
Citation: Hu, G.; Qian, K.; Li, Y.; Li,

H.; Xu, X.; Xu, H. Adaptive

Reversible 3D Model Hiding Method

Based on Convolutional Neural

Network Prediction Error Expansion.

Symmetry 2023, 15, 1782. https://

doi.org/10.3390/sym15091782

Academic Editors: Hongfeng Wang,

Rong Jiang, Xujin Pu and Tomohiro

Inagaki

Received: 19 August 2023

Revised: 13 September 2023

Accepted: 15 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Adaptive Reversible 3D Model Hiding Method Based on
Convolutional Neural Network Prediction Error Expansion
Guochang Hu 1,2, Kun Qian 1,2,*, Yinghua Li 3, Hong Li 1, Xinggui Xu 1 and Hao Xu 1

1 School of Information, Yunnan University of Finance and Economics, Kunming 650221, China
2 Yunnan Key Laboratory of Service Computing, Kunming 650221, China
3 School of Mathematics and Statisties, Huizhou University, Huizhou 516007, China
* Correspondence: qiankun@ynufe.edu.cn

Abstract: Although reversible data hiding technology is widely used, it still faces several challenges
and issues. These include ensuring the security and reliability of embedded secret data, improving
the embedding capacity, and maintaining the quality of media data. Additionally, irregular data types,
such as three-dimensional point clouds and triangle mesh-represented 3D models, lack an ordered
structure in their representation. As a result, embedding these irregular data into digital media does
not provide sufficient information for the complete recovery of the original data during extraction. To
address this issue, this paper proposes a method based on convolutional neural network prediction
error expansion to enhance the embedding capacity of carrier images while maintaining acceptable
visual quality. The triangle mesh representation of the 3D model is regularized in a two-dimensional
parameterization domain, and the regularized 3D model is reversibly embedded into the image.
The process of embedding and extracting confidential information in carrier images is symmetrical,
and the regularization and restoration of 3D models are also symmetrical. Experiments show that
the proposed method increases the reversible embedding capacity, and the triangle mesh can be
conveniently subjected to reversible hiding.

Keywords: reversible data hiding; surface parameterization; regular structure; cnn; 3d model

1. Introduction

In recent years, with the increasing awareness of privacy protection and copyright
among individuals, numerous models for privacy protection and identity confirmation
have emerged in fields such as enterprise [1], healthcare [2,3], and finance [4]. Reversible
data hiding, as a method of protecting digital copyright and privacy, reversibly embeds
secret information into the carrier media without affecting the visual quality and content of
the media.

To perform reversible data hiding, the confidential information to be embedded
typically requires highly regular data, or at least data with a before and after sequence, such
as text, images, sound, and videos. In contrast, three-dimensional geometry data are often
represented as point clouds or triangle meshes. A point cloud is a collection of discrete
vertices, each with its own coordinates and other property information. A triangle mesh is
a collection of triangles, each consisting of the coordinates of three points. A triangle mesh
not only records the three coordinates of each vertex but also the adjacency relationships
between vertices.

Unlike the pixel array in an image, point clouds and triangle meshes are sets of
unordered vertices. The lack of order in these two data structures is reflected in the fact
that the vertices or triangles have no specific order. The vertices in a point cloud can be
arranged in any order, while the triangles in a mesh can be combined in any order. In other
words, the order of each vertex in a point cloud and the order of triangles in a mesh do not
affect the representation of a three-dimensional model. If these non-regular and unordered
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point sets are directly embedded into the carrier, the original confidential information
cannot be correctly retrieved due to the lack of relationship in the data. In order to meet the
accuracy requirements of 3D models, the vertices of 3D models often need to be represented
by multi-digit numbers; meanwhile, the triangle mesh needs to record the connections
between vertices. These limitations mean that if a vertex of the mesh is embedded into a
separate pixel of the corresponding carrier image, the pixel must contain a large amount of
data, and if the vertex data of the mesh are split and distributed at different pixel points for
embedding, it is difficult to recover the hiding information because of the lack of connection
between the vertex set data. If the connection information between the vertices is also
embedded into the carrier image, the problem of recovery can be solved, but the amount
of embedding will increase sharply. If a method is found that can easily embed the vertex
data into the carrier image, while ensuring that there is little difference compared with the
original carrier image, and there is no need to record the connection between the vertices,
this problem can be well solved.

The rapid increase in computing power and the decrease in prices for high-capacity
storage devices have led to increasingly high resolutions of three-dimensional (3D) geom-
etry models in various application scenarios. Consequently, the data size of a single 3D
geometry model is becoming larger and larger. For instance, in a demonstration scene in
Unreal Engine 5, there are 500 high-precision models, each containing 33 million triangles.
Additionally, 3D geometry data typically need to record vertex information and topology
information, which also contributes to the large data size of 3D geometry. As 3D technology
continues to develop, the problem of the large data size in 3D models poses significant
challenges to their storage, transmission, and processing.

To address the reversible embedding problem of 3D geometry data, it is essential to
solve the regularization and high-capacity embedding issues of 3D models. In this paper,
we propose a prediction error embedding method based on convolutional neural networks,
as well as a two-dimensional parameter domain regularization method for 3D models.
The prediction error embedding method based on convolutional neural networks uses a
relatively symmetrical method of embedding and extraction, where the extraction process
is the inverse of the embedding process and uses the same parameters. In order to simplify
the process of 3D model restoration, the two-dimensional parameter domain regularization
method proposed in the article is also a symmetric method, i.e., the restoration of the 3D
model is the inverse process of the 2D transformation of the 3D model. The combined use
of these two methods can effectively solve the aforementioned problems.

The schematic diagram of the entire project is shown in Figure 1. We cut, parameterize,
and regularize the 3D model to obtain the results for embedding. For the carrier image, we
predict it through the proposed convolutional neural network, find points that can embed
information, and finally embed the processed 3D model.

Figure 1. The process of the proposed algorithm.

The main contributions of this research lie in addressing challenges associated with em-
bedding 3D models into 2D images and increasing the embedding capacity. The presented
methods offer innovative insights and avenues for applications in computer graphics and
computer vision.
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2. Previous Works

The primary objective of reversible data hiding is to preserve the confidentiality
of embedded data while maintaining the integrity and reversibility of media data. To
accomplish this, reversible data hiding technology typically employs specialized algorithms
and techniques. The focus of reversible information hiding technology is mainly on the
carrier and confidential information aspects. In this paper, images are used as carriers
to conceal confidential information, with three-dimensional geometric data serving as
the information to be embedded. Firstly, the development process of reversible data
hiding in images, along with significant theories and methods, is discussed. Subsequently,
feasible solutions for the regularization research of three-dimensional geometric data
are introduced.

2.1. Reversible Data Hiding in Images

In the field of reversible data hiding in 2D images, data hiding is mainly divided
into four categories: based on lossless compression, based on numerical transformation,
based on error (difference) expansion, and based on histogram shifting. The method based
on lossless compression obtains space for data embedding by compressing the original
image. For example, Fridrich [5] proposed a lossless compression encryption method
based on bit planes. Then, Fridrich [6] provided two general methodologies for lossless
embedding and offered efficient, simple, and high-capacity methods for three common
image format paradigms. Moreover, Celik [7] presented a new framework for lossless
image authentication that offers computational efficiency, public and private key support,
and improved tamper localization accuracy. However, these methods usually have low
embedding capacity, making it difficult to achieve the hiding of large amounts of data.
Furthermore, the image may experience significant distortion after information embedding.

Numerical transformation methods mainly include techniques such as key-based
encrypted images and LSB (MSB) replacement. Among them, Yi [8] proposed a reversible
data hiding method in encrypted images using adaptive block level prediction error exten-
sion (ABPEE-RDHEI), which encrypts the original image through block arrangement to
maintain the spatial redundancy of data embedding and applies stream ciphers to block
permutation images to further enhance the security levels. Hong [9] proposed a method
to address the issue of reduced accuracy by better measuring the block smoothness and
using side matching schemes to reduce the error rate. Zhang [10] introduced a separable
reversible data hiding scheme for encrypted images; the proposed scheme achieved high
embedding capacity and good visual quality of the recovered image. Then, Zhang [11]
introduced a novel method for reversible data hiding within encrypted images; unlike con-
ventional techniques, this approach involves estimating certain pixels prior to encryption,
allowing additional data to be concealed within the estimation errors. Yin [12] proposed a
high-capacity RDHEI algorithm based on multi-MSB (most significant bit) prediction and
Huffman coding. It adaptively predicts the multi-MSBs of each pixel and marks them in
the original image through Huffman coding. The image is encrypted using a stream cipher
method, and additional data can be embedded in the available space through multiple MSB
replacement. Moreover, Lu [13] introduced a method of hiding messages using two camou-
flaged images. Experimental results demonstrate that the method suggested in this study
maintains high-quality camouflage images while achieving substantial hiding capacity.
Additionally, the quality of the two camouflage images surpasses average standards.

The error (difference) expansion method embeds data by finding errors between
adjacent pixels. Tian [14] first proposed a reversible data hiding method based on differ-
ence expansion, which embeds data by expanding the difference between adjacent pixels.
Compared with traditional lossless compression methods, the embedding capacity is signif-
icantly improved. Li [15] presented an efficient reversible watermarking technique based
on adaptive prediction error expansion and pixel selection. This novel approach integrates
two innovative strategies, adaptive embedding and pixel selection, into the PEE process.
Furthermore, the adaptive PEE technique facilitates the integration of remarkably large pay-
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loads in a single embedding iteration, thus surpassing the capacity limitations of standard
PEE. Thodi [16] introduced a new reversible watermarking algorithm that combines his-
togram shifting and difference expansion techniques, improving the distortion performance
and capacity control. Fallahpour [17] introduced a novel lossless data hiding technique
for digital images using image prediction. The method involves computing prediction
errors and subtly altering them through shifting. With the gradual development of error
expansion technology, various high-performance predictors have been proposed [18–23].
Coltuc [19] focused on enhancing the embedding quality of prediction error expansion
reversible watermarking. Instead of fully embedding the expanded difference into the
current pixel, the difference is divided between the current pixel and its prediction context.
Jafar [21] suggested using multiple predictors to enhance embedding capacity without
additional overhead. The choice of predictor depends on the prediction error polarity from
all predictors. Li [22] combined the pixel value ordering (PVo) prediction strategy with the
prediction error expansion (PEE) technique. It divides the host image into non-overlapping
blocks and predicts the maximum and minimum values within each block based on the
pixel value orders. Hou [24] proposed a reversible data hiding scheme that can embed
messages in color images without modifying their corresponding grayscale versions. In this
algorithm, the unchanged grayscale version is effectively utilized in both the embedding
and extraction processes. The information is embedded into the red and blue channels of
the color image, and the shift in the grayscale version caused by modifying the red and
blue channels is eliminated by adaptively adjusting the green channel, achieving the dual
goals of reversibility and grayscale invariance.

The histogram shifting method is a traditional algorithm that embeds data by moving
the grayscale histogram. The maximum value of pixel modification is 1, and the algorithm
is relatively simple but with low embedding capacity. To solve this problem, Fallahpour [25]
first proposed dividing the image into blocks and applying histogram shifting to embed
secret information separately. This method significantly increases the embedding capacity
compared to other similar algorithms. Ni [26] proposed an algorithm that leverages the
zero or minimum points in the image histogram and makes slight modifications to pixel
grayscale values to embed data. Notably, it can embed more data. Moreover, Tsai [27]
introduced a scheme that employs prediction techniques to explore pixel similarities in
the images and utilizes the residual histogram of predicted errors from the host image for
data hiding. Furthermore, it leverages the overlap between peak and zero pairs to further
enhance the hiding capacity.

2.2. Regularization of Three-Dimensional Geometric Data

Numerous scholars have devised effective techniques to tackle the issue of irregular
formats in three-dimensional geometric data. One such method proposed by Qi [28] is
PointNet, which is specifically designed to handle unordered three-dimensional point
cloud data. This is achieved through utilizing the coordinates of each point in the three-
dimensional space as input parameters for a deep network, which then outputs global
features via a max-pooling layer for model classification and segmentation. PointNet is
capable of transforming point cloud data into an ordered form by treating them as an
unordered set of points and subsequently using a series of transformations and feature
extraction operations to convert them into an ordered form. The PointNet architecture
comprises two main modules: a transformation network and a feature extraction network.
The transformation network facilitates transformations such as rotation and translation on
the input point cloud data, rendering it invariant to these transformations. Meanwhile, the
feature extraction network can learn the local and global features of the point cloud data
and transform them into an ordered form.
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Other researchers have employed a different approach by projecting three-dimensional
models onto a two-dimensional plane in order to obtain regular results. For instance, Su [29]
obtained two-dimensional images of three-dimensional models from multiple perspectives
and fed these images into an MVCNN network to train parameters for model classification.
Similarly, Shi [30] projected three-dimensional models onto the panoramic image of a
cylinder. These two methods obtain two-dimensional images of models from multiple
perspectives, similar to taking photos of 3D models.

Voxel representation is a method of dividing a three-dimensional space into small,
equally sized cubes, each of which contains information about its interior [31–33]. A voxel
is a three-dimensional extension of the two-dimensional pixel concept, and data based on
voxel representation have a regular structure in three-dimensional space, like pixels in two
dimensions. However, the disadvantage of using voxel representation is that it requires
a lot of storage space to store three-dimensional data, which increases the storage and
computation costs. In addition, because the resolution of a voxel representation is fixed, it
may be difficult to deal with three-dimensional data with different scales and shapes.

While point-cloud-based techniques have shown success in certain scenarios, they
inherently lack geometric topology, which is a crucial feature of three-dimensional ge-
ometry. Applications like automatic model generation and model shape retrieval require
accurate topological structure information of three-dimensional models. On the other
hand, multi-view image methods project three-dimensional models into two-dimensional
images, leading to a loss of important geometric and spatial information about the three-
dimensional models. Thus, this method cannot be implemented in fields that demand
high-quality topological structures of three-dimensional models. Voxel representation, on
the other hand, has a limited resolution and consumes a relatively large amount of com-
puting resources. In situations where the network bandwidth is restricted and hardware
storage is limited, this data structure is not conducive to data embedding.

3. Area-Preserving Mapping

Area-preserving mapping is achieved via the discrete optimal transportation theory.
We use area-preserving mapping and a series of transformations to achieve the regulariza-
tion of three-dimensional geometric models. This section introduces the relevant theoretical
foundations and algorithms.

3.1. Discrete Optimal Transportation Problem

Suppose that we have two subsets U, V in Rn that satisfy the following: (1) (U, µ) is
a bounded domain with positive continuous probability measures µ, and µ is required
to have a convex domain Ω as compact support; (2) (V, v) is a discrete point set V =
{y1, · · · , yn} ⊂ Rn with discrete measure v(y) = ∑n

i=1 viδ(y− yi); (3) the total measures of
these two sets are the same.

If a scheme map f : U → V satisfies∫
f−1(yi)

µ(x)dx = v(yi), ∀yi ∈ V, (1)

then f is called a measure-preserving map. Moreover, the total cost of any scheme map f
can be computed by

C( f ) =
∫

U
µ(x)c(x, f (x))dx, (2)

where c(x, y) is the transportation cost function. The discrete OMT problem is to find a
map g with the minimal total cost among all measure-preserving maps.
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3.2. Variational Method of the Discrete OMT

If the cost function is defined as c(x, y) = ‖x− y‖2
2, ∀x, y ∈ Rn, then the discrete OMT

problem can be solved using the following variational method given by Gu et al. [34].
Given a height vector h = (h1, · · · , hn) ∈ Rn, define a convex function as

uh(x) = max{< x, yi > +hi}n
i=1, (3)

where <,> is the dot product of Rn. The projection of the graph of uh(x) induces a power
diagram—a polygonal partition of Ω = ∪n

i=1Wi(h), where each cell Wi(h) is the projection
of a facet of the graph of uh(x) onto Ω. Meanwhile, the gradient map of the function uh on
each cell Wi(h) satisfies

∇uh(x) = yi(∀x ∈Wi(h)). (4)

Theorem 1. Suppose that y1, · · · , yk ∈ Rn are distinct; there exists a height vector (h1, · · · , hn),
so that uh(x) satisfies

∫
Wi(h)

µ(x)dx = vi. Furthermore, h is the maximal point of the convex
energy function

E(h) =
∫

Ω
uh(x)µ(x)dx−

n

∑
i=1

vihi, (5)

and ∇uh is the OMT map with cost function c(x, y) = ‖x− y‖2
2.

From the above theorem, the discrete OMT problem is transformed to define the
maximal point of the volume energy E(h). Moreover, because E is convex, the maximum
can be computed by Newton’s method efficiently.

The gradient of E(h) is formulated as the following:

∇E(h) = (
∫

W1(h)
µ(x)dx− v1, · · · ,

∫
Wn(h)

µ(x)dx− vn). (6)

Moreover, the Hessian of E(h) is given by H(h) = (hij(h)),

hij(h) =
∂2E(h)
∂hi∂hj

=


−|ẽij|/|eij|, i 6= j, Wi ∩Wj ∩Ω 6= ∅
∑k 6=i hik, i = j
0, otherwise

(7)

where eij is the length of the power Delaunay triangulation edge and ẽij is the length of the
power diagram edge.

3.3. Algorithm for Semi-Continuous Area-Preserving Mapping

Suppose that the surface (S, g) is represented by a discrete triangular mesh M, and there
exists a conformal mapping ϕ from (S, g) to planar domain (D, λ); the conformal factor λ
determines the measure by the formula µ = e2λ. The discrete measure σ is defined as follows:

σk :=
1
3 ∑

ij
area([vi, vj, vk]), (8)

where the summation means to count all the triangles surrounding vk.
For the conformal mapping ϕ, we use the normalized Ricci flow algorithm, which

preserves the total area of S [35]. Newton’s method is used to compute the area-preserving
mapping φ : (D, µ) → (D, σ) using the formula of Hessian matrix H(h). The complete
area-preserving mapping is constructed using the composition map ϕ ◦ φ : M→ D. The
whole computational algorithm is described in Algorithm 1.
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Algorithm 1 Area-Preserving Mapping

Require: Mesh M, threshold δ.
Ensure: Semi-continuous area-preserving mapping f : M→ D.

1: Scale M so that the total area equals π.
2: Calculate a conformal mapping ϕ : M→ D based on the Ricci flow method.
3: Initialize height vector h = (0, 0 · · · , 0) and set target measure on D using Equation (8).
4: Compute the power Voronoi diagram D(h). The area of each cell is denoted as wi(h) =

Area(Wi(h)).
5: Compute the dual power Delaunay triangulation T(h).
6: Create Hessian matrix H(h) using Equation (7).
7: Update the height vector h← h + H−1(w̄−w) with the constraint ∑i hiw̄i.
8: Repeat steps 4 through 7, until maxi |w̄i − wi(h)| < δ.
9: Compute the centroid of cell Wi(h) as ci, map each vertex vi to ci.

4. Regular Mesh

In the previous step, the triangular mesh of the 3D model was mapped to a two-
dimensional parameterization. The mesh in the two-dimensional parameterization domain
still appears to be unordered and irregular. We need to rearrange the mesh in the domain
so that its mesh connectivity resembles the structure of an image. Thus, we utilize har-
monic mapping [36] to map the two-dimensional parameterization to a square domain, as
demonstrated in Figure 2c. The next step involves employing interpolation techniques to
calculate the values of integer points on the square domain, and the details of this process
are described in Algorithm 2.

(a) (b) (c) (d)

Figure 2. Regularization of triangular mesh. (a) shows the Alex model, (b) displays the area-
preserving mapping result of the Alex model, (c) exhibits the square boundary parameterization, and
(d) demonstrates the regularized result.

Algorithm 2 Regular Mesh

Require: Mesh M with square parameterization D, resolution ratio n× n.
Ensure: Regular mesh r: f : M→ R.

1: Scale the parameterization values of points on D to the range of 0–1.
2: Adjust the square parameterization D to match the resolution by multiplying the

parameterization values of vertices on D by n.
3: Identify all integer points’ positions on the parameterization D. These criss-cross

integer positions form a grid G(u, v).
4: Determine the triangle in which each integer position point is located and calculate the

value at the integer position point by interpolating the three vertices of the correspond-
ing triangle in three-dimensional space.

5: Return the grid G(u, v) and its values. R← G.

To demonstrate the regularization process of triangular mesh data clearly, we have
selected a three-dimensional model with a low resolution. Figure 2 illustrates the process of
regularization of a triangular mesh. The original model is denoted as Alex (a), and the area-
preserving mapping obtained by the Alex model using Algorithm 1 is denoted as (b). It can
be observed that after the area-preserving mapping, the vertices in the three-dimensional
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space are mapped to the two-dimensional parameterization to obtain the parameterized
result of (a), and the surface area remains unchanged during the mapping process. The
result after mapping the boundary of the parameterized result (b) to the boundary of the
square is represented as (c), and the regularization result calculated by Algorithm 2 is
represented as (d). After a series of mappings, we can fix the disordered triangular mesh
data into a regular mesh of the two-dimensional parameter domain, which is similar to the
data structure of a two-dimensional image. This data structure will be embedded in the
two-dimensional carrier image as secret information in the following calculations.

5. Error Prediction Network and 3D Geometric Data Embedding

In this section, we explore a symmetric method of embedding 3D models into 2D
images to ensure reversible information extraction. The primary approach involves using a
convolutional neural network to predict the carrier image. Then, the difference between
the original carrier image and the predicted one is used to dynamically select pixels for
reversible information embedding. As 3D models represented by triangular meshes lack a
sequential or regular structure, they need to be regularized. This regularization is accom-
plished through 2D parameterization. In the regularization process, the three-dimensional
geometric model is mapped to the two-dimensional parameterization domain by area-
preserving mapping; then, a square boundary and resampling of the two-dimensional
parameter domain are performed, and finally the regular structure can be represented by a
matrix. Detailed descriptions are given in 3 and 4.

After the 3D geometric model is processed, a regular structure similar to the image is
obtained, which has the premise of embedding it into the carrier. Then, we can embed the
regularized 3D data into the carrier image like the classic data hiding method. Next, we
discuss how to improve the capacity of the carrier.

5.1. Image Pre-Processing

In order to use the proposed convolutional neural network prediction model described
in the following text, we partitioned the original carrier image into two subsets of images.
To achieve this, we traversed the carrier image I and set the pixels whose coordinates
satisfied Equation (9) to zero, resulting in the subset image IA. Here, i and j denote the
horizontal and vertical coordinates of the pixel, respectively. We then traversed the image I
again and set the pixels that did not satisfy Equation (9) to zero, resulting in the subset image
IB. To illustrate this process, we selected the top-left 100 pixels of Lena for subdivision,
as shown in Figure 3. After subdivision, we obtained two disjoint but highly correlated
images. These two subset images are used for convolutional neural network prediction in
the following.

(i + j)%2 = 0 (9)

(a) (b) (c)

Figure 3. Original image and two subset images. (a) is the carrier image I, (b) is the subset image IA,
and (c) is the subset image IB.

5.2. Predictive Convolutional Neural Network

The input of the predictive neural network is an image with a resolution of 512 × 512,
with 3 channels, and each channel has a bit depth of 8. The use of 3 channels means that the
neural network is processing an RGB image. The purpose of the predictive neural network
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is to predict two subsets of the same image from each other: IB through IA and IA through
IB. The goal of the network is to train the convolution kernel parameters to minimize the
loss of mutual prediction.

Assuming that subset IA is used to predict subset IB, the predictive neural network
first needs to extract four dimensions of features from IA. These four dimensions of features
correspond to four convolution results, obtained by convolving with 3 × 3, 5 × 5, 7 × 7,
and 9 × 9 size convolution kernels, respectively. The features are then fused to predict the
pixel values of IB. While larger convolution kernels can be used to increase the receptive
field, they require larger padding values to maintain the same resolution of the predicted
output image as the input image. This larger padding value can increase the boundary
prediction error, so only the four sizes of convolution kernels mentioned are used for
training and prediction.

The prediction process is the same for each dimension, and, in this section, we describe
the prediction process for the 3 × 3 convolution kernel dimension, as shown in Figure 4.
The input is a 512 × 512 resolution, 3-channel RGB image. Sixteen 3 × 3 × 3 filters are used
to convolve the input image, resulting in a feature map with a depth of 8. Appropriate
padding is selected during convolution to maintain the resolution of the feature map as the
input image. Then, the feature map is passed through a LeakyReLU activation function
and finally through a 3 × 3 × 3 size and padding 1 convolution kernel, yielding the feature
extraction result.

Figure 4. The 3 × 3 dimension feature extraction process.

The process of feature extraction for dimensions other than 3 × 3 is similar, but the
kernel size needs to be adjusted accordingly. For instance, the feature extraction process
for the 5 × 5 convolutional dimension requires sixteen 5 × 5 × 3 filters to convolve the
input image. The feature extraction process for other dimensions involves capturing the
relationship between the predicted pixel value and the surrounding pixel values within
different ranges.

5.3. Optimizing Parameters of Predictive Convolutional Neural Networks

The original carrier images are processed through a predictive neural network to
obtain predictions in four dimensions. These predictions are then superimposed to obtain
the final prediction value, as shown in Figure 5. The purpose of this process is to merge the
feature maps obtained from the four dimensions. To achieve this, the feature maps from
each dimension are first added together, and the resulting sum undergoes a convolution
operation similar to the feature extraction process in each dimension. The output of this
operation is then added to the feature maps of the four dimensions and convolved to obtain
an output image consistent with the original image resolution. This output image is the
predicted image ĨB.
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Figure 5. Image prediction process. III represents the prediction feature map obtained from a 3 × 3
dimension, V represents the prediction feature map obtained from a 5 × 5 dimension, VII represents
the prediction feature map obtained from a 7 × 7 dimension, and IX represents the prediction feature
map obtained from a 9 × 9 dimension. These feature maps are added together and then undergo a
series of convolutional operations to generate the final prediction.

The difference between the predicted image ĨB and the real image IB is referred to
as the loss value. To train the prediction network and minimize the prediction error,
backpropagation [37] and the Adam optimizer [38] are utilized to minimize the following
loss function:

loss =
1
N

N

∑
i=1

( ĨB − IB)
2
+

λ

2 ∑
ω

ω2, (10)

Here, N represents the number of training data, λ is the weight decay, and ω represents
the weights of the convolutional neural network. To prevent overfitting, a regularization
term λ

2 ∑ω ω2 is added.
During the parameter training process, 2000 color images with a size of 512 × 512 pixels

were selected to train the model. The subset image IA was then input into the trained network
to extract features and predict the final image ĨB. In order to achieve reversible information
extraction, we utilized the subset image IBH embedded with information to generate the
predicted image ĨA.

5.4. Error-Adaptive Embedding

Assuming that the confidential information is embedded in the subset image IB, the
error value sequence Li obtained by subtracting the generated subset prediction image
ĨB from the original subset image IB is used for the subsequent selection of embedding
coordinates and channels.

Each vertex of the original 3D model data is represented by floating point numbers. In
order to improve the accuracy of the model and match the pixel values of the carrier image,
the vertex coordinates of the 3D model are normalized to be between 0 and 65,535.

Due to the large normalized values of the 3D model, in order to ensure that the pixel
values of the carrier image do not overflow after embedding the 3D model into the carrier
image, and to ensure that the embedded model can still obtain acceptable visual quality,
we treat the coordinate information of the 3D model as a five-digit number and divide it
into five single digits. For example, if the coordinate information of a certain point is 5963,
the resulting numbers after segmentation are 0, 5, 9, 6, and 3. We concatenate all segmented
single digits to obtain the secret information sequence Q.

The threshold K is dynamically selected based on the number of model vertices to be
embedded. Firstly, set K = 0, and then iterate through the sequence Li to count the number
of absolute values that are less than or equal to K. If it satisfies Formula (11), increment the
value of K by 1. Otherwise, the current threshold K is recorded.

len(|Li| ≤ K) <
1
2

len(Q) (11)

Then, use Formula (12) to embed Qi into the carrier image, where Bi represents the
pixel values of the original subset image IB, resulting in the embedded image IBH . Next,
use the image IBH to predict and generate image ĨA, and repeat the above embedding
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process to obtain image IAH . Finally, concatenate images IAH and IBH to obtain image IH ,
which contains the secret information.{

Bi = Bi + Qi , i f |Li| ≤ K
Bi = Bi , i f |Li| > K

(12)

5.5. Extraction of Information and Reconstruction of 3D Models

Due to the symmetry of the algorithm proposed earlier, the extraction of information
and reconstruction of 3D models can be considered the inverse process of the algorithm
described above. The process of extracting information is shown in Figure 6. Firstly, the
subset image IBH containing secret information is subjected to the aforementioned neural
network prediction to obtain the predicted subset image ĨA. Decrypting the compared
images IBH and ĨA can reveal some of the secret information and subset image IA. Applying
the same process to image IA can reveal the hidden secret information in image IAH . A
complete set can be obtained by combining IA and IB. This set consists of data with the
same resolution as the original 3D model, but in a two-dimensional parameterization.
It comprises three channels, each representing one of the three vertex coordinates of
the 3D model in space. Since the regularization process of the three-dimensional model
is reversible, the three-dimensional point coordinates can be recovered from the two-
dimensional parameter field values. Then, by parameterizing and inversely processing, the
original 3D model can be obtained.

Figure 6. The process of extracting information.

6. Experimental Results

In this section, we discuss the performance of the proposed method in terms of the
embedded capacity and visual quality compared to other methods. The experiment was
conducted using PyCharm 2022 and MATLAB R2021b on a Windows 10 laptop with an
Intel Core i7-10750H CPU and NVIDIA RTX 2060 GPU.

We embedded three-dimensional models of Luke, Sophia, and Bunny into 8-bit depth
color images of Lena, Baboon, and Peppers, respectively, all of which were of size 512× 512.
Since our proposed method maps three-dimensional models of varying resolutions to a
two-dimensional parameterization and then regularizes them, we used the regularized data
for our experiment. After regularization, the three-dimensional model possesses identical
dimensions and resolution. The two-dimensional images and three-dimensional models
used in the experiment are displayed in Figures 7 and 8, respectively. Table 1 shows the
vertex, triangle numbers, and regularized uniform sizes of the three-dimensional models.

When embedding data, the three-dimensional model is transformed into a regularized
ordered array, forming a row and column structure similar to that of an image. The
values are then embedded successively into the two-dimensional image according to the
row and column sequence. Figure 2 displays both the three-dimensional model and its
corresponding regularization results.



Symmetry 2023, 15, 1782 12 of 18

(a) (b) (c)

Figure 7. Images used in the experiment. (a) is Lena, (b) is Baboon, and (c) is Peppers.

(a) (b) (c)

(d) (e) (f)

Figure 8. The experiment utilized three-dimensional models, namely the Bunny model (a), Luke
model (b), and Sophia model (c). Their respective regularization results are labeled as (d) for the
Bunny model, (e) for the Luke model, and (f) for the Sophia model.

Table 1. The number of vertices and triangles of the experimental models.

Model Number of Vertices Number of Faces Unified Vertices Unified Triangles

Bunny 35,947 69,451

Luke 21,371 42,281

Sophia 21,043 41,587

65,536 129,540

6.1. Performance

The calculation formula for PSNR is shown in Formula (13), where N represents the
depth of the image, MSE is the mean square error between the original image and the
processed image, and the formula is Formula (14), where m and n represent the width and
height of the image, and I(i, j) and K(i, j) represent the pixel points of the image i row and
j column before and after embedding information.

PSNR = 10× log10(
(2N − 1)2

MSE
) (13)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

||I(i, j)− K(i, j)||2 (14)
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The proposed algorithm was then used to embed the model into the image in a
reversible manner. Due to the large amount of information in the 3D model, it is not
possible to fully embed it through a two-dimensional image. Therefore, we divided the
information that needed to be embedded into two equal lengths and used two identical
images to embed the 3D model. The threshold and average PSNR of these two images are
shown in Table 2 (8-bit color image as carrier).

Table 2. Performance of the proposed model (8-bit color image as carrier).

Carrier

Hidden Model

Luke Sophia Bunny

Threshold PSNR Threshold PSNR Threshold PSNR

Lena 5 36.19 5 36.4 5 36.27
Baboon 17 36.34 17 36.39 17 36.36
Peppers 8 36.19 8 36.37 8 36.28

To further illustrate the performance of the proposed algorithm, we compared it with
the algorithms proposed by Fallahpour [25], Li [15], Yin [12], and Hou [24]. Since these
algorithms embed random bit sequences, we also converted the three-dimensional model
into a bit sequence, the length of which is shown in Table 3.

Table 3. Lengths of different model bit sequences.

Embedded Model Bit Sequence Length

Luke 3,012,351
Sophia 3,015,333
Bunny 2,927,157

It should be noted that Fallahpour, Li, and Yin’s algorithms are designed for informa-
tion hiding in grayscale images. Therefore, to achieve a fair comparison, all the color images
that they used in their experiments were converted to grayscale. This can be done in various
ways [39–41], and we selected Formula (15), which takes into account the sensitivity of the
human eye to different colors, and then the results were calculated by relevant methods for
comparison.

gray = b0.299r + 0.587g + 0.114be (15)

where gray is the converted grayscale pixel value, and bxe denotes the nearest integer to x.
The proposed method uses 8-bit grayscale images as carriers to embed the model,

requiring six identical images. The threshold and PSNR for the use of 8-bit grayscale images
are shown in Table 4.

Table 4. Performance of the proposed model (8-bit grayscale image as carrier).

Carrier

Hidden Model

Luke Sophia Bunny

Threshold PSNR Threshold PSNR Threshold PSNR

Lena 6 36.06 6 36.52 6 36.16
Baboon 17 36.04 17 36.53 17 36.19
Peppers 7 36.06 7 36.54 7 36.12

6.2. Embedded Capacity

In this section, we discuss the embedding capacities of different algorithms. Existing
algorithms are unable to embed a large amount of data in a single image. Therefore, we
analyze how many images are required to embed the bit sequence, the amount of data that
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can be embedded in each image, and the total number of images required to embed, as
shown in Table 5. According to the data presented in the table, our method requires six
grayscale images as carriers for the embedding of Luke, Sophia, or Bunny. Among the
several methods compared, our method and Yin’s method have the highest embedding
capacity. Yin requires five or six Lena and Peppers images to embed the model, while
using Baboon as the carrier requires 11 images. Compared to our algorithm, no matter
which image is chosen as the carrier, six images are required. The two methods have
similar embedding capacity, and, in some examples, our method outperforms Yin’s method
in terms of embedding capacity. Fallahpour’s method has a low embedding volume,
requiring 596 Lena images to embed one Bunny model. Li’s method and Hou’s method fall
somewhere in between the three mentioned earlier: 10 and 39 Lena images are required,
respectively, to embed one Bunny model.

Table 5. Fallahpour, Li, Yin and Hou’s methods in terms of embedded capacity.

Method Carrier
Embedable Amount

per Image
Number of Images

Luke Sophia Bunny

Fallahpour
Lena 4912 614 614 596

Baboon 8662 348 349 338
Peppers 24,301 124 125 121

Li
Lena 300,000 11 11 10

Baboon 130,000 24 24 23
Peppers 200,000 16 16 15

Yin
Lena 677,212 5 5 5

Baboon 279,391 11 11 11
Peppers 602,714 5 6 5

Hou
Lena 101,920 30 30 39

Baboon 182,000 17 17 17
Peppers 211,120 15 15 14

Fallahpour’s algorithm uses histogram shifting to embed information only at peak
points. However, due to the limitation of the number of peak points, even if the image is
divided into four parts, each part having a peak point for data embedding, the effect is
still far from satisfactory. Li used adaptive prediction error expansion and pixel selection
algorithms. At high embedding rates, the visual quality is poor (PSNR < 30). Therefore, we
only compare the embedding capacity when the PSNR is greater than 30. Yin used multi-
MSB prediction and Huffman coding algorithms to achieve high embedding performance
by embedding multiple bits of information in a pixel. Hou embedded secret information
into triplets, effectively increasing the amount of information embedded.

Compared with the algorithms proposed by Fallahpour, Li, Yin, and Hou, our pro-
posed algorithm is one of the best in terms of embedded capacity.

6.3. Time Complexity

To further explain the embedding performance of the algorithm proposed in the article,
we use time complexity to measure the embedding efficiency of the program.

The algorithm proposed in the article uses the traversal of the image to find points that
meet the threshold for embedding information during the embedding process, resulting in
a time complexity of O(N2). The algorithm proposed by Fallahpour is relatively simple,
embedding images in peak points through traversal, with a time complexity of 2O(N2).
Li’s method traverses the image twice, searching for error points that can be embedded and
embedding them separately, resulting in a time complexity of 2O(N2). Hou embedding
requires the modification of the selected pixels and adjustment of the g-channel based on
the embedded message. This step involves traversing and calculating pixels, with a time
complexity of O(N2). Yin’s method needs to traverse the image during embedding and
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hide information based on Huffman encoding and auxiliary information. Due to the time
complexity of the Huffman encoding used being O(N2), the embedding time complexity
is O(N4).

The algorithm proposed in the article has the same time complexity as most informa-
tion embedding algorithms.

6.4. Visual Quality

In this section, we utilize the PSNR value and differential image to represent the
image’s visual quality after data embedding.

6.4.1. PSNR Value

Table 6 presents a comparison of the four previously mentioned algorithms with the
algorithm proposed in this paper. Fallahpour’s method has a high PSNR value because
of its low embedding capacity. Li’s approach needs to balance the embedding capacity
and visual quality, and it cannot maintain a high PSNR at high embedding rates. Yin
used traditional cryptographic methods to rearrange the pixels of the image, resulting
in significant differences between the images before and after embedding, resulting in a
lower PSNR value. Hou’s method indirectly improves the PSNR value of the image by
introducing triplets and adjusting the corresponding RGB values to ensure the invariance
of the image’s grayscale. While the embedding capacity of our method is much higher
than that of Fallahpour, Li, and Hou’s methods, the PSNR performance calculated by our
method is better than that of Li’s method, and the effect is similar to that of Hou’s method.
Our method exhibits a higher PSNR value when the embedding amount is similar to that
in Yin’s method.

Table 6. Proposed, Fallahpour, Li, Yin and Hou’s methods in terms of visual quality.

Average PSNR (dB)

Proposed Method Fallahpour Li Yin Hou

Lena 36.24 50.9 32.54 7.79 40.21
Baboon 36.25 52.05 33.38 7.63 37.45
Peppers 36.24 60.23 32.75 7.56 36.99

Figure 9 displays a comparison of the original images and carried images that embed
the Bunny model using the algorithm presented in this paper. Upon observing the original
image and the encrypted image, it is found that there is no significant difference between
the two, and their visual effects are very similar. Therefore, the algorithm proposed in this
article can maintain acceptable image quality.

(a1) (b1) (c1)

Figure 9. Cont.
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(a2) (b2) (c2)

Figure 9. Comparison of original image and carried image. (a1,b1,c1) are the original images.
(a2,b2,c2) are the carried images after embedding the Bunny model into the original images.

6.4.2. Differential Image

The differential image obtained by subtracting the carrier images before and after
embedding the information is shown in Figure 10. Figure 10(a1), Figure 10(b1), and
Figure 10(c1), represent embedding Luke, Sophia, and Bunny models into Lena images,
respectively. Due to the maximum change in the pixel points of the algorithm proposed
in the article being 9, when viewed from the perspective of the differential images, there
will be no significant visual differences between the images before and after embedding
information. Therefore, we multiply each pixel in the differential image by 10 to visually
observe the embedding of information. Figure 10(a2), Figure 10(b2), and Figure 10(c2),
respectively, show the results of multiplying the pixel points in Figure 10(a1), Figure 10(b1),
and Figure 10(c1) by 10.

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 10. Differential images of embedding Luke, Sophia, and Bunny models into Lena images.
(a1) represents the differential image of the difference before and after embedding Luke model into
Lena image, (b1) represents the differential image of the difference before and after embedding
Sophia model into Lena image, (c1) represents the differential image of the difference before and after
embedding Bunny model into Lena image. (a2,b2,c2) represent the images obtained by multiplying
the pixel values of (a1,b1,c1) by 10, respectively.

6.4.3. Discussion

The experimental results indicate that the algorithm proposed in this paper signif-
icantly enhances the data embedding capacity of the carrier image while maintaining
acceptable visual quality even at high embedding capacities.
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7. Conclusions

This paper presents a technique for the embedding of 3D models into 2D images in
a reversible manner. An adaptive convolutional neural network is utilized to process the
carrier image, enabling the prediction of errors and identification of suitable points for
the embedding of information. The 3D model is represented by a triangle mesh, which is
parametrized and regularized for reversible embedding in the image.

The main contribution of this paper is to embed the disordered triangular mesh data
after regularization into the image with the prediction error obtained by a convolutional
neural network. The error can be adapted during the embedding process, and the obtained
reversible 3D data hiding method has high embedding capacity. Compared to other
methods, the proposed approach enhances the embedding capacity with acceptable visual
quality. The proposed method can be widely used in fields such as digital medicine, virtual
reality, computer-aided design, and so on. It can protect data privacy and verify the rights
of 3D digital products. However, there are certain limitations to this method. Handling
models with a genus greater than 1 requires additional processing of the 3D model, which
will be the focus of future research.
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