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Abstract: Whooping cough, or pertussis, is an infectious disease that causes serious threats to people
of all ages, specifically to infant and young children, all over the world. Due to the severe impact on
health, it is necessary to construct a mathematical model that can be used to predict future dynamics
of the disease, as well as to suggest strategies to eliminate the disease in an optimal way. For this, we
constructed a new Atangana–Baleanu fractional model for whooping cough disease to predict the
future dynamics of the disease, as well as to suggest strategies to eliminate the disease in an optimal
way. We prove that the proposed model has a unique solution that is positive and bounded. To
measure the contagiousness of the disease, we determined the reproduction numberR0 and used it to
examine the local and global stability at equilibrium points that have symmetry. Through sensitivity
analysis, we determined parameters of the model that are most sensitive toR0. The ultimate aim of
this research was to analyze different disease prevention approaches in order to find the most suitable
one. For this, we included the vaccination and quarantine compartments in the proposed model and
formulated an optimal control problem to assess the effect of vaccination and quarantine rates on
disease control in three distinct scenarios. Firstly, we study the impact of vaccination strategy and
conclude the findings with a graphical presentation of the results. Secondly, we examine the impact
of quarantine strategy on whooping cough infection and its possible elimination from society. Lastly,
we implement vaccination and quarantine strategies together to visualize their combined effect on
infection control. In addition to the study of the optimal control problem, we examine the effect of the
fractional order on disease dynamics, as well as the impact of constant vaccination and quarantine
rates on disease transmission and control. The numerical results reveal that the optimal control
strategy with vaccination and quarantine together would be more effective in reducing the spread of
whooping cough infection. The implementation of the Toufik–Atangana-type numerical scheme for
the solution of the fractional optimal control problem is another contribution of this article.

Keywords: whooping cough; Atangana–Baleanu derivative; vaccination; existence and uniqueness;
stability and sensitivity analysis; Toufik–Atangana scheme; optimal control

MSC: 34H05; 49K15; 65K10

1. Introduction

Whooping cough is a highly contagious disease that is caused by a bacterium called
Bordetella pertussis. Many outbreaks of the disease have occurred in different parts of
the world. The history of the disease dates back to the late 15th century [1]. However,
the first recorded outbreak was witnessed in France in 1578. In 1947, a major whooping
cough epidemic occurred in Cape Town that registered 107 deaths [2]. In early 2010, an
outbreak occurred in the USA, Ireland and Israel. More than 10,000 whooping cough cases
were reported in California in 2014, and it was declared the worst outbreak since 1947.
According to a report published in 2014, there were around 24.1 million cases of whooping
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cough with 160,700 deaths in younger children around the world [3,4]. According to the
WHO, there were more than 151,000 pertussis cases worldwide in 2018 [3].

Whooping cough is an extremely infectious disease that has become a serious threat
to people of all ages and is especially dangerous to children younger than 5 years. The
disease spreads from one infected person to another susceptible person through the droplets
released by sneezing or coughing. The symptoms of whooping cough appear gradually
and can stay for few weeks to months. Once a person catches the infection, the first disease
symptoms appear within 7 to 10 days. Early-stage common symptoms are minor fever,
stuffed or runny nose and cough. At this level, it is not easy to tell it apart from the common
cold. After early-stage symptoms, the coughing fits start and gradually turn into a hacking
cough, which is followed by whooping. Sickness, vomiting and difficulty breathing are the
other symptoms of the disease. The people who contract the disease become infectious for
up to three weeks. Quarantining such people may help to restrict the spread of the disease.
The risk of complications and the spread of the virus to others can be reduced with early
whooping cough diagnosis and treatment. Whooping cough vaccines provide the highest
level of protection against this highly infectious disease.

Whooping cough is still one of the leading causes of death and illness, especially in
infants, around the world. The disease is on the rise again in many parts of the world,
including the USA, Australia and Great Britain. There is no definite explanation for this
rise, but it is thought to be caused by the vaccine losing its effectiveness, the bacterium
becoming more aggressive and improved diagnostics that have resulted in more cases
being diagnosed. It is therefore necessary to develop mathematical models that can be used
to forecast the dynamics of the whooping cough disease and also to propose strategies for
eliminating the disease in the most effective manner. In the existing literature, there are
very few mathematical models that have been designed to study the dynamics of whooping
cough and to propose effective control strategies. In [5], an effective numerical scheme
was presented to simulate a second-order whooping cough model. In 2018, researchers
conducted a study on the cost-effectiveness of maternal vaccination for whooping cough
in Australia [6]. A whooping cough model with optimal vaccination control was studied
in [7]. A whooping cough model was proposed in [8] to analyze disease transmission
in Nebraska. An implicit numerical integration method was established in [4] to ensure
a consistent dynamic convergence of the SEIR model for the whooping cough epidemic.
In [9], the ABC fractional derivative was employed to model phytoplankton nutrients and
whooping cough epidemics. In this article, the authors used the homotopy perturbation
Elzaki transform method for numerical solutions and proved that the implemented method
is an effective technique to handle such fractional models. Among all of the above articles,
none used fractional modeling to extensively study the dynamics of whooping cough to
determine the most effective control strategies for the disease.

Mathematical modeling is a powerful tool for predicting the dynamics of communica-
ble diseases with prevention measures. The differential equations for the epidemiological
compartmental models have symmetry in the sense that they are constructed on the prin-
ciple that the rate of change for individuals in a particular compartment is equal to the
incoming individuals minus the outgoing individuals. In the recent past, fractional cal-
culus has played a significant role in solving physical problems that cannot be solved
using integer-order differential equations. For many realistic applications, fractional-order
models are always better than integer-order models. For example, the memory effects
observed in biological models [10–15] cannot be better elucidated using integer-order
models. Furthermore, fractional-order operators can be used in mathematical models to
solve differential equations without being restricted by the order constraint. This makes
fractional-order models more versatile than classical integer-order models and, hence, they
provide more precise and accurate information about complex systems. Several fractional
differential operators with singular and non-singular kernels are available in the litera-
ture [16,17] and have been used in recent studies [18–22] of physical and biological systems.
Caputo and Riemann–Liouville fractional derivatives are the most common of these. The
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singularity property of the kernels in Caputo and Riemann–Liouville derivatives is the
fundamental drawback in both derivatives [16,23,24]. Many physical systems are difficult
to evaluate with singular kernels, so fractional derivatives with non-singular kernels, such
as Caputo–Fabrizo (CF), have been developed and implemented [25–29]. Even though
the CF derivative has a non-singular kernel, the function space of CF derivative is not
clear and it does not have any memory effects [30]. The authors in [31] introduced a new
fractional derivative operator, the Atangana–Baleanu–Caputo (ABC) operator, that uses
a Mittag–Leffler (ML) kernel with a single parameter. The ML function is a generalized
version of the exponential function and the key feature of this kernel is its non-local and
non-singular behavior. Due to this feature, the ABC operator is considered to be the best
choice for modeling real world phenomena, including epidemic diseases. The application
of the ABC fractional operator to various models can be studied in [32–38]. Some more
features of the ABC operator were latter narrated by authors in [39].

In recent years, many scientists have begun to use fractional models with different
fractional operators to include memory effects for better epidemiological disease anal-
ysis [40–43]. Fractional operators have a wide range of uses in modern mathematics,
including the complex and significant study of symmetric systems. Furthermore, fractional
models work better and are more consistent with the real data. In this study, we develop an
Atangana–Baleanu–Caputo (ABC) fractional whooping cough model, SVEIQR, to evaluate
the effectiveness of different disease control strategies, including vaccination of susceptible
and isolation of infected individuals, and to observe the influence of the fractional order on
the disease dynamics. The reason for choosing the ABC operator for the proposed model
is due to its non-local and non-singular kernel. In addition to this, the operator can cap-
ture higher susceptibilities and fewer infections as compared to other fractional operators,
such as Caputo and Caputo–Fabrizo [38]. One of the primary objectives of developing a
fractional model for whooping cough disease is to figure out potential control strategies
that involve constant and time-dependent controls and to understand the evolution of the
disease in a more general setup. To achieve the goal, we will first examine the validity of
the proposed model by proving the basic properties of the model, such as the existence of a
positive and bounded unique solution, and local and global stability analysis at equilibrium
points. In addition, this article contributes to developing a fractional optimal control prob-
lem to identify optimal vaccination and quarantine rates that will help to limit the spread of
whooping cough infection. Symmetry analysis is a robust tool to come up with numerical
solutions for certain fractional differential equations. The significance of the present work
lies in the use of a previously developed structure-preserving the Toufik–Atangana scheme
backward in time for the very first time to evaluate the whooping cough model.

The other sections are arranged as follows: In Section 2, we describe the formulation
of a SVEIQR fractional model to express the dynamics of whooping cough disease. The
formulation is given with the help of the Atangana–Baleanu fractional derivative. Theo-
retical aspects of the proposed fractional model are discussed in Section 3, including the
existence and uniqueness of the solution, the positivity and boundedness of the solutions,
the calculation of equilibrium points, the determination of the fundamental reproduction
number R0, the analysis of local and global stability at equilibrium points. In Section 4,
Toufik–Atangana type numerical scheme is established and implemented to observe the im-
pact of fractional order on disease dynamics. The effect of vaccination and quarantine rates
on disease transmission is also simulated here. In Section 5, we provide sensitivity analysis
to identify extremely sensitive parameters for reproduction numberR0. In Section 6, the
model is further modified with time-dependent controls to form an optimal control prob-
lem. The associated optimality conditions, arising from the Pontryagin’s principle, are then
numerically solved by applying the Toufik–Atangana numerical scheme to determine the
best time-dependent vaccination and quarantine rates for whooping cough control. The
results of this study are concluded in Section 7.
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2. Model Formulation

Mathematical models of infectious diseases play a vital role in understanding disease
flow patterns and in designing appropriate disease control strategies. Therefore, while
developing mathematical models for infectious diseases, it is very important to focus on
procedures needed in formulating the epidemiology of the disease and to identify the most
important and controllable parameters for disease control. A variety of epidemiological
models have been developed based on disease transmission mechanisms and are available
in literature, see [44–53]. These models have played a significant role in formulating and
designing control strategies for different diseases.

In this study, we develop a new SVEIQR model for whooping cough infectious
disease. The aim is to study the disease dynamics comprehensively and to formulate the
most suitable control strategies to restrict the spread of the disease. We divide the total
human population N(t) into six compartments: susceptible S(t), vaccinated V(t), exposed
E(t), infected I(t), quarantined Q(t) and recovered R(t). The humans specified by S(t) are
those who are at risk of catching a virus after having contact with an infectious person.
Thus, the susceptible who are caught by the virus move to exposed class E(t), and those
who are vaccinated at the rate α move to V(t). The vaccinated individuals may either move
to recovered class R(t) at the rate γ1 or to exposed class E(t) after receiving an infection as
a result of having contact with an infectious person. The exposed individuals who become
infectious move to infected class I(t) at the rate γ. To restrict the spread of disease, we
introduce an isolation compartment Q(t) in the model. The individuals from exposed and
infected classes are transferred to quarantined class Q(t) at rates q1 and γ3, respectively.
The individuals of I(t) and Q(t) classes who recovered either by medication or by their
natural immunity move to recovered class R(t), respectively, at the rates γ2 and q2. We
assume that the recovered individuals do not move back to the susceptible class. The rates
at which the infected and quarantined die due to disease are d1 and d2. Thus, the whole
human population at any time t is given by

N(t) = S(t) + V(t) + E(t) + I(t) + Q(t) + R(t). (1)

The whooping cough disease flow pattern, given in Figure 1, is governed by a mathe-
matical model consisting of the following nonlinear ordinary differential equations:

dS
dt

= Π− βIS− (µ + α)S, (2a)

dV
dt

= αS− δIV − (γ1 + µ)V, (2b)

dE
dt

= βIS + δIV − (µ + γ + q1)E, (2c)

dI
dt

= γE− (γ2 + γ3 + µ + d1)I, (2d)

dQ
dt

= q1E + γ3 I − (q2 + d2 + µ)Q, (2e)

dR
dt

= γ1V + γ2 I + q2Q− µR, (2f)

subject to the conditions:

S(0) = S0 > 0, V(0) = V0 ≥ 0, E(0) = E0 ≥ 0,

I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0.
(2g)

A detailed description of parameters of the model (2) is given below:

• Π: Recruitment rate of the susceptible.
• µ: Natural death rate of individuals of each compartment.
• β: Rate of contact of the susceptible with infectious people.
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• α: Rate at which the susceptible are vaccinated.
• δ: Rate of contact of vaccinated with infectious people.
• σ: Rate at which the exposed become infectious.
• σ1: Rate at which vaccinated people recovered.
• σ2: Rate at which infectious people recovered.
• σ3: Rate at which infectious people are quarantined.
• q1: Rate at which exposed people are quarantined.
• q2: Rate at which quarantined people recovered.
• d1: Death rate of infected people due to the disease.
• d2: Death rate of quarantined people due to the disease.

S(t) E(t)    I(t) R(t)

V(t)

Q(t)

µ µ µ

µ

µ

d

d

µ

δα

βSI 

VI 

q1 q2

2

1

¡ ¡2

¡1

¡3

P

Figure 1. Flow diagram of whooping cough disease transmission.

Fractional Model

Generally, classical integer order models are neither robust nor more useful for under-
standing the dynamic behavior of an infectious disease. On the other hand, fractional order
models work more appropriately with the real data. Hence, to generalize the system (2) for
whooping cough, we use the Atangana–Baleanu derivative ABC

a Dρ
t , defined in (3), in place

of the classical integer order time derivative Dt. This fractional order formulation will allow
us to observe memory impacts and gain further insight into the disease dynamics. For
the fractional formulation, we first consider some basics related to the Atangana–Baleanu
fractional derivatives [31].

Definition 1 ([31]). If the differentiable function Φ : [a, b] → N is defined on [a, b] such that
Φ ∈ H1(a, b), b > a and σ ∈ (0, 1], then the Atangana–Baleanu derivative of Φ in Caputo sense
is defined as

ABC
a Dσ

t Φ(t) =
F(σ)
1− σ

∫ t

a
Φ̇(ξ)Eσ

[
− σ

(t− ξ)σ

1− σ

]
dξ, (3)

where Eσ is a well-known one parameter Mittag–Leffler function and F(σ) is a normalizing function
such that F(0) = 1, F(1) = 1.

Definition 2 ([31,43]). The ABC fractional integral with non-local kernal is defined by

ABC
a Iσ

t Φ(t) =
1− σ

F(σ)
Φ(t) +

σ

F(σ)Γ(σ)

∫ t

a
Φ(ξ)(t− ξ)σ−1dξ. (4)
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For t ≥ 0 and σ ∈ (0, 1], the proposed nonlinear fractional order model for whooping
cough, in the sense of the ABC-fractional operator, is given as

ABC
0 Dσ

t S(t) = Π− βIS− (µ + α)S, (5a)
ABC
0 Dσ

t V(t) = αS− δIV − (γ1 + µ)V, (5b)
ABC
0 Dσ

t E(t) = βIS + δIV − (µ + γ + q1)E, (5c)
ABC
0 Dσ

t I(t) = γE− (γ2 + γ3 + µ + d1)I, (5d)
ABC
0 Dσ

t Q(t) = q1E + γ3 I − (q2 + d2 + µ)Q, (5e)
ABC
0 Dσ

t R(t) = γ1V + γ2 I + q2Q− µR, (5f)

with conditions:

S(0) = S0 > 0, V(0) = V0 ≥ 0, E(0) = E0 ≥ 0,

I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0.
(5g)

The system (5) is autonomous, hence, it can be written in the following compact form:

ABC
0 Dσ

t V(t) = G(V(t)), 0 < t < t f < +∞, (6a)

along with

V(0) = V0, (6b)

where V : [0,+∞)→ R6 and G : R6 → R6 are vector valued functions given as

V(t) =



S(t)
V(t)
E(t)
I(t)
Q(t)
R(t)

, V0 =



S0
V0
E0
I0

Q0
R0

, G(V(t)) =



Π− βIS− (µ + α)S
αS− δIV − (γ1 + µ)V

βIS + δIV − (µ + γ + q1)E
γE− (γ2 + γ3 + µ + d1)I

q1E + γ3 I − (q2 + d2 + µ)Q
γ1V + γ2 I + q2Q− µR

.

3. Theoretical Analysis of the Proposed Model

This section is devoted to a comprehensive theoretical analysis of the proposed frac-
tional model (6) where we investigate some key characteristics of the model and show that
the model is well-posed for numerical approximations.

3.1. Existence and Uniqueness of Solution

First of all, we prove that the solution of the model (6) exists and is unique. We
make use of some basic definitions and theorems, stated in [54], to prove the existence and
uniqueness of the solution of the proposed fractional model.

Theorem 1 ([54]). Every contractive sequence is a Cauchy sequence, and therefore convergent in
complete metric space.

Theorem 2 ([55]). Let B ⊆ R and Ψ : B→ Rn be a continuously differentiable mapping, s ∈ B.
Then, Ψ satisfies a Lipschitz condition on each convex compact subset B of B with Lipchitz constant
L. Where L > 0 is the supremum of the derivative of Ψ on B, i.e.,

L = sup
s∈B
| dΨ

ds
| .

Theorem 3. The function G(V) in Equation (6) is Lipschitz continuous.
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Proof. Let S be a convex compact subset of

S = {(t,V)| 0 ≤ t ≤ t f , V ∈ R6
+}.

Let V1,V2 ∈ S , then by mean value theorem ∃ ζ ∈ (V1,V2) such that

G(V1(t))− G(V2(t))
V1(t)− V2(t)

=G ′(ζ(t)),

or

G(V1(t))− G(V2(t)) =G ′(ζ(t)).(V1(t)− V2(t)),

| G(V1(t))− G(V2(t)) | =| G ′(ζ(t)).(V1(t)− V2(t)) |,
≤ ‖G ′(ζ)‖∞‖V1 − V2‖∞.

Since G ∈ C1[0, t f ], so over a convex compact set S , ∃ a constant τ > 0 such that

‖G ′(ζ)‖∞ ≤ τ,

hence,

| G(V1(t))− G(V2)(t) | ≤ τ‖V1 − V2‖∞,

sup
t∈[0,t f ]

| G(V1)− G(V2) | ≤ τ‖V1 − V2‖∞,

‖G(V1)− G(V2)‖∞ ≤ τ‖V1 − V2‖∞.

Thus, G(V) is Lipschitz.

Theorem 4. Suppose that the function G(V) satisfies the Lipschitz condition

‖G(V2)− G(V1)‖∞ ≤ τ‖V2 − V1‖∞,

then the problem (6) has a unique solution for

τ
(1− σ

F(σ)
+

σ

F(σ)Γ(σ)
T∗
)
< 1.

Proof. We shall prove that the function V(t) satisfies Equation (6) if and only if it satisfies
the relation

V(t) = V(0) + 1− σ

F(σ)
G(V(t)) + σ

F(σ)Γ(σ)

∫ t

0
(t− ξ)σ−1G(V(ξ))dξ.

Let V(t) satisfy Equation (6). We apply the Atangana–Beleanu fractional integral (4)
to both sides of (6) to obtain

ABC
0 Iσ

t

[ABC

0
Dσ

t V(t)
]
=ABC

0 Iσ
t G(V(t)).

Simplification yields us the integral equation:

V(t) = V0 +
1− σ

F(σ)
G(V(t)) + σ

F(σ)Γ(σ)

∫ t

0
(t− ξ)σ−1G(V(ξ))dξ. (7)
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Conversely, we suppose that Vn is a sequence of solutions that converges to the
solution (7) with Picard successive iteration, i.e.,

Vn(t) = V0(t) +
1− σ

F(σ)
G(Vn(t)) +

σ

F(σ)Γ(σ)

∫ t

0
(t− ξ)σ−1G(Vn(ξ))dξ, V0(t) = V0. (8)

First of all, we show that the sequence (8) is contractive if τ
(1− σ

F(σ)
+

σ

F(σ)Γ(σ)
T∗
)
< 1,

where T∗ = t f Υ and Υ = supt∈[0,t f ]
(t− ξ)σ−1.

Consider

|Vn(t)− Vn−1(t) |=|
1− σ

F(σ)
[G(Vn−1(t))− G(Vn−2(t))]

+
σ

F(σ)Γ(σ)

∫ t

0
(t− ξ)σ−1[G(Vn−1(x))− G(Vn−2(x))]dξ |,

≤ 1− σ

F(σ)
|G(Vn−1(t))− G(Vn−2(t)) |

+
σ

F(σ)Γ(σ)

∫ t

0
|(t− ξ)σ−1||G(Vn−1(x))− G(Vn−2)|dx.

Using Lipchitz property of function G(v), we obtain the following expression:

|Vn(t)− Vn−1(t) | ≤
1− σ

F(σ)
τ|Vn−1(t)− Vn−2(t) |

+
σ

F(σ)Γ(σ)

∫ t

0
|(t− ξ)σ−1|τ|Vn−1(t)− Vn−2(t) | dx,

≤ 1− σ

F(σ)
α sup

t∈[0,t f ]

|Vn−1(t)− Vn−2(t) |

+
σ

F(σ)Γ(σ)

∫ t

0
τ sup

t∈[0,t f ]

|(t− ξ)σ−1| sup
t∈[0,t f ]

|Vn−1(t)− Vn−2(t)|dx,

|Vn(t)− Vn−1(t) | ≤ τ
(1− σ

F(σ)
+

σ

F(σ)Γ(σ)
T∗
)
‖Vn−1 − Vn−2‖∞,

sup
t∈[0,t f ]

|Vn(t)− Vn−1(t) | ≤ τ
(1− σ

F(σ)
+

σ

F(σ)Γ(σ)
T∗
)
‖Vn−1 − Vn−2‖∞,

‖Vn − Vn−1‖∞ ≤ κ‖Vn−1 − Vn−2‖∞,

where
κ = τ

(1− σ

F(σ)
+

σ

F(σ)Γ(σ)
T∗
)
< 1.

This implies that
d(Vn,Vn−1) ≤ κ d(Vn−1,Vn−2). (9)

Thus, from Equation (9), sequence (8) is contractive, hence Theorem 1 implies that it is
a Cauchy sequence. Now, for p, q ∈ N and p > q,

|Vp − Vq |=|Vp − Vp−1 + Vp−1 − Vp−2 + Vp−2...− Vq+1 + Vq+1 − Vq |,
≤ |Vp − Vp−1 | +|Vp−1 − Vp−2 | +... + |Vq+1 − Vq |,
≤ κp−1|V1 − V0 | +κp−2|V1 − V0 | +... + κq|V1 − V0 |,
≤ [κp−1 + κp−2 + ... + κq]|V1 − V0 | .
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The right-hand side is a geometric series that is always convergent for 0 < κ < 1.

|Vp − Vq |≤κq 1− κp−q

1− κ
|V1 − V0 | ≤κq 1

1− κ
|V1 − V0 | .

Since 0 < κ < 1, lim(κq) = 0. Therefore, we infer that the sequence (Vn) is Cauchy
and hence, by a theorem from [54], it is convergent. Let lim(Vn) = V , then the Equation (8)
gives

limn→∞Vn(t) = V(t) = v(0) +
1− σ

F(σ)
G(V(t)) + σ

F(σ)Γ(σ)

∫ t

0
(t− ξ)σ−1G(v(ξ))dξ, (10)

which is the required solution.
Uniqueness: For the uniqueness of the solution, we assume on the contrary that the

sequence (Vn) converges to two limits, V1 and V2, such that V1 6= V2. Then, there exist
n1 and n2 ∈ N such that,

|Vn − V1 |< ε1, n1 ≥ n.

|Vn − V2 |< ε2, n2 ≥ n.

Let n = max{n1, n2}. Then,

|V1 − V2 |= |V1 − Vn + Vn − V2 |≤ |V1 − Vn | +|Vn − V2 |< ε1 + ε2 = ε,

which implies,

|V1 − V2 |= 0⇒ V1 = V2.

Hence, it is proved that the solution (10) is a unique solution of (6) or equivalently of
the system (5).

3.2. Boundedness and Positivity of the Solutions

Next, we prove another property of the model, i.e., we prove that the model (5) has a
positive and bounded solution for t ≥ 0.

Theorem 5. The solution y(t) = (S(t), V(t), E(t), I(t), Q(t), R(t)) of the model (5) is bounded.

Proof. Applying the Atangana–Baleanu–Caputo derivative operator ABC
0 Dσ

t to (1), we have

ABC
0 Dσ

t N(t) =ABC
0 Dσ

t S(t) +ABC
0 Dσ

t V(t) +ABC
0 Dσ

t E(t) +ABC
0 Dσ

t I(t)

+ABC
0 Dσ

t Q(t) +ABC
0 Dσ

t R(t),

=Π− d1 I − d2Q− µN.

Since d1 I + d2Q ≥ 0, so

ABC
0 Dσ

t N(t) ≤ Π− µN(t).

We apply the Laplace transform on both sides of the above inequality to obtain

L{ABC
0 Dσ

t N(t)}(s) ≤ Π
s
− µL{N(t)}(s),

or

F(σ)sσ

σ + (1− σ)sσ
N(s) + µN(s) ≤ Πs−1 +

F(σ)N(0)sσ−1

σ + (1− σ)sσ
, (11)

where N(0) represents the initial value of the total population.
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Inequality (11) is solved to obtain

N(s) ≤ ΠΩ
µ

sσ−(σ+1)

sσ + Ω
+

Ω
µσ

[
Π(1− σ) + F(σ)N(0)

]
sσ−1

sσ + Ω
, (12)

where Ω =
σµ

F(σ) + (1− σ)µ
.

Application of inverse Laplace transform on both sides of (12) gives us

N(t) ≤ ΠΩ
µ

Eσ,σ+1(−Ωtσ) +
Ω
µσ

[
Π(1− σ) + F(σ)N(0)

]
Eσ,1(−Ωtσ). (13)

Since the Mittag–Leffler function

Eσ,σ+1(−Ωtσ) =
1

Ωtσ

[
1− Eσ,1(−Ωtσ)

]
,

is bounded for all t > 0, so it possesses an asymptotic behavior [31]. It is obvious from

(13) that N(t) ≤ Π
µ

as t → ∞. Thus, N(t) and all other variables of the model (5) are

bounded.

Theorem 6. The solution space y(t) = (S, V, E, I, Q, R) of the system (5) will remain positive
forever with any positive initial conditions.

Proof. Let us consider Equation (5a) of the model (5).

ABC
0 Dσ

t S = Π− βIS− (µ + α)S.

We have proved that the solutions of the equations of the model (5) are bounded, so
we can define c = max(βI + µ + α) as a constant. Then,

ABC
0 Dσ

t S(t) ≥ −c S(t). (14)

Now, we apply the Laplace transform on both sides of (14) to obtain

F(σ)sσ

σ + (1− σ)sσ
[S(s)]− F(σ)sσ−1

σ + (1− σ)sσ
S(0) ≥ −c [S(s)].

This can be solved to obtain

[S(s)] ≥ F(σ)S(0)z
cσ

sσ−1

sσ +z ,

where z = cσ
F(σ)+c(1−σ)

.
Now, applying inverse Laplace transform in the above inequality and using property

of Mittage–Laffler function, we obtain

S(t) ≥ F(σ)S(0)z
cσ

Eσ,1

(
−ztσ

)
> 0. (15)

Thus, the solution variable S(t) > 0 for all t ≥ 0. Similarly, it can be proved that other
state variables, corresponding to any non-negative initial data, are also positive for all t ≥ 0.
Thus, the solutions in R6

+ remain positive forever.
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On the basis of above results, the feasible invariant region is defined as

Ξ =

{
(S, V, E, I, Q, R) ∈ R6

+ : 0 ≤ N(t) ≤ Π
µ

}
,

with non-negative initial conditions in R6
+.

3.3. Equilibrium Points and Threshold ParameterR0

Equilibrium points represent the steady-state prevalence of the disease, where the
number of new infections is balanced by the number of recoveries and deaths. We find
equilibrium points of the model (5) by solving corresponding steady-state equations. To
find steady-state equations, we put

ABC
0 Dσ

t S(t) =ABC
0 Dσ

t V(t) =ABC
0 Dσ

t E(t) =ABC
0 Dσ

t I(t) =ABC
0 Dσ

t Q(t) =ABC
0 Dσ

t R(t) = 0,

in system (5).

3.3.1. Disease Free Equilibrium Point

When no one is infected, the state is known as a disease-free state and the correspond-
ing equilibrium point is called the disease free equilibrium (DFE) point. So, to obtain the
DFE point, we put E(t) = I(t) = 0 in steady-state equations of the model (5) and solve
them to obtain the following DFE point.

P0 = (S∗, V∗, E∗, I∗, Q∗, R∗) =
(

Π
µ + α

,
Πα

(µ + α)(γ1 + µ)
, 0, 0, 0,

Παγ1

µ(µ + α)(γ1 + µ)

)
. (16)

It is to be noted that S∗ + V∗ + E∗ + I∗ + Q∗ + R∗ =
Π
µ

.

3.3.2. Reproduction Number

The reproduction numberR0 is a mathematical term used to describe the contagious-
ness of an infectious disease. Specifically, it represents the average number of new infections
that will occur as a result of each infected individual. If the reproduction number is high, it
means that the disease is very contagious and will likely require significant interventions
to restrict its spread.

We implement the next-generation matrix method [56] to findR0. The recruitment of
new infections, and the inside and outside transmission terms of infected compartments
are, respectively, represented by the following matrices F and V , i.e.,

F =


−δIV

βIS + δIV
0
0

, V =


−αS + (γ1 + µ)V
(µ + γ + q1)E

−γE + (γ2 + γ3 + µ + d1)I
−q1E− γ3 I + (q2 + d2 + µ)Q

.

The Jacobian of F and V , evaluated at P0, are, respectively, given as

F =


0 0 −δV∗ 0
0 βS∗ + δV∗ 0 0
0 0 0 0
0 0 0 0

, V =


k2 0 0 0
0 k3 0 0
0 −γ k4 0
0 −q1 γ3 k5

.

the reproduction numberR0 is computed as the spectral radius of the matrix FV−1. Thus,

R0 =
γΠ(δα + βk2)

k1k2k3k4
, (17)
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where k1 = α + µ, k2 = γ1 + µ, k3 = γ + q1 + µ, k4 = γ2 + γ3 + d1 + µ. The disease is
contiguous and spreads in population ifR0 > 1.

3.3.3. Endemic Equilibrium

The other equilibrium point where the disease is constantly present in the system is
called the endemic equilibrium (EE) point. With the consideration that E(t) 6= 0, I(t) 6= 0,
the steady-state equations of model (5) are solved to obtain the following EE point.

P1 = (S̄, V̄, Ē, Ī, Q̄, R̄),

where

S̄ =
Π

k1R0
, V̄ =

k1k3k4R0 − γβΠ
γδk1R0

, Ē =
k4(R0 − 1)

γβ
, Ī =

(R0 − 1)
β

,

Q̄ =
(q1k4 + γγ3)(R0 − 1)

βγk5
, R̄ =

γ1V̄ + γ2 Ī + q2Q̄
µ

and k5 = q2 + d2 + µ.

3.4. Stability Analysis

Now, we discuss the local and global stabilities of the model (5) at equilibrium points
P0 and P1. For local stability, we check signs of eigenvalues of the Jacobian matrix computed
at equilibrium points, whereas for global stability, we implement the Lyapunov theory
with the LaSalle invariance principle [53] and the Castillo-Chavez theory [57]. The global
stability analysis of endemic equilibrium points may suggest public health interventions.
If the equilibrium is locally stable, control measures can be implemented to prevent the
disease from becoming endemic. On the other hand, if the equilibrium is globally stable,
long-term disease control strategies are required.

3.4.1. Local Stability

The purpose of local stability analysis is to identify whether a small perturbation in
the disease system will cause the disease to persist or disappear. In epidemiological models,
local stability at equilibrium points is an important concept for understanding the behavior
of infectious diseases and how they spread through a population. This section investigates
the local stability of the whooping cough model (5) at the DFE point and EE point.

Theorem 7. IfR0 < 1, the model (5) is locally asymptotically stable at P0, and unstable ifR0 > 1.

Proof. The model (5) at disease-free equilibrium P0 corresponds to the following Jacobian
matrix:

J(P0) =



−k1 0 0 −βS∗ 0 0
α −k2 0 −δV∗ 0 0
0 0 −k3 βS∗ + δV∗ 0 0
0 0 γ −k4 0 0
0 0 q1 γ3 −k5 0
0 γ1 0 γ2 q2 −µ

.

Eigenvalues of the Jacobian matrix J(P0) are given as

λ1 = −µ,

λ2 = −k1,

λ3 = −k2,

λ4 = −k3,

λ5 = −k5,

λ6 = −(1−R0)k4.
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Here, λi < 0 for i = 1, 2, . . . , 6 when R0 < 1. Therefore, the system (5) is locally
asymptotically stable at the point P0. If R0 > 1, the eigenvalue λ6 with a positive sign
demonstrates the model’s local instability at P0.

Theorem 8. IfR0 > 1, the model (5) is locally asymptotically stable at P1, and unstable ifR0 < 1.

Proof. The model (5) at endemic equilibrium P1 corresponds to the following Jacobian matrix:

J(P1) =



−k1 − β Ī 0 0 −βS̄ 0 0
α −k2 − δ Ī 0 −δV̄ 0 0
β Ī δ Ī −k3 βS̄ + δV̄ 0 0
0 0 γ −k4 0 0
0 0 q1 γ3 −k5 0
0 γ1 0 γ2 q2 −µ

.

We determine the following eigenvalues of the Jacobian matrix J(P1).

Λ1 = −µ,

Λ2 = −k3,

Λ3 = −k5,

Λ4 = −
(

k2 +
δ(R0 − 1)

β

)
,

Λ5 = −
(

k1 +
k4(R0 − 1)

γ

)
,

Λ6 = − k1k2(IγSβ + IγδV)− γSβδk1 − γδVk2β + k3k4(k2β + Iδβ− Ik2k1 + δk1) + γδαSβ

k3(βk2 + Iβδ− Ik1k2 + k1δ)

After plugging in the values of parameters, the eigenvalue Λ6 is approximated to give
−0.46232, a negative eigenvalue. Hence, all of the eigenvalues Λi for i = 1, 2, . . . , 6, are
less than zero forR0 > 1. Therefore, at the endemic equilibrium point P1, the system (5) is
locally asymptotically stable.

Local stability of the endemic equilibrium point suggests that the disease is likely to
persist in the population even after initial outbreaks.

3.4.2. Global Stability

Global stability analysis looks at how the disease system behaves over a long period.
This implies that, regardless of the starting points, the system will eventually reach the
equilibrium point. To demonstrate that model (5) at DFE state is globally stable, the
technique introduced by Castillo-Chavez et al. [57] is applied. Using this technique, we
reproduce the model (5) in the form of the following equations.

ABC
0 Dσ

t Y = K(Y ,Z),
ABC
0 Dσ

t Z = G(Y ,Z), G(Y , 0) = 0.
(18)

where the number of persons who are not affected is indicated by Y = (S, V), and
Z = (E, I, Q) indicates the number of individuals having an infection. The last equa-
tion of the model is ignored because it is independent of the rest. Here, P0 = (Y0, 0) is
the DFE point. To verify that the DFE point is globally asymptotically stable (GAS), the
following two requirements must be fulfilled.

(C1) : ABC
0 Dσ

t Y = K(Y0, 0) = 0, Y0 is GAS. (19)

(C2) : ABC
0 Dσ

t Z = BZ − M̄(Y ,Z), where M̄(Y ,Z) ≥ 0 for all (Y ,Z) ∈ Ξ, (20)
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where B = DZG(Y0, 0) is an M-matrix, and Ξ represents the feasible invariant region.
Thus, according to Castillo-Chavez et al., when the system of Equation (18) satisfies the
conditions (C1) and (C2), the following theorem holds valid.

Theorem 9. The DFE point P0 is GAS ifR0 < 1 in the region Ξ and the conditions (C1) and (C2)
are satisfied.

Proof. Suppose Y = (S, V) represents uninfected individuals, while Z = (E, I, Q) symbol-
ize the states having infection, and P0 = (Y0, 0) is the DFE. Then,

ABC
0 Dσ

t Y = K(Y ,Z) =
[

Π− βIS− (µ + α)S
αS− δIV − (γ1 + µ)V

]
. (21)

At P0 = (Y0, 0), we obtain

K(Y0, 0) =
[

Π− (µ + α)S∗

αS∗ − (γ1 + µ)V∗

]
= 0, (22)

where Y0 = (S∗, V∗) =
(

Π
(µ + α)

,
αΠ

(µ + α)(γ1 + µ)

)
. Thus, Y0 is GAS.

Now,

ABC
0 Dσ

t Z =

−(γ + q1 + µ) βS∗ + δV∗ 0
γ −(γ2 + γ3 + d1 + µ) 0
q1 γ3 −(q2 + d2 + µ)

E
I
Q


−

βI(S∗ − S) + δI(V∗ −V)
0
0

,

=BZ − M̄(Y ,Z), (23)

where

B =

−(γ + q1 + µ) βS∗ + δV∗ 0
γ −(γ2 + γ3 + d1 + µ) 0
q1 γ3 −(q2 + d2 + µ)

, Z =

E
I
Q

,

M̄(Y ,Z) =

βI(S∗ − S) + δI(V∗ −V)
0
0

.

Matrix B is clearly an M-matrix. At DFE point P0, S ≤ S0 and V ≤ V0, therefore
M̄(Y ,Z) ≥ 0. Consequently, DFE point P0 is GAS.

Global stability of DFE implies that the disease will not be able to stay in the population
even with the introduction of perturbation of any size in the population.

Theorem 10. The endemic equilibrium (EE) point P1 is globally stable ifR0 > 1 and unstable if
R0 < 1.
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Proof. Assume that the basic reproductive numberR0 > 1 so that the endemic equilibrium
point exists. We now develop a Volterra-type Lyapunov functional Θ given as

Θ(S, V, E, I, Q, R) =
(

S− S̄− S̄ log
(

S
S̄

))
+

(
V − V̄ − V̄ log

(
V
V̄

))
+

(
E− Ē− Ē log

(
E
Ē

))
+

(
I − Ī − Ī log

(
I
Ī

))
+

(
Q− Q̄− Q̄ log

(
Q
Q̄

))
+

(
R− R̄− R̄ log

(
R
R̄

))
.

Applying ABC
0 Dσ

t on both sides, we obtain

ABC
0 Dσ

t Θ =

(
S− S̄

S

)
ABC
0 Dσ

t S +

(
V − V̄

V

)
ABC
0 Dσ

t V +

(
E− Ē

E

)
ABC
0 Dσ

t E

+

(
I − Ī

I

)
ABC
0 Dσ

t I +
(

Q− Q̄
Q

)
ABC
0 Dσ

t Q +

(
R− R̄

R

)
ABC
0 Dσ

t R.

Using equations of the model (5), we obtain

ABC
0 Dσ

t Θ =

(
S− S̄

S

)
(Π− βIS− (µ + α)S) +

(
V − V̄

V

)
(αS− δIV − (γ1 + µ)V)

+

(
E− Ē

E

)
(βIS + δIV − (µ + γ + q1)E) +

(
I − Ī

I

)
(γE− (γ2 + γ3 + µ + d1)I)

+

(
Q− Q̄

Q

)
(q1E + γ3 I − (q2 + d2 + µ)Q) +

(
R− R̄

R

)
(γ1V + γ2 I + q2Q− µR),

After rearranging the terms, we obtain

ABC
0 Dσ

t Θ =
[
Π + (βI + (µ + α))

S̄2

S
+ αS + (δI + γ1 + µ)

V̄2

V
+ δIV + βIS + (µ + γ + q1)

Ē2

E

+ γE + (γ2 + γ3 + µ + d1)
Ī2

I
+ q1E ++γ3 I + (q2 + d2 + µ)

Q̄2

Q
+ γ1V + γ2 I

+ q2Q + µ
R̄2

R

]
+
[
(βI + (µ + α))

(S− S̄)2

S
+ (βI + (µ + α))S̄ + Π

S̄
S

+ (δI + γ1 + µ)
(V − V̄)2

V
+ (δI + γ1 + µ)V̄ + (αS)

V̄
V

+ (µ + γ + q1)
(E− Ē)2

E

+ (βIS + δVI)
Ē
E
+ (µ + γ + q1)Ē + (γ2 + γ3 + µ + d1)

(I − Ī)2

I
+ γE

Ī
I

− (γ2 + γ3 + µ + d1) Ī + (q2 + d2 + µ)
(Q− Q̄)2

Q
+ (q1E + γ3 I)

Q̄
Q

+ (q2 + d2 + µ)Q̄ + µ
(R− R̄)2

R
+ µR̄ + (γ1V + γ2 I + q2Q)

R̄
R

]
.

It is now easier to write it as

ABC
0 Dσ

t Θ = δ1 − δ2,

where

δ1 =Π + (βI + (µ + α))
S̄2

S
+ αS + (δI + γ1 + µ)

V̄2

V
+ δIV + βIS + (µ + γ + q1)

Ē2

E
+ γE

+ (γ2 + γ3 + µ + d1)
Ī2

I
+ q1E ++γ3 I + (q2 + d2 + µ)

Q̄2

Q
+ γ1V + γ2 I + q2Q + µ

R̄2

R
,
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and

δ2 =(βI + (µ + α))
(S− S̄)2

S
+ (βI + (µ + α))S̄ + Π

S̄
S
+ (δI + γ1 + µ)

(V − V̄)2

V

+ (δI + γ1 + µ)V̄ + (αS)
V̄
V

+ (µ + γ + q1)
(E− Ē)2

E
+ (βIS + δVI)

Ē
E
+ (µ + γ + q1)Ē

+ (γ2 + γ3 + µ + d1)
(I − Ī)2

I
+ γE

Ī
I
− (γ2 + γ3 + µ + d1) Ī + (q2 + d2 + µ)

(Q− Q̄)2

Q

+ (q1E + γ3 I)
Q̄
Q

+ (q2 + d2 + µ)Q̄ + µ
(R− R̄)2

R
+ µR̄ + (γ1V + γ2 I + q2Q)

R̄
R

.

Since all of the parameters in the model are non-negative, we have ABC
0 Dσ

t Θ < 0 when
δ1 < δ2 and ABC

0 Dσ
t Θ = 0 if and only if δ1 = δ2. The later case implies that S = S̄, V = V̄,

E = Ē, I = Ī, Q = Q̄, and R = R̄. Thus, by LaSalle’s invariance principle, the EE point P1 is
GAS.

Global stability of endemic equilibrium point means that, under certain conditions,
the disease will stay forever in the population.

4. Numerical Investigations and Implementations

To approximate the solution of the proposed ABC fractional model for whooping
cough, we use the Toufik–Atangana type numerical scheme [58]. We employ the technique
to investigate the dynamical behavior of whooping cough pandemic for various fractional
order values σ.

4.1. Toufik–Atangana Discretizations

In this section, we present a brief overview of the numerical scheme that will be
used to approximate the solution of the fractional model (5). Derivation of the scheme is
based on the Toufik–Atangana scheme [58] for fractional order differential equations with
an ABC-derivative operator. The scheme is implemented to discretize each differential
equation of model (5).

Application of the fundamental theorem of fractional calculus to model (6) gives us

V(t)− V(0) = 1− σ

F(σ)
G(V(t)) + σ

F(σ)Γ(σ)

∫ t

0
(t− ξ)σ−1G(V(ξ))dξ,

and in discrete form:

V(tq+1)− V(0) =
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)Γ(σ)

∫ tq+1

0
(tq+1 − ξ)σ−1G(V(ξ))dξ,

where t = tq+1, q = 0, . . . , N with h =
t f
N .

This can be equivalently put in the form:

V(tq+1) = V(0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)Γ(σ)

q

∑
p=0

∫ tq+1

0
(tq+1 − ξ)σ−1G(V(ξ))dξ. (24)

We use interpolation polynomial to approximate the function G(V(ξ)) to obtain

G(V(ξ)) =
G(V(tp))

h
(t− tp−1)−

G(V(tp−1))

h
(t− tp).

We substitute approximation of G(V(ξ)) in (24) to obtain
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V(tq+1) = V(0) +
1− σ

F(σ)
G(V(t)) + σ

F(σ)Γ(σ)

q

∑
p=0

[G(V(tp))

h

∫ tp+1

tp
(tq+1 − t)σ−1(t− tp−1)dt

−
G(V(tp−1))

h

∫ tp+1

tp
(tq+1 − t)σ−1(t− tp)dt

]
. (25)

The integrals in (25) are evaluated to obtain the following numerical scheme for the
equations of type (6).

V(tq+1) = V(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
.

Thus, the model (5) in discrete form is given as

S(tq+1) = S(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
,

V(tq+1) = V(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
,

E(tq+1) = E(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
,

I(tq+1) = I(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
,

Q(tq+1) = Q(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
,
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R(tq+1) = R(t0) +
1− σ

F(σ)
G(V(tq)) +

σ

F(σ)

q

∑
p=0

[
hσG(V(tp))

Γ(σ + 2)

{
(q− p + 2 + σ)(q + 1− p)σ

−(q− p + 2 + 2σ)(q− p)σ

}
−

hσG(V(tp−1))

Γ(σ + 2)

{
(q + 1− p)σ+1 − (q− p + 1 + σ)(q− p)σ

}]
.

For numerical simulations, we shall consider days as time unit. The model parameters
are assigned following appropriate numerical values: Π = 0.4, µ = 0.22, α = 0.01,
β = 1.15, δ = 0.2, γ = 0.5, γ1 = 0.15, γ2 = 0.02, γ3 = 0.15, q1 = 0.02, q2 = 0.015,
d1 = 0.004, d2 = 0.01 where µ is the natural death rate, d1 and d2 are disease-induced death
rates of infected and quarantined individuals, respectively.

Fractional Order Effect on Disease Dynamics

We employ the aforementioned approximations to present a graphical representation
of the proposed fractional model and investigate the influence of order σ ∈ (0, 1] on
solution curves.

From graphical curves of the state variables shown in Figure 2, we observe a decrease
in exposed, infected, and quarantined individuals with a decrease in the fractional order of
the differential equations. However, the susceptibles increase with a decrease in fractional
order. Thus, a reduction in fractional order values will reduce whooping cough infection
in humans.
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Figure 2. Dynamics of the state variables of the whooping cough epidemic model for different values
of fractional order σ.

4.2. Quarantining Effects on Disease Dynamics

In model formulation, we had considered quarantining both the exposed and infected
individuals, respectively, at rates q1 and γ3. In this section, we study the effect of both rates
on disease control for two different values of fractional order, i.e., for σ = 0.8 and σ = 0.95.

4.2.1. Effect of Q1

The impact of quarantining exposed individuals on disease dynamics can be seen in
Figures 3 and 4. The curves for exposed and infected individuals decrease with an increase
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in the quarantine rate q1 from 0 to 0.7. In this case, the recovered individuals also decrease
but the susceptible rise with the increase in the value of q1. We also observe that, for σ = 0.8,
the decline in infection is more as compared to the decline in curves for fractional order
σ = 0.95.
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Figure 3. Effect of quarantine rate q1 on state variables with σ = 0.8.
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Figure 4. Effect of quarantine rate q1 on state variables with σ = 0.95.
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4.2.2. Effect of γ3

The impact of quarantining infected individuals, on disease dynamics, can be seen
in Figures 5 and 6. If the quarantining rate γ3 is gradually increased up to 0.7, the curves
for exposed and infected individuals gradually decrease. From this declining behavior, we
may conclude that the disease may move to a disease-free state if the quarantining rate
is increased further, that is more than 70% of infected people should be quarantined to
reach a disease-free state. The decline in infection for fractional order σ = 0.8 is more as
compared to the case for σ = 0.95.

From the above two quarantining studies, we observe that the quarantine rate q1 has
more effect in the reduction of exposed cases, whereas the impact of quarantine rate γ3 is
more on infected individuals.

4.3. Vaccination Effect on Disease Dynamics

In this section, we look at how varying vaccination rates affect the dynamics of the
whooping cough model quantitatively. From Figures 7 and 8, we observe that the infection
in the population decreases as the vaccination rates increase from 0 to 0.7. If the rates are
increased further, the curves for infected classes may further decline to move to disease-free
states. We also notice a remarkable rise in the recovered individuals in this case. The curves
for exposed and infected individuals slightly decline more with the increase in the value of
fractional order σ.
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Figure 5. Effect of quarantine rate γ3 on state variables with σ = 0.8.
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Figure 6. Effect of quarantine rate γ3 on state variables with σ = 0.95.
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Figure 7. Effect of vaccination rate α on state variables with σ = 0.8.
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Figure 8. Effect of vaccination rate α on state variables with σ = 0.95.

5. Sensitivity Analysis

In this section, we find the sensitivity index for each parameter of the reproduction
numberR0. On the basis of these indices, we determine the sensitivity of the parameter to
R0. A parameter with a high index value is more sensitive toR0. The sensitivity analysis
may help to design optimal control strategies for disease control. Parameters having high
sensitivity indices may be considered as control variables for the control problem.

We implement the approach given in [52] to compute sensitivity indices of the param-
eters ofR0. The approach is to use the following formula to compute the sensitivity index
of a parameter ζ ofR0.

IR0
ζ =

∂R0

∂ζ

ζ

R0
.

Evaluated sensitivity indices for each parameter of R0 are listed in Table 1. Other
than Π and µ, transmission rate β has the highest sensitivity index. Thus, this parameter
is highly sensitive to R0. A unit change in β will produce a change of 0.9953 in R0.
Other parameters having comparatively high sensitivity index are γ and γ3. Since γ3 is
a controllable parameter, it will be considered as one of the control variables for disease
control strategy.

Table 1. Sensitivity indices for each parameter of R0.

Parameter Sensitivity Index Parameter Sensitivity Index

Π 1.0000 µ −1.8150

α −0.0388 β 0.9953

δ 0.0046 γ 0.3243

γ1 −0.0018 γ2 −0.0507

γ3 −0.3807 q1 −0.0270

d1 −0.0101 d2 0.0000



Symmetry 2023, 15, 1773 23 of 33

6. Optimization of the Whooping Cough Model

In this section, we construct an optimal control problem to determine optimal quarantine
and vaccination rates to restrict the spread of whooping cough infection. For this, we first
update the disease model (5) to adjust time-dependent controls and then define an objective
functional. We formulate the Hamiltonian function by introducing adjoint variables and
develop optimality conditions by implementing the Pontryagin’s principle [59–61]. The
conditions will be evaluated by following the steps of an algorithm to produce optimal
solutions to the control problem.

6.1. Optimal Control Problem and Optimality Conditions

The objective of defining an optimal control problem is to optimally investigate the
effect of quarantining infected individuals and vaccination of susceptible on the spread of
whooping cough disease. To achieve this objective, we formulate control strategies for the
minimization of exposed and infected individuals at the lowest cost.

First of all, we update model (5) by considering vaccination rate α and quarantining
rates q1, γ3 as time-dependent controls, respectively, denoted by u1(t), u2(t), and u3(t).
With these controls, the updated whooping cough model is given below:

ABC
0 Dσ

t S(t) = Π− βIS− (µ + u1)S, (26a)
ABC
0 Dσ

t V(t) = u1S− δIV − (γ1 + µ)V, (26b)
ABC
0 Dσ

t E(t) = βIS + δIV − (µ + γ + u2)E, (26c)
ABC
0 Dσ

t I(t) = γE− (γ2 + u3 + µ + d1)I, (26d)
ABC
0 Dσ

t Q(t) = u2E + u3 I − (q2 + d2 + µ)Q, (26e)
ABC
0 Dσ

t R(t) = γ1V + γ2 I + q2Q− µR, (26f)

along with conditions:

S(0) = S0 > 0, V(0) = V0 ≥ 0, E(0) = E0 ≥ 0,

I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0, R(0) = R0 ≥ 0.
(26g)

The objective functional consisting of infected states and controls is defined as

J(z, u) =

t f∫
0

[
a1E(t) + a2 I(t) +

1
2

b1u2
1(t) +

1
2

b2u2
2(t) +

1
2

b3u2
3(t)

]
dt, (27)

where t f is the terminal time, z = (E, I) represent state variables, u = (u1(t), u2(t), u3(t))
represent control variables, a1, a2 are non-negative weights associated with state variables
and bi ≥ 0, i = 1, 2, 3 are the cost of controls.

Our aim is to determine an optimal control variable u∗ ∈ U that minimizes the
objective functional J(z, u), i.e.,

min
u(t)∈U

J(z, u) subject to model (26), (28)

where U is an appropriate space of control variables.
Now, we define a Hamiltonian function and implement Pontryagin’s maximum princi-

ple to derive the optimality conditions that are necessary for the solution of optimal control
problem (28).
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H(V(t), Ψ(t), u(t)) =a1E(t) + a2 I(t) +
1
2

b1u2
1(t) +

1
2

b2u2
2(t) +

1
2

b3u2
3(t)+

+ Ψ1

[
Π− βIS− (µ + u1)S

]
+ Ψ2

[
u1S− δIV − (γ1 + µ)V

]
+ Ψ3

[
βIS + δIV − (µ + γ + u2)E

]
+ Ψ4

[
γE− (γ2 + u3 + µ + d1)I

]
+ Ψ5

[
u2E + u3 I − (q2 + d2 + µ)Q

]
+ Ψ6

[
γ1V + γ2 I + q2Q− µR

]
, (29)

where V(t) = (S(t), V(t), E(t), I(t), Q(t), R(t)) is a vector of state variables, Ψj(t),
j = 1, . . . , 6 are adjoint variables associated with the state equations of system (26).

Theorem 11. Let V∗(t) be the optimal solution for model (26) corresponding to the optimal control
variable u∗(t) for the control problem (28). Then, there exists a system of linear adjoint equations
given as

ABC
t Dσ

t f
Ψ1(t) = −

∂H
∂S

, (30a)

ABC
t Dσ

t f
Ψ2(t) = −

∂H
∂V

, (30b)

ABC
t Dσ

t f
Ψ3(t) = −

∂H
∂E

, (30c)

ABC
t Dσ

t f
Ψ4(t) = −

∂H
∂I

, (30d)

ABC
t Dσ

t f
Ψ5(t) = −

∂H
∂Q

, (30e)

ABC
t Dσ

t f
Ψ6(t) = −

∂H
∂R

, (30f)

along with the conditions:

Ψ1(t f ) = Ψ2(t f ) = Ψ3(t f ) = Ψ4(t f ) = Ψ5(t f ) = Ψ6(t f ) = 0,

and the control variable u∗(t) = (u∗1 , u∗2 , u∗3) is characterized by

u∗1(t) = min
{

1, max
{
(Ψ1 −Ψ2)S

b1
, 0
}}

,

u∗2(t) = min
{

1, max
{
(Ψ3 −Ψ5)E

b2
, 0
}}

,

u∗3(t) = min
{

1, max
{
(Ψ4 −Ψ5)S

b3
, 0
}}

.

�
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Evaluation and simplification of equations (30a)–(30f) lead us to the following system
of linear adjoint equations:

ABC
t Dσ

t f
Ψ1 =(βI + µ + u1)Ψ1 − u1Ψ2 − βIΨ3, (31a)

ABC
t Dσ

t f
Ψ2 =(δI + γ1 + µ)Ψ2 − δIΨ3 − γ1Ψ6, (31b)

ABC
t Dσ

t f
Ψ3 =− a1 + (µ + γ + u2)Ψ3 − γΨ4 − u2Ψ5, (31c)

ABC
t Dσ

t f
Ψ4 =− a2 + βSΨ1 + δVΨ2 − (βS + δV)Ψ3

+ (γ2 + u3 + µ + d1)Ψ4 − u3Ψ5 − γ2Ψ6, (31d)
ABC
t Dσ

t f
Ψ5 =(q2 + d2 + µ)Ψ5 − q2Ψ6, (31e)

ABC
t Dσ

t f
Ψ6 =µΨ6, (31f)

along with the conditions

Ψ1(t f ) = Ψ2(t f ) = Ψ3(t f ) = Ψ4(t f ) = Ψ5(t f ) = Ψ6(t f ) = 0. (31g)

Differentiation of the Hamiltonian with respect to controls gives us the expressions for
control variables, i.e.,

∂H
∂u1

= 0 ⇒ u1(t) =
Ψ1 −Ψ2

b1
S(t),

∂H
∂u2

= 0 ⇒ u2(t) =
Ψ3 −Ψ5

b2
E(t),

∂H
∂u3

= 0 ⇒ u3(t) =
Ψ4 −Ψ5

b3
I(t),

and the optimal characterizations for controls are given as

u∗1(t) = min
{

1, max
{
(Ψ1 −Ψ2)S

b1
, 0
}}

, (32a)

u∗2(t) = min
{

1, max
{
(Ψ3 −Ψ5)E

b2
, 0
}}

, (32b)

u∗3(t) = min
{

1, max
{
(Ψ4 −Ψ5)S

b3
, 0
}}

. (32c)

To approximate solutions of the state model (26), we employ the Toufik–Atangana
method described in Section 4.1, and for the corresponding adjoint system (31), we imple-
ment Toufik–Atangana scheme backward in time together with the conditions (31g).

6.2. Solution Algorithm

Optimality conditions for the control problem (28) are approximated for optimal
solutions by the following steps of the Algorithm 1 given below.

Algorithm 1: Algorithm to find minimizer of the control problem (28)

1. Make an initial guess for control us ∈ U for s = 0.
2. Use values of control us to approximate solutions of the state system (26) and the

adjoint system (31).
3. Determine u∗ from (32).
4. Refine control us by using us = (us + u∗)/2.
5. Stop iterations when ‖Θs −Θs−1‖ < ε‖Θs‖ for s > 0,

otherwise s + 1←− s and jump back to step 2.
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Where Θ represents each of the state variables, adjoint variables and control variables
and ε > 0 is the tolerance set as per accuracy requirements.

6.3. Optimal Solutions

Simulation results of the optimal control problem (28) are presented and discussed in
this section. To obtain these results, we implemented steps of Algorithm 1 through MAT-
LAB code. We discretize the domain [0, t f ] into N + 1 discrete points tq = qh, q = 0, 1, . . . , N

where h =
t f
N and approximate the state and adjoint equations using the approximating

scheme, explained in Section 4.1. We use Simpson’s rule to approximate the cost func-
tional (27) at the discrete points. The results are simulated for different values of fractional
order, i.e., for σ = 0.75, 0.8, 0.9, 1.

The objective of this study is to determine the optimal quarantine rates q1, γ3, and the
vaccination rate α that will not only minimize the cost functional, but will also reduce the
whooping cough infection in society. For detailed analysis, we discuss here three different
cases. In the first case, we keep quarantine rates q1, γ3 fixed in time and determine the
optimal vaccination rate α(t) for disease control. In the second case, we determine the best
quarantine rates q1(t), γ3(t) that will reduce the spread of whooping cough infection. In
this case, the vaccination rate will be considered as time independent. In the last strategy,
we deal with time-dependent vaccination rate and quarantine rates together to determine
their optimal profiles that will help to reduce the cost functional to its minimum and to
curtail the whooping cough disease infection.

6.3.1. Optimal Vaccination Rate

In the first case, we consider optimization of the problem (28) by considering only
vaccination rate α(t)(= u1(t)) as the time-dependent control variable. Figure 9 shows
profiles of the optimal vaccination rate α(t) and the associated cost functional J for different
values of fractional order σ. From the figure, we conclude that there is a need to vaccinate
almost 40% to 50% of the susceptible at the start of the pandemic and then the vaccination
percentage decreases gradually with days. We also note that as the fractional order σ
decreases, the corresponding cost of implementing the vaccination strategy reduces to its
minimum in each case. The minimum cost is observed for fractional order σ = 0.75. The
dynamical behaviors of the state variables before and after optimization for each value
of the fractional order σ are shown in Figure 10. A sufficient decrease in the exposed and
infected individuals is noticed in this figure; however, there is a significant rise in the
number of recovered individuals. Thus, the strategy is successful in reducing the disease
infection and increasing the number of recovered individuals.
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Figure 9. Optimal vaccination rate α and the cost functional J for different values of fractional order σ.
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Figure 10. Dynamics of state variables before and after optimization with vaccination rate α(t) as a
control variable.

6.3.2. Optimal Quarantine Rates

Now, we take quarantine rates q1(t)(= u2(t)) and γ3(t)(= u3(t)) as the time-dependent
control variables for the problem (28). Optimal curves for the control variables and the cor-
responding behavior of the cost functional for different values of fractional order is shown
in the Figure 11. In each case, the curves for the cost functional reach to their minimum
in seven iterations. The figure illustrates that there is a need to quarantine almost 50% of
the exposed individuals and 17% of the infected individuals to have optimal control of the
disease. The optimal quarantine percentage slightly varies with the fractional order σ. We
also note that as the fractional order σ decreases, the corresponding cost of implementing
the quarantine strategy reduces to its minimum in each case. Figure 12 shows the curves
for state variables before and after optimization. Once again, we observe a decrease in the
number of exposed and infected individuals in this case. However, the decrease, in this
case, is comparatively more to the case when only vaccination rate α(t) is considered as a
single control variable. This means quarantining exposed and infected individuals is more
effective for disease control. The computational cost is also less in this case. We also notice
a decrease in the number of recovered individuals, but an increase in the susceptible for
each value of fractional order σ.
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Figure 11. Optimal quarantine rates q1 (E to Q), γ3 (I to Q) and the cost functional J for different
values of fractional order σ.
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Figure 12. Dynamics of state variables before and after optimization with quarantine rates q1(t), γ3(t)
as control variables.

6.3.3. Optimal Vaccination and Quarantine Rates

In the last case, we consider vaccination rate α(t) and the quarantine rates q1(t), γ3(t)
as control variables for the optimal control problem (28). For this case, the optimal behavior
of the control variables and minimization of the related objective functional J are shown
in Figure 13. We observe that there is a need to vaccinate only 5% of the susceptible,
quarantine 80% of the exposed in the beginning and later up to 45%, and quarantine
30% of the infected individuals. We also note that as the fractional order σ decreases, the
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corresponding cost of implementing the strategy reduces to its minimum in each case. The
best cost is attained for σ = 0.75. The cost functional in this case takes more iterations to
attain its minimum value, i.e., the computational cost is more for this strategy. Profiles
of state variables before and after optimization are shown in Figure 14. the number of
exposed and infected individuals decreases more in this case as compared to the previous
two control strategies. We also notice a sufficient rise in the susceptible and recovered
curves for each value of the fractional order σ.
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Figure 13. Optimal vaccination rate α(t), quarantine rates q1 (E to Q), γ3 (I to Q) and the cost
functional J for different values of fractional order σ.
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Figure 14. Dynamics of state variables before and after optimization with vaccination and quarantine
rates α(t), q1(t), γ3(t) as control variables.
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The analysis of the three cases reveals that considering all three controls together
is more effective in reducing the infection of whooping cough disease. However, the
implementation of this strategy requires more resources and infrastructure. Moreover, the
vaccination strategy seems to be less effective as compared to the quarantine strategy in
controlling the spread of the disease.

7. Conclusions

In this work, we formulated a new ABC fractional disease model for whooping cough
infection to analyze the dynamics of the disease and to suggest optimal control strategies for
minimizing the effect of the disease. The choice of the ABC operator is due to its non-local
and non-singular kernel. First of all, we analyzed the model theoretically by establishing
biologically significant aspects of the model. We proved that the proposed model has a
unique solution that is positive and bounded. It is also verified that the equilibrium points
are locally and globally stable with restriction to threshold parameter R0. These results
concluded that the proposed model is well-posed for further numerical investigations.
Through sensitivity analysis, we determined that the disease transmission rates β and γ,
and the quarantine parameter γ3 are the most sensitive to R0. Due to their significant
impact onR0, the parameters may be considered as control variables for optimal control
analysis.

Another objective of this study was to suggest an optimal control strategy to restrict
the spread of whooping cough infection. For this, we considered vaccination rate α and
quarantine rates q1 (E to Q), γ3 (I to Q) as control variables, and studied their impact
on disease control. First of all, we took different levels (0 to 0.7) of these parameters
and explored the impact of each on disease control. We determined that the disease can
be controlled significantly by increasing the values of these parameters. However, it is
concluded that vaccination of the susceptible is more effective as compared to quarantining
the exposed or infected individuals. The impact of memory index (fractional order) σ on
disease dynamics was also investigated here. We visualized a decrease in the infection
cases with a decrease in the memory index.

For optimal control analysis, we considered the parameters α, q1, and γ3 as time-
dependent controls and formulated an optimal control problem by defining a cost func-
tional. The aim was to determine optimal values of the control variables that minimize the
cost functional. By implementing Pontryagin’s principle, we derived the necessary opti-
mality conditions for the optimal solution to the problem. In this study, we discussed three
different optimal control approaches. In the first case, we determined optimal solutions
by considering only the vaccination rate α as a control variable. In the second approach,
we considered quarantine rates q1, γ3 as the time-dependent controls and determined
optimal solutions for the given problem. In the last case, all the three parameters α, q1, γ3
were taken as time-dependent controls for optimal solutions. Graphical results show that
each of the considered strategies is very effective in reducing the exposed and infected
individuals and hence may be implemented to reduce whooping cough infection in society.
The graphical results also revealed that the case where we considered all three controls
together is more effective in reducing the spread of whooping cough infection. However,
implementation of this approach requires more resources and infrastructure. It is also
concluded that the simulation results from time-dependent controls are more cost-effective
as compared to the results produced by time-independent controls.

The objective of the mathematical analysis, in this study, was to gain an understanding
of the dynamics of whooping cough disease. It is important to note that the proposed
fractional disease model offers a more precise understanding of the disease’s behavior
compared to the integer-order model. We are confident that the findings in the present
research work will be beneficial for the health authorities to make better decisions to combat
the disease.

The optimal controls for the implementation of compulsory disease control measures
will be identified in the future by the analysis of a general stochastic optimum control
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problem for whooping cough. In addition, a COVID-19 and whooping cough co-infection
model will be developed and explored for various optimal control strategies with cost-
effective analysis.
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