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Abstract: We use the Clayton and Frank copulas and the exponentiated odd log-logistic family
to define a new flexible bivariate model to fit bimodal and asymmetry data. The copulas allow
different distributions for the response variable, thus making analysis more suitable. We present
some structural properties of the new model and describe a simulation study to show the consistency
of the estimators. We construct a bivariate regression model based on the new family to fit oak
lettuce plant data for different concentrations of silicon dioxide and organosilicon compounds. We
check the response variables fresh weight and plant height together in order to verify the existing
correlation between them. These variables exhibit a bimodal form, and the family used is able to
model this behavior. Different marginal distributions are selected, which is an interesting point of the
copula methodology. The variables have strong positive dependence, and the experiment is carried
out comparing the control treatment with others leading to the following results: (i) the treatment
1-ethoxysilatrane (with concentrations 5 × 10−4 mL·L−1 and 10−3 mL·L−1) is not significant for the
response variables; (ii) the treatment amorphous silicon dioxide (with concentrations 50 mg·L−1 and
100 mg·L−1) and the same treatment (with concentrations 5 × 10−3 mL·L−1 and 10−2 mL·L−1) are
significant and have positive effects on both responses; (iii) the treatment amorphous silicon dioxide
(with concentrations 200 mg·L−1 and 300 mg·L−1) are significant and have negative effects on the
response variables. Overall, the proposed bivariate model is suitable for the current data and can be
useful in other applications.

Keywords: bivariate model; copula function; maximum likelihood estimation; regression model;
simulation study

1. Introduction

Various areas of knowledge can use modeling involving one or more response vari-
ables of interest, i.e., two or more attributes to be modeled. If these attributes are not
independent and a practical explanation exists for this situation, multivariate statistical
models should be used with the objective of explaining and capturing the correlation of
these variables.

For this purpose, joint continuous distributions are commonly used. The bivariate
normal and t-Student distributions are most often used, although they can be highly
restrictive. Besides this, employing them implies a linear relationship and elliptical structure
of the variables. These premises do not always hold.

The modeling of multivariate data based on copula functions is an interesting alter-
native to overcome these drawbacks. According to Nelsen (1986) [1], copulas provide a
way to relate functions of multivariate distributions based on their marginal distribution
functions. The main advantages from a statistical standpoint using this method are:
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• For constructing joint distributions, copulas allow each of them to be modeled indi-
vidually by a different marginal distribution, thus enabling more flexible associations
by fitting different marginal distributions;

• Employment of copulas is a useful approach to model and understand the phe-
nomenon of dependence, i.e., the dependence between these variables can assume
diverse structures, including nonlinear ones, according to the type of copula utilized;

• The marginal distributions should not depend on the association of the variables
under analysis; and

• A copula is invariant from continuous transformations of the marginals.

Various bivariate distributions have been proposed based on copula functions such
as the Weibull bivariate derived from the Farlie–Gumbel–Morgenstern (FGM) copula
functions, Ali–Mikhail–Haq (AMH), Gumbel–Hougaard, Gumbel–Barnett [2], generalized
bivariate Rayleigh using the Clayton copula (El-Sherpieny and Almetwally [3]), bivariate
Fréchet based on the FGM or AMH copulas [4], and generalized inverted Kumaraswamy
using the Marshal–Olkin method [5]. Samanthi and Sepanski [6] defined families from four
bivariate copulas using the Kumaraswamy distribution, the bivariate exponentiated half
logistic based on the Marshall–Olkin class [7], and the bivariate Lindley distribution via
the FGM copula [8]. Here, we focus on Archimedean copulas, which have closed-form
expressions as an important characteristic, since they can be easily constructed starting
from specific generator functions. Further, they are highly flexible, permitting the modeling
of various forms of dependence, including asymmetry and extreme dependence. Due
to the ease of their construction, these copulas have a large number of applications in
various areas of knowledge, such as finance ([3,9,10]), health ([11,12]), hydrology ([13–15]),
and survival analysis ([16–18]). Detailed studies of these families and their applications
can be found in Nelsen (2007).

In many practical situations, the response variable presents an asymmetric and/or
bimodal behavior. The motivation for this work comes from an experiment carried out at
the Plekhanov Russian University of Economics that evaluated the growth of oak leaf lettuce
(Lactuca sativa var. crispa). The histograms of the response variables fresh weight (grams)
(y1) and plant height (cm) (y2) measured in the experiment are reported in Figure 1a,b. It is
noted that they present bimodal behavior and positive asymmetries. In addition, the scatter
plot between them (Figure 1c) indicates that they present a strong and positive correlation.
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Figure 1. (a) Histogram of fresh weight, (b) Histogram of plant height, and (c) Scatter plot between
fresh weight and plant height.

Although a wide range of flexible bivariate distributions can be found in the literature,
we note a scarcity of bimodal bivariate distributions. For this purpose, we use the expo-
nentiated odd log-logistic-G (EOLL-G) family (Alizadeh et al., 2020) [19]), whose densities
have great flexibility in modeling data, such as bimodality and/or positive or negative
asymmetry. The Clayton and Frank copulas are adopted, so the new models are called
the BCEOLL-G and BFEOLL-G families, respectively. We consider these copulas because
they are suitable to model data with positive correlation (Naifar, 2011) [9] according to the
dataset in Figure 1c.
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This paper is structured as follows: Section 2 provides a summary of copula functions.
Section 3 proposes the bivariate Clayton and Frank copulas generated from the EOLL-G
family. Section 4 introduces the Frank and Clayton copulas generated from the EOLL
Normal distribution. Section 5 formulates the bivariate bimodal regression with copulas
and presents inferential issues. Section 6 performs some simulations for different scenarios.
Section 7 illustrates the new methodology for lettuce plants from an experimental trial.
Section 8 concludes the article.

2. Archimedean Copulas

According to [20], copulas can be described as functions that link univariate marginal
distributions, or alternatively, functions with a multivariate distribution whose marginals
are uniform in the interval [0, 1]. The name and theory of copulas are based on the theorem
of Sklar [21]. This important theorem pertaining to the copula method, which guarantees
the mentioned relations, is described below. The proof can be found in [22].

Sklar’s Theorem: Let Y = (Y1, . . . , Yd) be a random vector with marginal cumula-
tive distribution functions (cdfs) F1(y1), . . . , Fd(yd), and let F(y1 . . . , yd) be their joint cdfs.
Define ui = Fi(yi) = P(Yi ≤ yi), i = 1, . . . , d. Then, there is a copula function C(·) such that

C(u1, . . . , ud) = P(Y1 ≤ y1, . . . , Yd ≤ yd) = F(y1, . . . , yd). (1)

By differentiating (1), the joint probability density function (pdf) follows as

f (y1, . . . , yd) = c(F1(y1), . . . , Fd(yd))
d

∏
i=1

fi(yi), (2)

where fi(yi) is the marginal pdf of Yi and c(F1(y1), . . . , Fd(yd)) is the copula density by
taking the derivative of the copula function. For independent marginals, C(u1, . . . , ud) =

∏d
i=1 ui and c(F1(y1), . . . , Fd(yd)) = 1, and then f (y1, . . . , yd) = ∏d

i=1 fi(yi), which means
the independence of the random variables.

Henceforth, we consider the bivariate case for the data introduced in Section 1.
Archimedean copulas are constructed by a strictly decreasing continuous generating

function ϕ : [0, 1]→ [0, ∞], where ϕ(0) = ∞ and ϕ(1) = 0. Thus, the distribution function
of a two-dimensional Archimedean copula can be expressed as

C(u, λ) = ϕ−1(ϕ(u1) + ϕ(u2); λ), u = (u1, u2)
>,

where λ is the control parameter of the degree of dependency. The lower and upper tail
dependence measures for a bivariate copula C are defined in Joe (1993) [23] (if the limits
exist) as

λL = lim
u→0

C(u, u)
u

, λU = lim
u→1

1− 2u + C(u, u)
1− u

.

For the Archimedean copula, these limits hold

λL =

limu→∞
ϕ−1(2u)
ϕ−1(u)

, if ϕ(0) = ∞,

0, otherwise,
λU = 2− lim

u→0

1− ϕ−1(2u)
1− ϕ−1(u)

. (3)

Here, we employ the most cited bivariate Archimedean copulas (Clayton, 1978 [24];
Frank, 1979 [25]) for constructing new bivariate response regression models.
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2.1. Clayton Copula

The Clayton copula [24] has generating function ϕ(t) = (t−λ − 1)/λ and distribution
and density functions given by

C(u1, u2) = (u−λ
1 + u−λ

2 − 1)−
1
λ , (4)

and
c(u1, u2) = (λ + 1)(u−λ

1 + u−λ
2 − 1)

−(2λ+1)
λ (u1u2)

−(λ+1), (5)

respectively, where λ > 0. In this case, there is independence between the two vari-
ables when λ tends to zero. As ϕ(0) = ∞ and ϕ−1(t) = (1 + λt)−1/λ, it follows from
Equation (3)

λL = lim
u→∞

(
1 +

λu
1 + λu

)−1/λ

= 2−1/λ

and

λU = 2− lim
u→0

1− (1 + 2λu)−1/λ

1− (1 + λu)−1/λ
= 0.

2.2. Frank Copula

The Frank copula [25] has generating function ϕ(t) = − log[(e−λt − 1)/(e−λ − 1)]
and distribution and density functions given by

C(u1, u2) = −
1
λ

log
{

1 +
(e−λu1 − 1)(e−λu2 − 1)

e−λ − 1

}
(6)

and

c(u1, u2) =
λ e−λu1−λu2(1− e−λ)

(e−λ − e−λu1 − e−λu2 + e−λu1−λu2)2 , (7)

respectively, where λ ∈ R \ {0}. If λ tends to zero, the two variables can be independent,
and if λ tends to infinity the two variables are correlated. As ϕ(0) = −∞ and ϕ−1(t) =
− log{1 + exp(−t)[exp(−λ) − 1]}/λ, it follows from Equation (3) using L’Hôpital rule
λL = 0 and

λU = 2− lim
u→0

λ + log{1 + e−2u [e−λ − 1]}
λ + log{1 + e−u [e−λ − 1]}

= 0.

3. A Bivariate EOLL-G Family Based on Clayton and Frank Copulas

For any baseline cdf G(y) = G(y; η) depending on a parameter vector η, Alizadeh et al.
(2020) [19] defined the cdf of the exponentiated odd log-logistic (“EOLL-G”) family (for
y ∈ R) by

F(y) = F(y; ν, τ, η) =
Gντ(y){

Gν(y) + [Ḡ(y)]ν
}τ , (8)

where Ḡ(y) = 1− G(y), ν > 0 and τ > 0 are two extra shape parameters.
The pdf associated to Equation (8) becomes

f (y) = f (y; ν, τ, η) =
ν τ Gντ−1(y)[Ḡ(y)]ν−1 g(y){

Gν(y) + [Ḡ(y)]ν
}τ+1 , (9)

where g(y) = dG(y)/dy.
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From now on, let Y ∼ EOLL-G(ν, τ, η) be a random variable with pdf (9). Let X have
cdf G(·; η) such that E(Xp) =

∫
xp g(x)dx (for p > 0) are finite. Some properties of Y are

reported below:

(a) The positive moments of Y, i.e., E(Yp) =
∫

yp f (y)dy, p > 0, are finite when ν > 1
(see Appendix A.1).

(b) The variable Y admits the stochastic representation: Y = G−1(S/(S + 1)), where S
has the Dagum distribution with shape parameters ν and τ, and unit scale, and G−1(·)
denotes the inverse function of G(·) (see Appendix A.2).

(c) The positive moments of the standardization version of Y, say [Y−E(Y)]/
√

Var(Y),
are finite if ν > 1 (see Appendix A.3).

Definition 1. Let Y′1, . . . , Y′d be an independent copy of Y1, . . . , Yd, i.e., Y ′ = (Y′1, . . . , Y′d) is
independent of Y = (Y1, . . . , Yd) and both have the same joint cdf F = FY . Following Koshevoy
(1997) [26], the distance-Gini mean difference for F is

MD(F) ≡ 1
2d

E(‖Y − Y ′‖) = 1
2d

∫
(0,∞)d

∫
(0,∞)d

‖y− y′‖dF(y)dF(y′), (10)

where ‖ · ‖ denotes the Euclidean distance in R2.

(d) The distance-Gini mean difference MD(F) corresponding to the joint cdf F in (1),
where Yi ∼ EOLL-G(νi, τi, ηi), i = 1, . . . , d, is finite when ν > 1 and X have moments
of order greater than one (see Appendix A.4).

(e) If U ∼ U(0, 1), then

QG

{
U1/(ν τ)

U1/(ν τ) + (1−U1/τ)1/ν

}
∼ EOLL-G(ν, τ, η), (11)

where QG(u) = G−1(u) is the quantile function (qf) of G.

The EOLL-G family includes as special cases: the OLL-G class for τ = 1 (Gleaton and
Lynch, 2006 [27]), and the exponentiated (Exp-G) class (Mudholkar et al., 1996 [28]) for
ν = 1. Clearly, Equation (9) becomes the baseline G when ν = τ = 1.

Thus, we consider the following marginal distributions

Y1 ∼ EOLL-G(ν1, τ1η1) and Y2 ∼ EOLL-G(ν2, τ2, η2), (12)

where η1 and η2 are parameter vectors of the baseline G, and ν1, τ1, ν2 and τ2 are positive
shape parameters.

3.1. BCEOLL-G Model

By inserting (8) and (9) in Equations (1), (2), (4) and (5), the bivariate joint BCEOLL-G
cdf reduces to

FBCEOLL-G(y1, y2) =
[
W−λ

1 (y1; η1) + W−λ
2 (y2; η2)− 1

]− 1
λ . (13)



Symmetry 2023, 15, 1778 6 of 20

The corresponding joint pdf has the form

fBCEOLL-G(y1, y2) = (λ + 1)
[
W−λ

1 (y1; η1) + W−λ
2 (y2; η2)− 1

]−(2λ+1)
λ ×

[W1(y1; η1)W2(y2; η2)]
−(λ+1) ×[

ν1 τ1 g1(y1; η1) Gν1 τ1−1
1 (y1; η1)Ḡ

ν1−1
1 (y1; η1)

Hτ1+1
1 (y1; η1)

]
×[

ν2 τ2 g2(y2; η2) Gν2 τ2−1
2 (y2; η2)Ḡ

ν2−1
2 (y2; η2)

Hτ2+1
2 (y2; η2)

]
, (14)

where (for k = 1, 2)

Hk(yk; ηk) = Gνk
k (yk; ηk) + [1− Gk(yk; ηk)]

νk , Wk(yk; ηk) =
Gνk τk

k (yk, ηk)

Hτk
k (yk; ηk)

.

3.2. BFEOLL-G Model

Similarly, the joint cdf of the bivariate BFEOLL-G model can be expressed as

FBFEOLL-G(y1, y2) = −
1
λ

log
{

1 +
{exp[−λ W1(y1; η1)]− 1}{exp[−λ W2(y2; η2)]− 1}

exp(−λ)− 1

}
. (15)

The corresponding joint BFEOLL-G pdf becomes

fBFEOLL-G(y1, y2) = λ[1− exp(−λ)] exp{−λ[W1(y1; η1) + W2(y2; η2)]}×

{exp(−λ)− exp[−λW1(y1; η1)]− exp[−λW2(y2; η2)] + exp[−λ(W1(y1; η1) + W2(y2; η2))]}
−2×[

ν1 τ1 g1(y1; η1) Gν1 τ1−1
1 (y1; η1)Ḡ

ν1−1
1 (y1; η1)

Hτ1+1
1 (y1; η1)

]
×[

ν2 τ2 g2(y2; η2) Gν2 τ2−1
2 (y2; η2)Ḡ

ν2−1
2 (y2; η2)

Hτ2+1
2 (y2; η2)

]
.

(16)

The BCEOLL-G and BFEOLL-G models include three special cases:

• The bivariate Clayton Exponentiated (Exp)-G and Frank Exp-G classes when ν = 1;
• The bivariate Clayton odd log-logistic (OLL)-G and Frank OLL-G classes when τ = 1.
• The bivariate Clayton and Frank baseline models when ν = τ = 1.

We can generate many bivariate models from Equations (14) and (16) by choosing
different parent distributions.

3.3. Copula Dependence Measures

Pearson correlation is one of the most widely used measures, but it cannot be used in
cases where the joint distributions are not normally distributed, and also cannot capture
nonlinear relations between the variables.

We study the association of the variables by means of copulas using nonparametric
concordance measures for the ranks of the variables, thus enabling coping with data not
normally distributed and allowing nonlinear relations between the variables. A concor-
dance measure can be defined as follows: let (y11, y21) and (y12, y22) be two observations of
the bivariate random variable (Y1, Y2). Concordance exists when (y11− y21)(y12− y22) > 0,
while discordance exists when (y11 − y21)(y12 − y22) < 0.

The Kendall (τk) and Spearman (ρs) correlations are concordance measures adopted in
this methodology and their expressions derived from the copula dependence parameters
are given below:

• Clayton copula: τk =
λ

λ+2 . The expression for ρs is very complicated.
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• Frank copula: τk = 1 + 4
λ [D1(λ)− 1] and ρs = 1 + 12

λ [D2(λ)− D1(λ)], where Dk(·) is

the kth order Debye function k
αk

∫ α
0

tk

et−1 dt (for k = 1, 2).

4. BCEOLL Normal and BFEOLL Normal Models

Here, we discuss special cases of the BCEOLL-G and BFEOLL-G models. The den-
sity functions (14) and (16) will be most tractable when the cdf Gk(yk; ηk) has a simple
analytic expression.

It is known that the data of many experiments follow a normal distribution. So, we
present special models considering the normal baseline (yk ∈ R)

Gk(yk; ηk) = Φ
(

yk − µk
σk

)
and gk(yk; ηk) =

1
σk

φ

(
yk − µk

σk

)
, (17)

where Φ(·) and φ(·) are the cdf and pdf of the standard normal, respectively, ηk =
(µk, σk)

>, µk ∈ R is a location and σk > 0 is a scale (for k = 1, 2). Hereafter, let
Yk ∼ EOLLN(νk, τk, µk, σk) be a random variable.

If the marginals follow the EOLLN distribution, the joint cdf is determined by insert-
ing (17) in Equations (14) and (16). So, the joint pdfs of the BCEOLL Normal (BCEOLLN)
and BFEOLL Normal (BFEOLLN) models are

fBCEOLLN(y1, y2) = (λ + 1)

{[
Φν1τ1 (z1)

Hτ1 (z1)

]−λ

+

[
Φν2τ2 (z2)

Hτ2 (z2)

]−λ

− 1

}− (2λ+1)
λ [

Φν1 τ1 (z1)

Hτ1 (z1)
× Φν2 τ2 (z2)

Hτ2 (z2)

]−(λ+1)
×{

ν1 τ1 φ(z1)Φν1τ1−1(z1)[1−Φ(z1)]
ν1−1

σ1 Hτ1 (z1)

}{
ν2 τ2 φ(z2)Φν2τ2−1(z2)[1−Φ(z2)]

ν2−1

σ2 Hτ2 (z2)

}
(18)

and

fBFEOLLN(y1, y2) = λ[1− exp(−λ)] exp
{
−λ

[
Φν1 τ1 (z1)

Hτ1 (z1)
+

Φν2 τ2 (z2)

Hτ2 (z2)

]}
×{

exp(−λ)− exp
[
−λ Φν1 τ1 (z1)

Hτ1 (z1)

]
− exp

[
−λ Φν2 τ2 (z2)

Hτ2 (z2)

]
+

exp
[
−λ

(
Φν1 τ1 (z1)

Hτ1 (z1)
+

Φν2 τ2 (z2)

Hτ2 (z2)

)]}−2
×{

ν1 τ1 φ(z1)Φν1τ1−1(z1)[1−Φ(z1)]
ν1−1

σ1 Hτ1 (z1)

}{
ν2 τ2 φ(z2)Φν2τ2−1(z2)[1−Φ(z2)]

ν2−1

σ2 Hτ2 (z2)

}
,

respectively, where (for k = 1, 2)

Φ(zk) = Φ
(yk − µk

σk

)
, φ(zk) = φ

(yk − µk
σk

)
and H(zk) = Φνk (zk) + [1−Φ(zk)]

νk . (19)

Figures 2 and 3 report the joint densities, their contour plots, and bivariate cdfs for
the Clayton and Frank copulas. The presence of bimodality is noted by the joint density. In
the contour plots, we clearly find different association structures.
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Figure 2. BCEOLLN copula for Y1 ∼ EOLLN(µ1 = 0, σ1 = 1, ν1 = 0.1, τ1 = 1), Y2 ∼ EOLLN(µ2 =

0, σ2 = 1, ν2 = 0.1, τ2 = 1.5) and λ = 3: (a) Bivariate pdf, (b) Contour plots of the pdf and
(c) Bivariate cdf.
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Figure 3. BFEOLLN copula for Y1 ∼ EOLLN(µ1 = 0, σ1 = 1, ν1 = 0.1, τ1 = 1), Y2 ∼ EOLLN(µ2 =

0, σ2 = 1, ν2 = 0.1, τ2 = 1.5) and λ = 3: (a) Bivariate pdf, (b) Contour plots of the pdf and
(c) Bivariate cdf.

5. Bivariate Regression Models

Let (Y11, Y12), · · · , (Yn1, Yn2) be a bivariate random sample from the BCEOLLN and BE-
OLLN models, Yik ∼ BCEOLLN(θi1) and Yik ∼ BEOLLN(θi2), where θi1 = (µi1, σ1, ν1, τ1)

>

and θi2 = (µi2, σ2, ν2, τ2)
> (for i = 1, . . . , n and k = 1, 2).

Considering a sample (y1k, x1k), · · · , (ynk, xnk), a systematic component can be
defined as

µik = x>ik βk, (20)

where x>ik = (1, xi1k, · · · , xipk) is the explanatory variable vector of dimension p + 1 (for k =

1, 2 and i = 1, . . . , n), and βk = (β0k, β1k, · · · , βpk)
> is the vector of unknown parameters.

Considering n independent observations (y1k, x1k), · · · , (ynk, xnk) (for k = 1, 2), the
model defined by (20) and the joint pdf given in Equations (18) and (19). Further, let
zik = (yik − µik)/σk, H(zik) = Φνk (zik) + [1−Φ(zik)]

νk , and W(zik) = Φνk τk (zik)/Hνk (zik).
If θ = (λ, θ>1 , θ>2 )

>, θk = (β>k , σk, τk, νk)
>, β>k = (β0k, β1k, · · · , βpk) (for k = 1, 2),

the total log-likelihood functions for θ have the forms below:

BCEOLLN regression model

l(θ) = n log
[
(λ + 1) ν1 τ1 ν2 τ2

σ1 σ2

]
− 2 λ + 1

λ

n

∑
i=1

log
[
W−λ(zi1) + W−λ(zi2)− 1

]
−

(λ + 1)
n

∑
i=1

log[W(zi1)W(zi2)] +
n

∑
i=1

log
{

φ(zi1)Φν1 τ1−1(zi1)[1−Φ(zi1)]
ν−1

Hτ1(zi1)

}
+ (21)

n

∑
i=1

log
{

φ(zi2)Φν1 τ2−1(zi2)[1−Φ(zi2)]
ν−1

Hτ2(zi2)

}
.
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BFEOLLN regression model

l(θ) = n log
{

λ[1− exp(−λ)] ν1 τ1 ν2 τ2
σ1 σ2

}
− λ

n

∑
i=1

[W(zi1) + W(zi2)]−

2
n

∑
i=1

log{exp(−λ)− exp[−λ W(zi1)]− exp[−λ W(zi2)] + exp[−λ(W(zi1) + W(zi2))]}+ (22)

n

∑
i=1

log

{
φ(zi1)Φν1 τ1−1(zi1)[1−Φ(zi1)]

ν−1

Hτ1 (zi1)

}
+

n

∑
i=1

log

{
φ(zi2)Φν1 τ2−1(zi2)[1−Φ(zi2)]

ν−1

Hτ2 (zi2)

}
.

For copulas, the estimation of the parameters is usually conducted in two stages to
create bivariate response models. In the first stage, the events are considered independent
and the parameters are estimated marginally. The estimates are then used in the second
stage, where the association parameter α is estimated. This approach is coherent when
the focus of the study is to estimate the association parameter λ. If the coefficients of the
regression are the focus, this marginal two-stage approach does not add any additional
information compared to the use of independent models. Then, it is best to conduct a joint
estimation of the regression coefficients and λ.

The maximum likelihood estimate (MLE) θ̂ can be calculated by maximizing (21) and
(22). We use the simplex method of Nelder and Mead (1965) [29] implemented in the optim
function in the R software [30]. This method is a robust and direct search method, which
uses only function values, i.e., it does not use gradient information. It compares the function
values at the vertices of a general simplex, then replaces the vertex with the highest value
by another point. The simplex adapts itself to the local landscape, and contracts on to the
final minimum. Initial values for β, σ1 and σ2 are taken from the fits of the sub-models with
τ1 = ν1 = 0.5 and τ2 = ν2 = 0.5. It proves to be effective, computationally compact and
provides the Hessian matrix, necessary for inference. See [29] for details. The asymptotic
normal distribution of θ̂ can be considered for inference, tests, and confidence intervals.

6. Simulation Study

A Monte Carlo simulation study examines the accuracy of the estimates in the bivariate
EOLLN regression model. We use the Multivariate Copula Description (MVCD) from the
COPULA package [31] in R. The MVCD function generates the required univariate marginals
according to the supplied association parameter using the inverse transformation method.

We consider the sample sizes n = 50, 100, 200, 500, r = 1000 replications and a covariate
x1 ∼ Normal(1, 0.5) related to y1 and y2 by the identity link functions µi1 = (β101 + β111xi1)
and µi2 = (β102 + β112xi1), respectively. Further, we take σk = exp(β20k), νk = exp(β30k)
and τk = exp(β40k). Then, let Yk ∼ EOLLN(µik, σk, νk, τk) (for k = 1, 2), the quantile
function (qf) has the form

yk = Q(u) = QN

{
u1/(νk τk)

u1/(νk τk) + (1− u1/τk )1/νk

}
, 0 < u < 1, (23)

where QN(p) = Φ−1(p; µk, σk), p ∈ (0, 1), is the normal qf, namely

Φ−1(p; µk, σk) = µk +
√

2 σk erf−1(2p− 1) (24)

and erf−1(·) is the inverse error function.
The true parameter values are: µi1 = (1.5+ 1.32xi1), σ1 = exp(1.5), ν1 = exp(1.1), τ1 =

exp(1.4), µi2 = (1.6 + 2.3xi1), σ2 = exp(0.6), ν2 = exp(1.8), τ2 = exp(1.9) and λ = 5.
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The average estimates (AEs), biases, and mean squared errors (MSEs) are given by

AE(η̂) =
1
r

r

∑
i=1

η̂i, Bias(η̂) =
1
r

r

∑
i=1

(η̂i − ηi), MSE(η̂) =
1
r

r

∑
i=1

(η̂i − ηi)
2, (25)

where η̂> = (β̂101, β̂111, β̂201, β̂301, β̂401, β̂102, β̂112, β̂202, β̂302, β̂402, λ̂).
For each of the Clayton and Frank copulas and sample size, the calculations follow

the Algorithm 1.

Algorithm 1:
Input : n: sample size

β10k, β11k, β20k, β30k, β40k, λ: parameter initial values
n.par: number of parameters
r: number of replicates

η = matrix(0, r, n.par)
se = matrix(0, r, n.par)
i = 1
while i ≤ r do

xi1 ∼ Normal (n, 1, 0.5)
µik = (β10k + β11kxi1)
σik = exp(β20k)
νik = exp(β30k)
τik = exp(β40k)
Get the copulas using the function MVDC
Get yik(n, µik, σik, νik, τik) using function RMVDC
Fit the model using the function OPTIM
if Model converges then

η[i, ] = Estimates
sd[i,] = Standard errors
i = i + 1

else
i = i

end
end
Calculate the quantities in Equation (25).

For both copulas, the biases and MSEs in Tables 1 and 2 decrease when n grows. So,
the consistency of the estimators holds. The empirical coverage probabilities (CPs) in
Table 3 show that their values converge to the 95% nominal level.

Table 1. Simulation findings from the fitted bivariate Clayton EOLLN regression model.

η True Value
n = 50 n = 100

AEs Biases MSEs AEs Biases MSEs

β101 1.50 1.4840 −0.0160 0.1436 1.4949 −0.0051 0.0787
β111 1.32 1.3206 0.0006 0.0523 1.3190 −0.0010 0.0244
β201 1.50 1.5448 0.0448 0.0755 1.5383 0.0383 0.0405
β301 1.10 1.1799 0.0799 0.0816 1.1577 0.0577 0.0450
β401 1.40 1.4555 0.0555 0.0892 1.4233 0.0233 0.0453
β102 1.60 1.5966 −0.0034 0.0056 1.5986 −0.0014 0.0024
β112 2.30 2.3003 0.0003 0.0017 2.2991 −0.0009 0.0008
β202 0.60 0.6135 0.0135 0.0484 0.6132 0.0132 0.0224
β302 1.80 1.8481 0.0481 0.0487 1.8314 0.0314 0.0216
β402 1.90 1.9731 0.0731 0.0956 1.9396 0.0396 0.0408

λ 5.00 5.2268 0.2268 0.1417 5.1446 0.1446 0.0601
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Table 1. Cont.

η True Value
n = 200 n = 500

AEs Biases MSEs AEs Biases MSEs

β101 1.50 1.4949 −0.0051 0.0437 1.5049 0.0049 0.0164
β111 1.32 1.3172 −0.0028 0.0122 1.3219 0.0019 0.0049
β201 1.50 1.5336 0.0336 0.0247 1.5185 0.0185 0.0108
β301 1.10 1.1440 0.0440 0.0272 1.1253 0.0253 0.0112
β401 1.40 1.4147 0.0147 0.0214 1.3992 −0.0008 0.0074
β102 1.60 1.5985 −0.0015 0.0010 1.5993 −0.0007 0.0003
β112 2.30 2.2996 −0.0004 0.0004 2.3003 0.0003 0.0002
β202 0.60 0.6149 0.0149 0.0100 0.6089 0.0089 0.0048
β302 1.80 1.8244 0.0244 0.0093 1.8135 0.0135 0.0045
β402 1.90 1.9215 0.0215 0.0174 1.9078 0.0078 0.0057

λ 5.00 5.0736 0.0736 0.0223 5.0178 0.0178 0.0060

Table 2. Simulation findings from the fitted bivariate Frank EOLLN regression model.

η True Value
n = 50 n = 100

AEs Biases MSEs AEs Biases MSEs

β101 1.50 1.3278 −0.1722 0.5729 1.3552 −0.1448 0.3244
β111 1.32 1.3110 −0.0090 0.0905 1.3250 0.0050 0.0432
β201 1.50 1.5802 0.0802 0.0891 1.5753 0.0753 0.0686
β301 1.10 1.2140 0.1140 0.1023 1.1875 0.0875 0.0734
β401 1.40 1.6102 0.2102 0.4140 1.5419 0.1419 0.2325
β102 1.60 1.5604 −0.0396 0.0195 1.5730 −0.0270 0.0114
β112 2.30 2.2977 −0.0023 0.0037 2.3015 0.0015 0.0017
β202 0.60 0.6307 0.0307 0.0566 0.6419 0.0419 0.0446
β302 1.80 1.8510 0.0510 0.0667 1.8546 0.0546 0.0483
β402 1.90 2.1430 0.2430 0.3737 2.0495 0.1495 0.2159

λ 5.00 5.1239 0.1239 0.3300 5.0954 0.0954 0.2026

η True Value
n = 200 n = 500

AEs Biases MSEs AEs Biases MSEs

β101 1.50 1.4714 −0.0286 0.1427 1.4853 −0.0147 0.0666
β111 1.32 1.3145 −0.0055 0.0225 1.3264 0.0064 0.0086
β201 1.50 1.5681 0.0681 0.0390 1.5407 0.0407 0.0189
β301 1.10 1.1789 0.0789 0.0414 1.1461 0.0461 0.0210
β401 1.40 1.4391 0.0391 0.0999 1.4102 0.0102 0.0421
β102 1.60 1.5801 −0.0199 0.0052 1.5862 −0.0138 0.0024
β112 2.30 2.2990 −0.0010 0.0008 2.3008 0.0008 0.0003
β202 0.60 0.6271 0.0271 0.0217 0.6278 0.0278 0.0100
β302 1.80 1.8334 0.0334 0.0225 1.8289 0.0289 0.0094
β402 1.90 2.0108 0.1108 0.0961 1.9652 0.0652 0.0465

λ 5.00 5.0431 0.0431 0.0856 5.0227 0.0227 0.0428
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Table 3. CPs for the fitted bivariate Clayton and Frank EOLLN regression models.

Clayton

n β101 β111 β201 β301 β401 β102 β112 β202 β302 β402 λ

50 0.995 0.971 0.999 0.996 0.997 0.999 0.972 1.000 1.000 0.999 0.961
100 0.996 0.972 0.998 0.997 0.998 1.000 0.974 1.000 1.000 1.000 0.962
200 0.999 0.958 0.999 0.999 1.000 0.999 0.965 1.000 0.999 1.000 0.968
500 0.999 0.962 0.999 0.999 1.000 1.000 0.964 1.000 1.000 1.000 0.948

Frank

n β101 β111 β201 β301 β401 β102 β112 β202 β302 β402 λ

50 0.983 0.956 1.000 0.998 0.986 0.988 0.937 1.000 1.000 0.988 0.950
100 0.993 0.961 0.999 1.000 0.992 0.989 0.944 1.000 0.999 0.990 0.951
200 0.990 0.956 0.999 0.998 0.991 0.996 0.956 1.000 1.000 0.997 0.962
500 0.995 0.955 0.999 0.999 0.995 0.998 0.946 1.000 1.000 0.997 0.953

7. Application to Lettuce Leaf Data

This dataset refers to the effect of the foliar application of different concentrations of
silicon dioxide and organosilicon compounds on the growth and biochemical contents of
Lactuca sativa var. crispa grown in phytotron conditions. The experiment was carried
out on 12 March 2020, in the Department of Goods Commodity and Expertise of Goods
Products in Moscow, Russian Federation. More details of the experiment are described
in [32]. Here, we check the response variables fresh weight (grams) (y1) and plant height
(cm) (y2) together in order to verify the existing correlation between them. We also present
a regression model relating these covariates with the following treatments:

The levels of gradual concentrations of amorphous silicon dioxide (AS) and 1-ethoxysi-
latrane (ES) solutions are: AS1 (50 mg·L−1), AS2 (100 mg·L−1), AS3 (200 mg·L−1), AS4
(300 mg·L−1), and ES1 (5 × 10−4 mL·L−1), ES2 (10−3 mL·L−1), ES3 (5 × 10−3 mL·L−1) and
ES4 (10−2 mL·L−1). These variables are defined by dummy variables as follows:

• yi1 fresh weight (grams);
• yi2 plant height (cm);
• xijk combination of AS and ES solutions (for j = 1 . . . 8).

Hence, the systematic component has the form (for k = 1, 2 and i = 1, . . . , 54):

µik = β0k + β1kxi1k + β2kxi2k + β3kxi3k + β4kxi4k + β5kxi5k + β6kxi6k + β7kxi7k + β8kxi8k.

7.1. Descriptive Analysis

First, we present a descriptive analysis of the dataset. Table 4 indicates positive
asymmetry and kurtosis for both response variables. Figure 1a,b displays the histograms of
these variables, thus indicating bimodal behavior for both. Pearson’s coefficient is 0.8497,
which is a strong positive correlation, as can be noted in Figure 1. Figure 4 provides the
boxplots for different experimental treatments.

Table 4. Descriptive analysis of fresh weight (y1) and plant height (y2) variables.

Variable Mean Median s.d. Min. Max Skewness VC Kurtosis

y1 39.511 38.925 8.406 26.500 57.610 0.268 21.274 2.208
y2 18.485 17.250 4.197 11.200 26.200 0.476 22.707 2.174
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Figure 4. (a) Boxplots of fresh weight (y1) and (b) Boxplots of plant height (y2).

7.2. Univarite Marginal Analysis

Univariate analysis of the response variables is conducted under the EOLLN distribu-
tion and its special cases: OLLN, Exp-N, and Normal. The Akaike information criterion
(AIC) and Global Deviance (GD) in Table 5 reveal that the OLLN model is more adequate
for y1 (fresh weight) and the EOLLN model for y2 (plant height).

Figures 5a and 6a report the histograms with estimated densities, and Figures 5b and 6b
their empirical and estimated cumulative distributions, thus supporting the findings in
Table 5.

Table 5. Adequacy measures of the univariate models for each response variable.

Model
Fresh Weight Plant Height

AIC GD AIC GD

EOLLN 385.98 377.98 300.80 292.80
OLLN 384.05 378.05 305.51 299.51
Exp-N 387.40 381.40 309.57 303.57

Normal 386.16 382.16 311.16 307.16
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Figure 5. (a) Estimated densities and (b) Estimated cumulative functions and empirical cdf for the
fresh weight.
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Figure 6. (a) Estimated densities and (b) Estimated cumulative functions and empirical cdf for the
plant height.

7.3. Bivariate Analysis and Regression Model

Next, we carry out a joint analysis of the response variables from the current sixteen
models for the Clayton and Frank copulas. Table 6 reveals that the bivariate (OLLN ×
EOLLN) regression model with Clayton and Frank copulas is the most suitable model to
explain the response variables (Y1 ×Y2), thus agreeing with the univariate analysis.

Additionally, we provide the values of the copula dependence parameter (λ), Kendall’s
correlation (τk), and Spearman correlation (ρs). For both models and the two copulas, these
values indicate that the variables have strong positive dependence, thus confirming the
required dependence structure. Table 7 provides the estimated quantities for the best
bivariate regression model.

We can conclude the following facts:

• Interpretations for µ:

– Comparison of the treatments with the control indicates that treatments ES1 and
ES2 are not significant for the metrics of fresh mass and plant height. The other
treatments are significant for both variables.

– Comparison of the treatments with the control indicates that treatments AS1, AS2,
ES3, and ES4 have positive effects on the fresh mass. So, they increase with the
fresh mass. On the other hand, the effects of treatments AS3 and AS4 are negative
for the fresh mass.

– For the plant height, the treatments AS1, AS2, ES3, and ES4 have positive effects,
meaning greater height in relation to the control. In contrast, the treatments AS3
and AS4 have negative effects on plant height.

– Table 8 compares all treatments with the corresponding control, from which other
interpretations can be found.

– All the results are clearly consistent with the descriptive analysis.

• Interpretations for λ, τk and ρs:

– The values of λ, τk, and ρs in the best regression model reveal that the variables
are correlated with moderate dependence. The dependence structure is necessary,
as confirmed by the 95% CIs for the dependence parameter of the copula, which
does not include zero.

Finally, Figure 7 displays the plots of the observed and predicted values and corre-
sponding CIs, thus supporting that the best bivariate regression model is a good predictor
for the current data.
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Table 6. AIC, GD, copula dependence parameter (λ), Kendall correlation (τk) and Spearman correla-
tion (ρs) for sixteen bivariate models fitted to lettuce data.

Model for (Y1 × Y2)
Clayton Frank

AIC GD λ τk ρs AIC GD λ τk ρs

EOLLN × EOLLN 623.18 605.18 2.81 0.58 0.77 615.95 597.95 10.16 0.67 0.86
EOLLN × OLLN 634.02 618.02 2.27 0.53 0.72 627.92 611.92 9.67 0.66 0.85
EOLLN × Exp-N 629.52 613.52 3.38 0.63 0.81 628.37 612.37 8.60 0.62 0.82

EOLLN × Normal 625.02 611.02 3.58 0.64 0.83 630.43 616.43 10.23 0.67 0.87
OLLN × EOLLN 620.25 604.25 2.93 0.59 0.78 612.78 596.78 10.79 0.69 0.88
OLLN × OLLN 632.00 618.00 2.31 0.54 0.72 626.71 612.71 9.47 0.65 0.85
OLLN × Exp-N 628.19 614.19 3.36 0.63 0.81 623.88 609.88 10.25 0.67 0.87

OLLN × Normal 624.47 612.47 3.82 0.66 0.84 628.43 616.43 10.36 0.68 0.87
Exp-N × EOLLN 622.61 606.61 2.92 0.59 0.78 616.98 600.98 10.03 0.67 0.86
Exp-N × OLLN 631.90 617.90 2.87 0.59 0.78 632.15 618.15 9.11 0.64 0.84
Exp-N × Exp-N 632.43 618.43 3.47 0.63 0.82 636.22 622.22 10.85 0.69 0.88

Exp-N × Normal 626.75 614.75 3.33 0.62 0.81 632.04 620.04 9.80 0.66 0.86
Normal × EOLLN 620.62 606.62 3.00 0.60 0.79 615.77 601.77 10.30 0.67 0.87
Normal × OLLN 633.50 621.50 2.29 0.53 0.72 630.58 618.58 9.15 0.64 0.84
Normal × Exp-N 629.29 617.29 3.05 0.60 0.79 624.74 612.74 10.16 0.67 0.86

Normal × Normal 624.54 614.54 3.35 0.63 0.81 630.37 620.37 9.99 0.67 0.86

Table 7. Estimated quantities for the best bivariate regression model fitted to lettuce data.

θ MLEs CIs SEs p-Values

β01 35.8036 [33.7814, 37.8257] 1.0086 <0.001
β11 10.8022 [8.1460, 13.4583] 1.3248 <0.001
β21 9.9009 [7.1183, 12.6833] 1.3879 <0.001
β31 −7.6892 [−10.3286, −5.0497] 1.3165 <0.001
β41 −6.7391 [−9.2985, −4.1795] 1.2766 <0.001
β51 0.6059 [−2.1540, 3.3658] 1.3766 0.3308
β61 −0.1776 [−3.0838, 2.7287] 1.4496 0.4515
β71 8.4060 [5.3443, 11.4675] 1.5271 <0.001
β81 18.6657 [15.5123, 21.8191] 1.5729 <0.001

log(σ1) 1.8421 [−4.0207, 7.7049] 2.9243
log(ν1) 1.0892 [−4.9764, 7.1548] 3.0255

β02 17.0122 [15.8189, 18.2056] 0.5952 <0.001
β12 9.4337 [8.1786, 10.6887] 0.6259 <0.001
β22 1.6790 [0.0778, 3.2802] 0.7986 0.0201
β32 −1.6034 [−2.7452, −0.4617] 0.5694 0.0034
β42 −3.2964 [−4.6713, −1.9214] 0.6857 <0.001
β52 0.9021 [−0.4202, 2.2245] 0.6595 0.0885
β62 1.0147 [−0.2440, 2.2736] 0.6279 0.0559
β72 6.3580 [4.5401, 8.1759] 0.9067 <0.001
β82 8.3849 [7.0828, 9.6870] 0.6494 <0.001

log(σ2) 0.7811 [−1.6658, 3.2282] 1.2205
log(ν2) 1.1064 [−1.0946, 3.3074] 1.0978
log(τ) −1.0721 [−2.6434, 0.4992] 0.7837

λ 3.3776 [1.1464,5.6086] 1.1129

τk=0.339, ρs= 0.492 AIC: 456.7843 GD: 408.7843
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Table 8. Comparisons between treatments according to the best bivariate regression model.

Hypotheses H0
Fresh Weight Plant Height

MLEs SEs p-Values MLEs SEs p-Values

AS1 - Control 10.802 1.325 0.000 9.434 0.626 0.000
AS2 - Control 9.901 1.388 0.000 1.679 0.799 0.020
AS3 - Control −7.689 1.317 0.000 −1.603 0.569 0.003
AS4 - Control −6.739 1.277 0.000 −3.296 0.686 0.000
ES1 - Control 0.606 1.377 0.331 0.902 0.660 0.088
ES2 - Control −0.178 1.450 0.452 1.015 0.628 0.056
ES3 - Control 8.406 1.527 0.000 6.358 0.907 0.000
ES4 - Control 18.666 1.573 0.000 8.385 0.649 0.000

AS1 - ES4 −8.160 2.453 0.001 0.959 0.745 0.102
AS2 - ES4 −9.017 2.097 0.000 −6.829 0.902 0.000
AS3 - ES4 −26.352 2.667 0.000 −9.975 0.754 0.000
AS4 - ES4 −25.410 2.495 0.000 −11.658 0.855 0.000
ES1 - ES4 −18.376 2.642 0.000 −7.505 0.843 0.000
ES2 - ES4 −18.741 2.638 0.000 −7.312 0.810 0.000
ES3 - ES4 −10.192 2.853 0.000 −1.956 1.061 0.035
AS1 - ES3 2.663 1.581 0.049 3.120 1.159 0.005
AS2 - ES3 1.935 1.436 0.092 −4.597 0.859 0.000
AS3 - ES3 −15.784 1.599 0.000 −7.802 1.088 0.000
AS4 - ES3 −14.686 1.417 0.000 −9.550 0.922 0.000
ES1 - ES3 −7.468 1.504 0.000 −5.323 0.892 0.000
ES2 - ES3 −8.035 1.667 0.000 −5.143 1.033 0.000
AS1 - ES2 10.396 1.446 0.000 8.377 0.678 0.000
AS2 - ES2 9.707 1.464 0.000 0.689 0.841 0.208
AS3 - ES2 −7.959 1.399 0.000 −2.592 0.636 0.000
AS4 - ES2 −6.875 1.367 0.000 −4.295 0.713 0.000
ES1 - ES2 0.255 1.492 0.432 −0.120 0.701 0.432
AS1 - ES1 10.414 1.358 0.000 8.562 0.788 0.000
AS2 - ES1 9.640 1.339 0.000 0.918 0.764 0.117
AS3 - ES1 −7.931 1.363 0.000 −2.409 0.718 0.001
AS4 - ES1 −7.025 1.243 0.000 −4.117 0.694 0.000
AS1 - AS4 17.472 1.218 0.000 12.768 0.794 0.000
AS2 - AS4 16.701 1.129 0.000 4.995 0.781 0.000
AS3 - AS4 −1.036 1.191 0.194 1.715 0.715 0.010
AS1 - AS3 18.338 1.252 0.000 10.951 0.591 0.000
AS2 - AS3 17.712 1.303 0.000 3.355 0.875 0.000
AS1 - AS2 1.090 1.315 0.205 7.782 0.977 0.000
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Figure 7. (a) Observed values (black) and predicted values (red) with CIs of the Clayton OLLN
EOLLN regression model for fresh weight and (b) Observed values (black) and predicted values (red)
with CIs of the Frank OLLN EOLLN regression for plant height.
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8. Conclusions

This article proposed a new bivariate family based on Archimedean copulas. Moti-
vated by an experiment that evaluated the growth of oak lettuce plants, which presented
the variables fresh mass and height with bimodal behavior, we used the exponentiated odd
log-logistic family, whose densities can model different types of data, including bimodality.
Furthermore, these variables showed a strong positive correlation and the Clayton and
Frank copulas were suitable for studying data with a positive correlation.

We presented some mathematical properties of the new family and a simulation
study showed the consistency of the maximum likelihood estimators. We considered
two categorical explanatory variables (each one with four treatments) to explain two
response variables: fresh weight and plant height. Some important results were obtained
from the application: (i) For both variables, the same treatments were significant or not;
(ii) Two treatments had negative effects on the two variables and two other treatments
had the greatest effects on the variables, i.e., with these treatments greater fresh mass
and greater plant height were obtained. The bivariate regression model proved to be
adequate for predicting fresh weight and plant height values of oak lettuce under the effect
of different treatments. The choice of these copulas proved to be adequate due to the
positive dependence structure between the variables. Other baseline distributions can be
used as well as applications in other areas of knowledge.
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Appendix A. Some Properties Related to the EOLL-G Model

Appendix A.1. Real Moments

Let Y ∼ EOLL-G(ν, τ, η). We obtain sufficient conditions that guarantee the existence
of the real moments of Y. By using the well-known formula (for the moments of positive
random variables)

E(Wp) = p
∫ ∞

0
wp−1P(W > w)dw, W > 0, p > 0, (A1)

it is clear that E(Yp) < ∞ if and only if

I ≡
∫ ∞

c
yp−1P(Y > y)dy < ∞,

for some c ∈ (0, ∞) so that 0 < G(c; η) < ∞. We now verify the finiteness of I. In fact, let S
be a Dagum random variable with shapes ν and τ, and unit scale, say S ∼ D(ν, 1, τ). Since

P(Y 6 y)
(8)
= P

(
S 6

G(y; η)

1− G(y; η)

)
, (A2)

https://www.sciencedirect.com/science/article/pii/S2352340921006120
https://www.sciencedirect.com/science/article/pii/S2352340921006120


Symmetry 2023, 15, 1778 18 of 20

the integral I becomes

I =
∫ ∞

c
yp−1 P

(
S >

G(y; η)

1− G(y; η)

)
dy.

By applying Markov’s inequality, the inequality holds

I 6 E(S)
∫ ∞

c
yp−1 1− G(y; η)

G(y; η)
dy. (A3)

If y 7−→ G(y; η) is a cdf, G(y; η) > G(c; η) for y > c. Let X have cdf G(·; η). So, the integral
in (A3) can be expressed as

E(S)
G(c; η)

∫ ∞

c
yp−1[1− G(y; η)]dy 6

E(S)
G(c; η)

∫ ∞

0
yp−1[1− G(y; η)]dy =

E(S)E(Xp)

pG(c; η)
,

where it is used Equation (A1). We obtain

I 6
E(S)E(Xp)

pG(c; η)
.

As E(S) < ∞ for ν > 1 leads to the condition E(Xp) < ∞, we have I < ∞.
Hence, under conditions ν > 1 and E(Xp) < ∞, we have E(Yp) < ∞.

Appendix A.2. Stochastic Representation

We can write from (A2),

P(Y 6 y) = P
(

G−1
(

S
S + 1

; η

)
6 y

)
, ∀y.

Finally, it is evident that

Y = G−1
(

S
S + 1

; η

)
provides a stochastic representation for Y ∼ EOLL-G(ν, τ, η).

Appendix A.3. Standardized Moments

Under the previous conditions, Appendix A.1 guarantees the existence of moments
of positive order of Y, and then the existence of mean and variance. Let µY = E(Y) and
σ2

Y = Var(Y), and let Z = (Y− µY)/σY be the standardized version of Y.
By using the triangle inequality and the Cp inequality (x + y)p 6 Cp (xp + yp), ∀x, y > 0,

where p > 0 and Cp ≡ max{1, 2p−1}, we have

E(|Z|p) 6
Cp

σ
p
Y
[E(|Y|p) + |µY|p ] =

Cp

σ
p
Y
[E(Yp) + µ

p
Y ],

since Y > 0. As the function x 7−→ ϕ(x) = x1/p is increasing for all x > 0 and p > 0, we
have from the previous inequality

‖Z‖p = ϕ(E(|Z|p)) 6 ϕ

(
Cp

σ
p
Y
[E(Yp) + µ

p
Y ]

)
=

C1/p
p

σY
[E(Yp) + µ

p
Y ]1/p 6

C1/p
p C1/p

σY
(‖Y‖p + µY),

where in the last inequality again we use the Cp inequality, and ‖Z‖p and ‖Y‖p are the
norms in Lp of Z and Y, respectively. Appendix A.1 leads to ‖Y‖p < ∞, µY < ∞ and
0 < σY < ∞, and then ‖Z‖p < ∞ from the above inequality.



Symmetry 2023, 15, 1778 19 of 20

Appendix A.4. The Multivariate Distance-Gini Mean Difference

Let Y′1, . . . , Y′d be an independent copy of Y1, . . . , Yd, where Y = (Y1, . . . , Yd) follows the
joint cdf F = FY as given in (1), and Yi ∼ EOLL-G(νi, τi, ηi), i = 1, . . . , d. The distance-Gini
mean difference for F is defined as in (10) (see Koshevoy 1997 [26]).

Since ‖y‖ 6 ‖y‖1 = ∑d
i=1 |yi|, where ‖ · ‖1 is the Manhattan norm, it is clear that

MD(F) 6
1

2d

d

∑
i=1

E(|Yi −Y′i |) =
1

2d

d

∑
i=1

E(max{Yi, Y′i } −min{Yi, Y′i }). (A4)

As Y′1, . . . , Y′d is an independent copy of Y1, . . . , Yd, we have that Y′i is idenpendent of Yi and
both have the same univariate distribution EOLL-G(ν, τ, η), with variance denoted by σ2.
By using the following inequality (see Item (5) of reference Vila et al., 2023 [33]), if Z is the
standardized version of Y1, then

E(max{Yi, Y′i } −min{Yi, Y′i }) 6 2 σ ‖Z‖p

(
p− 1

2p− 1

)(p−1)/p
, p > 1, ∀i = 1, . . . , d,

we have from (A4)

MD(F) 6 σ‖Z‖p

(
p− 1

2p− 1

)(p−1)/p
, p > 1.

By Appendices A.1 and A.3, we have 0 < σ < ∞ and ‖Z‖p < ∞ if ν > 1 and
E(Xp) < ∞.

Hence, under conditions ν > 1, p > 1 and E(Xp) < ∞, we obtain MD(F) < ∞.
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