinberg’s method [5]) as is normally
done in Schwarzschild geometry, for example. So, they utilized a different method to
calculate the angle of deflection and obtained a formula that contained a direct contribution
from the cosmological constant. The reactions to this proposal were mixed [6–13] with
some against and some in favor of Rindler and Ishak’s method, while a few others still
questioned whether Λ contributes effectively to lensing. This debate has since calmed
down, with the recent general consensus being that the cosmological constant does indeed
play a role in gravitational lensing, but that the effect is way too tiny to be significant and
can thus be ignored for practical purposes, given that its magnitude is much smaller when
compared with other lensing affects such as aberration and uncertainties in cosmological
distances [14,15]. In the time that the debate surrounding the SdS spacetime has been going
on, another spacetime that has also attracted a lot of interest with regards to light bending
is the static and spherically symmetric vacuum solution to conformal Weyl gravity, which
was first derived by Riegert [16] but is more commonly know as the Mannheim–Kazanas
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(MK) solution [17,18]. Unlike general relativity, conformal Weyl gravity is a conformally
invariant theory of gravitation, meaning that it has the added symmetry that, if a particular
metric is a solution of the field equations of the theory, then any conformal transformation
of this metric will also be a solution of Weyl gravity. The Mannheim–Kazanas solution
contains a linear potential term γr in its lapse function. It has been shown that this can
predict flat galactic rotational curves without the need to include dark matter [19–23],
whose exact nature is still a mystery. Recent studies [24] have, however, criticized this claim.
When calculating the deflection of light in this spacetime, Edery and Paranjape [25] (see
also [26,27]) showed that the γr term in the metric leads to a negative contribution to the
total bending angle that is linearly proportional to the impact parameter, meaning that the
further away the light ray is from the lens, the greater is this contribution to the bending
angle. This, therefore, renders the spacetime unphysical. Moreover, this contribution
requires that the constant γ should have the opposite sign used for the prediction of flat
galactic rotation curves. It turned out that this paradoxical result arises from the fact that
when using the standard formula for bending of light given by Weinberg, the authors
incorrectly assumed that the MK spacetime is asymptotically flat. It was later shown [28,29]
by applying Rindler and Ishak’s method that the contribution of the linear term in the
MK metric is inversely proportional to the impact parameter and therefore is practically
insignificant for lensing purposes, considering the small magnitude of constant γ derived
earlier from the fitting of galactic rotational curves. However the issue of the bending of
light in Weyl gravity, particularly the magnitude of the contribution of the linear term in the
metric, remains unresolved. This has been revisited several times in recent literature [30–36],
and so far remains inconclusive. The main disagreements arise from the different order of
the approximations used to derive the bending angle formula, the different representations
of the mass of the lens in terms of parameters in the MK-metric, and the application
of various alternative geometric techniques for calculating the bending angle in non-
asymptotically flat spacetimes. For example, another less commonly used method is that
based on the Gauss–Bonnet theorem applied for the optical metric generated from the
spacetime metric gµν, which was originally used for asymptotically flat spacetimes [37,38]
but has recently been generalized and applied to non-asymptotically flat spacetimes [39–41],
specifically to the SdS and MK solutions. In a recent paper Kaşikçi and Deliduman [34],
used Weinberg’s method to obtain from first principles the angle of deflection of light
in the MK-spacetime, taking into consideration the non-flat background by limiting the
integration to the position of the cosmological event horizon in this spacetime. In the next
section, we introduce the theory of Weyl gravity through its action and field equations and
present different forms of the MK-metric. In Section 3, we present the different methods
used to calculate the bending of light in the SdS and MK spacetimes and obtain the bending
angle formula in each case. These results are discussed in detail, followed by a conclusion
in Section 4. In this paper, we use geometric units in which G = c = 1.

2. The Action of Weyl Gravity

Weyl (conformal) gravity is based on the principle of local conformal invariance of
spacetime under local conformal deformations gµν(x) → Ω2(x)gµν(x), where Ω(x) is a
smooth strictly positive function of spacetime coordinates. Instead of requiring that the
theory be no higher than second order, as in the case of the Einstein–Hilbert action, this
is used as the supplementary condition that fixes the gravitational action. This results
in fourth-order equations of motion for the gravitational field. Nonetheless, using this
local invariance principle in order to determine the gravitational action, besides being in
line with the way actions are chosen in field theory, uniquely selects the action of Weyl
gravity amongst all other fourth-order theory actions. Moreover, it precludes from the
action additional terms in the form of the Einstein–Hilbert terms, thereby providing no
specific limit at which this theory will reduce to the “standard” general relativity, an
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approach normally used when considering the effects of higher-order terms in gravitational
action.The restrictive conformal invariance leads to the unique conformally invariant action

IW = − 1
2α

∫
d4x(−g)1/2CλµνκCλµνκ

= − 1
α

∫
d4x(−g)1/2[Rµκ Rµκ − (Rν

ν)
2/3]

+a total derivative, (1)

where Cλµνκ is the conformal Weyl tensor and α is a purely dimensionless coefficient.
Varying the action in (1) with respect to the metric leads to the field equations

1√−g
gµαgνβ

δIW
δgαβ

= − 1
α

Wµν, (2)

where
Wµν = 2Cα β

µν ;βα + Cα β
µν Rαβ (3)

is the Bach tensor. In the presence of a source Tµν, the full field equations are obtained
through variation with respect to the metric of the total action I = IW + IM, where IM is
the action corresponding to the source. This gives

Wµν =
α

2
Tµν, (4)

where Tµν = 2(−g)−1/2δIM/δgµν is a conformally invariant stress–energy tensor. From the
definition of Wµν, it can be seen that this vanishes when Rµν is zero, and hence any vacuum
solution of Einstein’s field equations is also a vacuum solution of Weyl gravity. However,
the converse is not necessarily true. Despite the fourth-order field equations of Weyl gravity
and the fact that, in general, these are highly nonlinear, a number of exact solutions [42–47]
to these equations have been found in cases of spherical symmetry, axisymmetry, and
cylindrical symmetry. The exact static and spherically symmetric vacuum solution for Weyl
gravity is given, up to a conformal factor, by the following line element [16,17]

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θdϕ2), (5)

where

B(r) = 1 − β(2 − 3βγ)

r
− 3βγ + γr − Λ

3
r2, (6)

and β, γ, and Λ are integration constants. This solution includes the Schwarzschild metric
(γ = Λ = 0) and the Schwarzschild–de Sitter (γ = 0) metric as special cases, with the
latter requiring the presence of a cosmological constant in general relativity. The constant γ
has dimensions of acceleration. Therefore, the solution provides a characteristic, constant
Rindler-like acceleration, without the need to introduce one at the Lagrangian, such as
in the relativistic implementation of MOND with TeVeS [48]. Although the magnitude
and nature of γ remain uncertain, the fitting of galactic rotational curves suggests [17] that
γ ≃ 1/RH , where RH is the Hubble length. This means that the effects of this acceleration
are comparable to those due to the Newtonian potential term (with βγ << 1) 2β/r ≡ rs/r
(rs is the Schwarzschild radius), on length scales given by

rs/r2 ≃ γ ≃ 1/RH or r ≃ (rs RH)
1/2. (7)

By using the reparameterization β = 1−
√

1−6γm
3γ , the MK-solution can also be written in the

form
B(r) =

√
1 − 6mγ − 2m

r
+ γr − Λ

3
r2. (8)
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Besides the bending of light (which is discussed in the next section) other classical tests
such as the time delay [25] and perihelion precession [49] have also been obtained in Weyl
gravity.

3. Bending of Light in the SdS and MK Spacetimes
3.1. SdS Spacetime

The null geodesic equations ẍα + Γα
βγ ẋβ ẋγ = 0, where ẋα = dxα/dλ; λ being an affine

parameter, for the metric in Equation (5) reduce to [5]

du
dϕ

=

√
1

R2 − B(u)u2, (9)

where u ≡ 1/r, R ≡ L/E is the impact parameter, and E and L are the constants of motion
representing the total energy and angular momentum, respectively. In an asymptotically
flat spacetime such as the Schwarzschild solution, where the source and observer are
assumed to be located at infinity (r = ∞; u = 0), the coordinate angle difference at the point
of closest approach r = r0 (or u = u0 where du

dϕ |u=u0 = 0 of the light ray from the lens with
respect to the position of the source or observer is given by

∆ϕ = ϕ(u0)− ϕ(0) =
∫ 0

u0

du√
1

R2 − B(u)u2
. (10)

Hence, the total bending angle is given by

∆ϕ = 2ϕ∞ = 2|ϕ(u0)− ϕ(0)| − π. (11)

So, basically, in this case the total bending angle is obtained by finding the angle between
the asymptotes r → ∞ of the photon’s trajectories, as shown in Figure 1.

Deflection of light by a spherical mass 249

Fig. 11.8

Consequently the magnitude of the total deflection of the ray, by symmetry, is

� = 4m

R

(
= 4GM

c2R

)
(11.65)

in radians, the expression in parenthesis being in full units.
For a ray grazing the sun, for example, this amounts to 1′′.75. Some 10 expeditions

attempting to observe stars near the sun during a total solar eclipse have been launched
since Eddington’s historic first in 1919, the latest to Mauritania in 1973 by a team
from the University of Texas. In spite of all these efforts it has proved impossible
to reduce the 20 per cent uncertainty of Eddington’s original observations to much
below 10 per cent—within which agreement with Einstein’s prediction was indeed
found.

But a major step forward came in 1969 with an entirely new method that relied on
radio signals and thus did not involve waiting for, and traveling to, a solar eclipse. On
its path around the sun the earth each year passes locations where the sun aligns with
close configurations of distant radio-emitting quasars. As the earth passes, their rela-
tive angular separations change—in perfect accord with Einstein’s bending formula.
The latest (1991) results by Robertson et al., using Very Long Baseline Interferometry
(VLBI), verified Einstein’s prediction to a previously undreamt of accuracy of 10−4.

As we mentioned earlier, on the basis of Newtonian theory one gets a deflection of
light that is only one-half as big as that predicted by GR. An instructive way to obtain
this result is to integrate the local bending expression (1.15) we obtained in Chapter 1
(and which applies equally in GR and Newton’s theory) over flat space. According
to (1.15), disregarding the sign, writing l for the arc along the orbit and ψ for its
inclination to the initial tangent, we have, for the configuration illustrated in Fig. 11.8,

κ = dψ

dl
= g cos θ ≈ m

r2
· R

r
≈ mR

(l2 + R2)3/2
.

From this we find

1

2
� =

∫
dψ =

∫ ∞
0

mR

(l2 + R2)3/2
dl =

[
ml

R(l2 + R2)1/2

]∞
0
= m

R
, (11.66)

which bears out our assertion. Of course, for highly relativistic scattering orbits,
for example for rays approaching a concentrated mass to within almost 3m, neither

Figure 1. The deflected light trajectory with the one-sided bending angle ϕ∞. (adapted from [50]).

This is the standard method for calculating the exact bending angle of light in asymp-
totically flat spacetimes and is commonly referred to as Weinberg’s method. For example,
applying this for the Schwarzschild metric with B(u) = 1 − 2mu results [5] in a total
bending angle of ∆ϕsch ≈ 4m/R if one ignores higher-order terms in m/R. In this case, the
relation between the impact parameter R and the distance of closest approach r0 = 1/u0 is
obtained by equating du/dϕ to zero in (9) to obtain r3

0 − R2(r0 − 2m) = 0, whose largest
root is given by [51]

r0 =
2R√

3
cos

[
1
3

cos−1

(
−33/2m

R

)]
. (12)

This method has also been applied to obtain the light bending angle formula in non-
asymptotically flat spacetimes, such as the SdS spacetime and the MK-solution of Weyl
gravity [25–27], which is seen in the next subsection. For the case of the SdS spacetime
where B(r) = 1 − 2m/r − Λr2/3 the cosmological constant Λ drops out from the bending
angle formula, hence giving the same expression ∆ϕsch as in the case of the Schwarzschild
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solution. In Ref. [34], Weinberg’s method was slightly modified by limiting the integration
in (10) only up to the position of the cosmological event horizon r = rh (or u = uh) instead
of u = 0. This was based on the fact that this horizon marks the boundary between causally
unconnected regions and so it would not make sense to extend the integration beyond this
point. The position uh is obtained by finding the largest root of B(r) = 0. By using this
approach, the authors in Ref. [34] utilized an asymptotic expansion of the elliptic integral
of the first kind in (10) to obtain the following approximation for the bending angle of light
in the SdS spacetime written in terms of the parameters m and Λ and the distance of closest
approach r0

∆ϕ = −2

√
Λ
3

r0 +
m
r0

(
4 − 2

√
Λ
3

r0 − 2
Λ
3

r2
0

)
+

m2

r2
0

(
15
4

π − 4
)

−m2

r2
0

(
3

√
Λ
3

r0 + 2
Λ
3

r2
0

)
+ · · · . (13)

Again, the point of closest approach r = r0 (or u = u0) is obtained by finding the largest
root of dr/dϕ = 0 (or equivalently du/dϕ = 0.) in (9) with B(r) = 1 − 2m/r − Λr2/3 as
was done in (12). Using the photon orbit equation, this can be approximated by [3]

1
r0

=
1
R
+

m
R2 . (14)

Rindler and Ishak [3] proposed a different method, which makes use of the local
deflection of the photon at each point along its entire trajectory when calculating the total
bending angle. So, following [3], one considers the subspace θ = π/2, t = const. in (5), and
let ψ be the angle between the two directions dα and δβ in the photon planar trajectory, as
shown in Figure 2.

Figure 2. The deflected photon trajectory with the one-sided bending angle given by ϵ = ψ − ϕ

(adapted from [3]).

Then, the angle ψ that the photon orbit makes with the position ϕ = const. is given by

cos ψ =
gαβdαδβ√

gαβdαdβ
√

gαβδαδβ
, (15)

where dα = (dr, dϕ), and δα = (δr, 0) and gαβ denote the metric on the θ = π/2, t = const.
submanifold. Substituting the metric (5) into (15) gives

cos ψ =
|A(r, ϕ)|

(A2 + B(r)r2)1/2 , (16)

or equivalently

tan ψ =
B(r)1/2r
|A(r, ϕ)| , (17)
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where A(r, ϕ) = dr
dϕ . At a general point (r, ϕ) along the photon’s orbit, the one-sided

bending angle is given by ϵ = ψ − ϕ. The total one-sided bending angle occurs at ϕ = 0
or ϵ = ψ0. For the SdS metric, this formula gives the following expression for the total
bending angle, expressed in terms of the impact parameter R instead of the distance of the
closest approach r0 [4],

∆ϕ = 2ψ0 =
4m
R

+
15π

4
m2

R2 +
305
12

m3

R3 − ΛR3

6m
. (18)

A third method for calculating the bending of light using a gravitational lens involves
the application of the Gauss–Bonnet theorem in the spatial domain defined by the optical
metric, in which the light ray is represented by a spatial curve. Without loss of generality,
the spatial domain of the photon trajectory is taken to be the equatorial plane θ = π/2, so
that using ds2 = 0 in (5), the optical metric for this two dimensional surface is given by

dt2 =
dr2

B(r)2 +
r2

B(r)
dϕ2. (19)

This method was first proposed by Gibbons and Werner [37] for asymptotically flat space-
times and was later generalized by Ishihara et al. [38] and Takizawa et al. [40,41] to
non-asympototically flat spacetimes in which the source and observer are at finite distances
from the lens. Unlike the Rindler–Ishak method, in this case, the source, lens, and observer
are not assumed to be co-aligned, as shown in Figure 3.

 
   

 RΨ
SΨ

Rφ Sφ

R S

L

Figure 3. The observer R, source S, and lens L, with ΨR and ΨS being the angles between the light
ray and the corresponding radial directions at these positions. The coordinate angular separation
between the source and observer is ϕRS = ϕR − ϕS. (adapted from [40]).

The bending angle is then defined by [38]

∆ϕ = ΨR − ΨS + ϕRS, (20)

where ΨR and ΨS are the angles between the spatial trajectory of the light ray and the radial
directions of the observer and source, respectively, while ϕRS is the angular coordinate
separation of the source and observer. These angles are obtained by applying the Gauss–
Bonnet theorem on the spatial domain of the photon trajectory shown in Figure 3. In
general, for a two dimensional orientable surface T with a piecewise smooth boundary
consisting of smooth curves ∂Ta joined together, the Gauss–Bonnet theorem [52] states

∫
T

K dS +
N

∑
a=1

∫
∂Ta

κg dl +
N

∑
a=1

θa = 2π, (21)

where K denotes the Gaussian curvature of the surface T, κg is the geodesic curvature of
the boundary curves ∂Ta, and θa denotes the jump angles between the curves making up



Symmetry 2024, 16, 101 7 of 13

∂Ta. So, using this method, the authors in Ref. [40] obtained the following expression for
the bending angle of light in the SdS spacetime:

∆ϕ =
2m
R

(√
1 − R2u2

S +
√

1 − R2u2
R

)
− RΛ

6


√

1 − R2u2
S

uS
+

√
1 − R2u2

R

uR


+

mRΛ
6

 1√
1 − R2u2

S

+
1√

1 − R2u2
R

+O(m2, Λ2), (22)

where uR and uS are the reciprocals of the radial coordinates of the observer and source,
respectively. As expected, irrespective of the method used, the leading term in the bending
angle formulae given by (13), (18) and (22) coincides with ∆ϕSch = 4m/R. However, the
leading contribution from the cosmological constant Λ is different in all three cases. This is
discussed in Section 4.

3.2. MK Spacetime

Applying Weinberg’s method for the the MK-spacetime (8), the authors in Ref. [25]
obtained the following bending angle formula (ignoring higher-order terms in β/r or m/r)

∆ϕ =
4m
R

− γR. (23)

The second term in (23) is negative and so diminishes the amount of bending when com-
pared with the Schwarzschild or SdS spacetimes. It is also linear in the impact parameter R
and therefore its effect increases with the distance of the light ray from the lens, such that
for sufficiently large R it will completely cancel the Schwarzschild contribution, resulting
in a negative deflection. This unexpected and unrealistic result is attributed to the fact that
the authors in [25] used a method for calculating the deflection angle that assumes that the
spacetime is asymptotically flat, with both source and observer located at infinity.

Using the modified Weinberg method and assuming that the source, lens and observer
lie within the cosmological horizon of the MK spacetime, the authors in Ref. [34] obtained
the following bending angle formula in terms of the distance of closest approach r0 (which
is related to the impact parameter R by (14))

∆ϕ = m0

(
4 − 2

√
Λ0

3
− 2

Λ0

3

)
− 2

√
Λ0

3
+ γ0

√
Λ0

3

+m2
0

(
15π

4
− 4 − 3

√
Λ0

3
− 2

Λ0

3

)
+ m0γ0

(
2 +

Λ0

3

)

+m2
0γ0

(
15π

4
− 4 − 3

2

√
Λ0

3

)
+ · · · , (24)

where the dimensionless parameters are defined by m0 = m/r0, γ0 = γr0, and Λ0 = Λr2
0.

In Ref. [28], the Rindler–Ishak method is used to obtain the bending angle for the MK-
metric given in (6), in which the source, lens, and observer are assumed to be co-aligned.
This was performed using the formula in (17) evaluated at ϕ = 0 corresponding to the
position rϕ=0 = 2R2/(2β(2 − 3βγ)− γR2), which in terms of the parameter m introduced
in (8) can be written as rϕ=0 = 2R2/(4m − R2γ). The resulting bending angle to first-order
in γ and Λ for the metric (6) is given by [28]

∆ϕ =
4β

R
− 2β2γ

R
− ΛR3

6β
. (25)
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The first and last terms in the above formula are just the Schwarzschild and cosmological
contributions, respectively, obtained for the SdS spacetime as given in (18). One notes that
the contribution to the bending angle from the linear term in the metric is now inversely
proportional to the impact parameter, and like the cosmological term it also has a negative
sign, meaning that the amount of bending is suppressed and the effect diminishes with a
closer approach distance (or impact parameter) from the lens. Considering that it had been
shown earlier that the parameter γ is related to the gravitational source (see Equation (18)
in Ref. [45] and also Ref. [21–23]), the authors in Ref. [31] pointed out that this term should
be positive, so that it enhances the bending angle, in the same way that it provides an
explanation of the flat galactic rotational curves in the absence of dark matter. This issue
was settled [53,54] when it was shown that the sign of the linear term γr in the metric (6)
can be reversed using a conformal transformation ds2 → Ω̃ds2 followed by a coordinate
transformation

r′ = r
√

Ω̃, (26)

where in the weak field approximation β/r << 1, βγ << 1, the necessary conformal factor
is given by Ω̃ = 1 − 2γr. In this gauge, the metric potential in (5) takes the form

B(r′) = 1 − β(2 − 3βγ)

r′
− 3βγ − γr′ − Λ

3
r′2. (27)

Then, since null geodesics are insensitive to conformal transformations, it follows that the γ
contribution to the light bending angle in (25) in this gauge will have the opposite sign and
thus leads to a deflection towards the lens. One has to point out that the conformally related
metrics in Equation (5) with the lapse function given by (6) and (27), respectively, are not the
same metric, but considering that Weyl gravity is conformally invariant, both are vacuum
solutions of the theory. A few other slightly different formulae for the bending angle that
were also derived using Rindler and Ishak’s method can be found in Refs. [29,31,32]. The
main differences in these alternative formulae arise from the different order of the approxi-
mations taken, the association of different parameters (m vs. β) with the geometric mass of
the lens, and the different points in the derivations where higher powers of m/R, β/R, γ
and Λ are discarded. For example, in Ref. [31] the authors used Rindler and Ishak’s method
for the MK-metric written in the form (8) and obtained the following formula

∆ϕ =
4m
R

+
15m2γ

R
+

2mRΛ
3

− ΛR3

6m
. (28)

However, the most important thing is that, in all these formulae, the first-order contribution
from γ to the bending angle is always inversely proportional to the impact parameter R, so
that just like the Einstein contribution 4m/R, it decreases with distance from the lens. This
would be expected if γ is really associated with the gravitational lens itself.

In Ref. [40], the authors also applied the method based on the Gauss–Bonnet theorem
to obtain the bending angle of light in the MK-spacetime. In this case, using the fact
that βγ << 1, the authors used a simplified form of the lapse function in (5) given by
B(r) = 1 − 3βγ − 2β/r + γr − Λr2/3, and to simplify their analysis they also considered
the case Λ = 0. The obtained bending angle formula is given by

∆ϕ =
2β

R

(√
1 − R2u2

S +
√

1 − R2u2
R

)
− βγ

 RuS√
1 − R2u2

S

+
RuR√

1 − R2u2
R


+O(β2, γ2), (29)

where uR and uS are again the reciprocals of the radial coordinates of the observer and
source, respectively, as shown in Figure 3. As in the SdS case, the leading terms in all light
bending angle formulae, irrespective of the method used, coincide with the Schwarzschild
bending angle ∆ϕSch, and the main difference lies in the way the linear term γr contributes
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to the bending and the magnitude of this contribution with respect to ∆ϕSch. This is
discussed in the next section.

4. Discussion

In this section, we will compare the bending angle formulae obtained using the
different methods as described in the previous section. So, starting with the SdS spacetime
and comparing (18) with (13), we note that the majority of the bending in both cases equates
to the Schwarzschild contribution represented by the first term in both expressions, which
apart from the difference between R and r0 takes the same form in both cases, as expected.
In addition, in both cases, the first-order contribution from the cosmological constant is
negative, so that the cosmological constant Λ diminishes the bending (see also Ref. [9,55]).
However, due to the different methods used to calculate the bending angle, this term is
different in the two cases. As already mentioned above, Kaşikçi and Deliduman based their
calculation on Weinberg’s method given by Equation (10) through restricting the upper
limit of integration to the position of the cosmological event horizon, which in the case of
the SdS spacetime is given by uh = 1/rh∼

√
Λ/3. In Rindler and Ishak’s derivation, it is

assumed that the observer, lens, and source are collinear. The position ϕ = 0 corresponding
to the one-sided total bending angle occurs at rϕ=0 = R2/2m, where ϵ = ψ0. They also
assumed that the photon trajectory intersects the optic axis (the line through the coaligned
source, lens, and observer where ϕ = 0) within the cosmological horizon, such that
R2/2m <

√
Λ/3. Otherwise the trajectory would connect causally unconnected regions of

spacetime. In fact, this is the same reason why Kaşikçi and Deliduman assumed that the
deflection of the photon trajectory happens entirely within the cosmological horizon.

Considering the small magnitude of the cosmological constant, one would expect
that the effects of the first-order terms in Λ in Equations (13) and (18) would be much
smaller than the first-order Schwarzschild contribution ∆ϕsch∼4m/R, so that in reality
the presence of these terms in the bending angle formulae would not effect gravitational
lensing [14,15]. However, by considering examples of galaxies and galaxy clusters and
obtaining the magnitudes of these cosmological contributions (as was done in Table 1 of
Ref. [4]), one finds that this is not always the case. Therefore, as an example, if we take
the case of the galaxy cluster Abell 2744 [56,57] (see table 1 in Ref. [4]) having Einstein
radius RE = 96.4 Kpc and geometric mass m = 1.97 × 1013 M⊙h−1, and use the following
values of the cosmological parameters Λ = 1.1056 × 10−52 m−2 (obtained using H0 =
67.66 ± 0.42 kms−1/Mpc, ΩΛ = 0.6889 ± 0.0056 [58]), we obtain

4m
R

= 5.510 × 10−5;
15π

4
m2

R2 = 2.235 × 10−9;
ΛR3

6m
= 1.184 × 10−5;

2

√
Λ
3

r0 = 3.612 × 10−5. (30)

Surprisingly, from the above numerical values, it can be seen that the first-order contribu-
tions from the cosmological constant to the bending angle in Equations (13) and (18) are
greater than the second-order term m2/R2 and are indeed of the same order of magnitude
as ∆ϕsch. Considering that the SdS solution is not a realistic model of a gravitational lens em-
bedded in a cosmological background, this in no way contradicts the conclusions reached
in Ref. [14,15] about the insignificant effect from the cosmological constant in practical
gravitational lensing. In another paper, Ishak et al. [4] applied the same method that was
used earlier for (18) to the case of a SdS vacuole matched to a Friedmann–Robertson–Walker
(FRW) background (also known as the Einstein–Straus model [59]), where the source and
observer are assumed to lie inside the SdS vacuole, so that the deflection of the light tra-
jectory happens entirely within the vacuole (the SdS vacuole model was also studied in
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Ref. [60]). In this case, the source, lens, and observer were also assumed to be coaligned
and the obtained bending angle formula was given by

∆ϕ =
4m
R

+
15π

4
m2

R2 +
305
12

m3

R3 − ΛRrb
3

. (31)

The contribution from Λ now involves the radial coordinate rb at the boundary of the
vacuole, which can be obtained using the appropriate matching conditions there, i.e.,

rb (SdS) = a(t)rb (FRW) (32)

and
mSdS =

4π

3
r3

b (SdS)ρm, (33)

where a(t) is the scale factor in the FRW metric, and ρm is the density of the Universe
at the instance when light passes by the lens, which is positioned at the center of the
SdS vacuole. From (32), it is evident that while the size of the hole rb (FRW) is fixed in
comoving coordinates, the physical size of the hole rb (SdS) increases in static coordinates,
due to the expansion of the Universe. Taking the same example of the Abell 2744 galaxy
cluster mentioned above, we find that ΛRrb/3 = 1.425 × 10−8. This is still larger than
the second-order term m2/R2, but it is now significantly smaller than the Schwarzschild
term ∆ϕsch. In a way, this would be expected when considering that the position of the
source and observer with respect to the lens determines the total bending angle of light.
For this particular example, one finds that the three coordinate radii satisfy the inequalities
rb < rϕ=0 < rh. Hence, although the exact de-Sitter spacetime does not cause any bending
of null trajectories, since it is conformally flat, the SdS being asymptotically conformally flat
would still cause a deflection of light even at large distances from the lens itself. Having
said this, one should point out the fact that the SdS vacuole matched to FRW spacetime
considered by Ishak et al. [4] is still far from being a realistic model of a gravitational lens
embedded in a cosmological background. In a recent paper, Hu et al. [15] (see also Ref. [14])
considered an improved variation of this model by allowing the source and observer to be
within the FRW background, so that they are comoving with the expansion of the universe.
They also included the effect of the change in the size of the SdS vacuole as light propagates
through it from the source to the observer. In this case, it was found that the contribution
from Λ was even smaller than that obtained earlier by Ishak et al. [4]. This contribution
can be almost entirely attributed to the Λ dependence of the angular diameter distances in
the lensing equation ∆ϕ = DSθE/DLS, where DS, DLS are the angular diameter distances
of the source from the observer and the source from the lens, respectively, and θE is the
Einstein angle that is related to the Einstein radius by R = θEDL; with DL being the angular
diameter distance of the lens from the observer. The expression for the bending angle
based on the Gauss–Bonnet theorem in (22) also contains a coupling term between the
mass and the cosmological constant. This is the third term on the RHS of this expression,
which for the case uR = uS = U reduces to mRΛ/(3

√
1 − R2U2). This is obviously greater

in magnitude than the pure de Sitter term (the second term in this expression) and is
very similar to the last term in (31), albeit having the opposite sign, which is immaterial
considering its tiny magnitude. In a sense, this was to be expected, since both formulae
consider a situation where the source and receiver are at a finite distance from the lens.

Considering now the MK-spacetime given by (6) or (8), we can say that this provides a
more realistic example of a lens in a cosmological background, because unlike the Einstein–
Straus model, in which the spacetime changes abruptly from SdS to FRW at rb, the MK
spacetime provides a smooth transition from a Schwarzschild-like metric in the vicinity
of the lens to a general FRW-like metric in the asymptotic background. In Ref. [45], the
authors studied the interior structure of a static and spherically symmetric conformally
invariant source in Weyl gravity and showed that the parameter γ can be expressed solely
in terms of this source. Moreover, for large r, when the β terms in (6) can be ignored, the
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resulting spacetime is conformally related to the FRW metric, having an arbitrary scale
factor a(t) and spatial curvature κ = −Λ/3 − γ2/4. This is obtained by applying the
coordinate transformation [17]

ρ =
4r

2(1 + γr − Λr2

3 )1/2 + γr + 2
and τ =

∫
a(t)dt, (34)

such that the line element in (5) with β = 0 reduces to

ds2 =
1

a2(τ)

[1 − ρ2(γ2/16 + Λ/12)]2

[(1 − γρ/4)2 + Λρ2/12]2
(
−dτ2

+
a2(τ)

[1 − ρ2(γ2/16 + Λ/12)]2
(dρ2 + ρ2dΩ)

)
. (35)

Since in the asymptotic form of the MK-spacetime given by (35) the spatial curvature of the
FRW background depends on γ, one can also conclude that the γr term in the metric has
an effect on the cosmological background, even when β = 0 (or m = 0). Therefore, in a way,
one can say that the presence of the linear term in the MK solution facilitates the embedding
of the gravitational source in a cosmological background. Using the static coordinates
in (5) for the MK-metric, one is again faced with the same issue mentioned above for SdS
spacetime, namely the position of the source and observer with respect to the lensing object,
since the total light bending will depend on these positions. The bending angle formula
in (24) obtained by Kaşikçi and Deliduman [34] contains the term γ0

√
Λ0/3 = γr2

0
√

Λ/3.
This is the first-order and main contribution from the linear term in the MK-metric and it
increases with the distance of closest approach r0 (which is related to the impact parameter
R). Therefore, this is similar to but smaller in magnitude than the contribution −γR in (23)
obtained by Edery and Paranjape (see also Equation (21) in Ref. [25])), which has been
termed unphysical due to the fact that it increases linearly with the impact parameter or
the distance of closest approach r0 from the lens. Thus, both Edery & Paranjape’s and
Kaşikçi and Deliduman’s derivations utilize Weinberg’s method to calculate the bending
angle, but the latter derivation takes into consideration the asymptotic non-flatness of
the MK spacetime and limits the integration (and so the deflection of the null trajectory)
to the position of the cosmological event horizon r = rh in this spacetime, while in the
former case the integration is extended to infinity, thereby yielding a larger contribution.
On the other hand, one can easily check that the leading contribution from γ in (24) is
significantly higher than that in (25). So, if we take again the example of the galaxy cluster
Abell 2744 and use the value γ ∼ 1/RH = 10−26m−1, we obtain γr2

0
√

Λ/3 = 5.37 × 10−10

and 2β2γ/R = 1.128 × 10−14. These are still both insignificant for practical gravitational
lensing when compared to the Schwarzschild bending angle. On another note, it is also
interesting to see that in (24) the leading γ contribution to the bending angle is coupled
to the cosmological constant instead of the geometric mass of the lens as in (25) and in
the other similar formulae obtained in Ref. [29,31,32]). This would lead us to rethink
the exact nature of the linear γr term in the MK-metric, i.e., whether this term is derived
from the gravitational source as previously claimed or whether it is associated with the
asymptotic region of the spacetime. This issue is still open and has not been settled so
far. In the formula based on the Gauss–Bonnet theorem given by (29), the contribution
to the bending angle from the linear term γr in the MK-metric is also negative, as in (25).
However, in this case, one cannot comment about the possible coupling between γ and
the cosmological constant Λ, because in deriving this formula the authors considered
the case Λ = 0. Assuming that uS = uR = U in (29), this contribution takes the form
−2βγRU/

√
1 − R2U2, and so considering that the position of the source (or observer) is

typically greater than the impact parameter R, i.e., 1/U >> R, its effect diminishes with
distance from the lens, as in the case of the formula obtained using the Rindler–Ishak
method. For Abell 2744 with rR = rS = 100R, the magnitude of this term is 8.196 × 10−12,
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which although greater than the corresponding leading γ term in (25) is still insignificant
for practical gravitational lensing.

In this paper, we have reviewed the methods used for calculating the bending angle
of light by a source embedded in a non-asymptotically flat background, such as the SdS
spacetime, the Einstein–Straus vacuole, and the MK-spacetime. Apart from the obvious
dependence on the mass of the lens, we noted that the total bending angle depends on the
position of the source and observer relative to the lens and whether they are stationary or
moving with respect to the lens. With the exception of the SdS spacetime, it was shown
that for practical gravitational lensing the contribution to the bending angle from the
cosmological background is practically insignificant and so one can safely state that the
Schwarzschild bending angle formula still applies.
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