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Abstract: Based on corporate financial data for almost all companies listed on the Prime Market of
the Tokyo Stock Exchange in fiscal year 2021, we gradually refine a model to explain firms’ sales
by the number of employees and total assets. Starting from a Cobb–Douglas-type functional form
linearized by a log transformation, the assumption of a skew-symmetric distribution in the error
structure and the introduction of industry dummies are shown to be useful not only in searching for
a good-fitting model, but also in ensuring the accuracy of important parameters such as the labor
share. The introduction of industry dummies helps to improve the accuracy of the model as well as
to allow for interpretation as sector-wise total factor productivity.

Keywords: corporate financial data; log-log model; skew-symmetric distributions; industry dummies;
total factor productivity

1. Introduction

The purpose of this paper is to construct a model to predict firms’ sales by applying
the Cobb–Douglas production function [1] to accounting data (financial statement data) for
firms listed on the Prime Market of the Tokyo Stock Exchange. The Cobb–Douglas model has
been in use in economics for so long, and has probably been the basis of so many different
economic analyses, that it is rare for an analyst to change the model itself. We would like to
improve the measure of fit by assuming a skew-symmetric distribution for the error term of
Cobb–Douglas form, and further by splitting the constant term into industry dummies, to
answer the following two econometric questions based on the best model at hand.

Note that the term ‘skew-symmetric distributions’ refers to the construction of a
continuous probability distribution obtained by applying a certain form of perturbation to
a symmetric density function (cf. [2]).

The first research question is the following: Are estimates of the labor share stable
with respect to the statistical model specification? As shown in Section 5, the original
Cobb–Douglas form, linearized by taking the logarithm of both sides and then estimated
by the least squares method, overestimates the labor share by more than 20% compared
to estimates based on a model that assumes a skew-t distribution for the error term and
incorporates industry dummies. Given the overwhelming difference in the measures of
fitness that take into account the number of parameters (namely the information criteria), it
is clear which is the more reliable estimate of the labor share.

As will be explained later, our analysis is a cross-sectional analysis limited to fiscal
year 2021 (ending 31 March 2022). From this choice of period, we naturally derive the
following as our second research question. By observing the industrial sector-wise total
factor productivity (TFP), can we highlight the economic situation in the COVID-19 period?

Symmetry 2023, 15, 1772. https://doi.org/10.3390/sym15091772 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091772
https://doi.org/10.3390/sym15091772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0010-2798
https://orcid.org/0000-0002-1830-223X
https://orcid.org/0000-0003-0967-9040
https://orcid.org/0000-0002-2603-5100
https://doi.org/10.3390/sym15091772
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091772?type=check_update&version=1


Symmetry 2023, 15, 1772 2 of 19

There are many factors affecting TFP. Major factors are (1) the market and the economy,
(2) technology and innovation, and (3) culture and society. As shown in Section 5, looking
at TFP estimates by industry for FY2021, the impact of the COVID-19 pandemic can be seen
in the lower end of the range, while the effect of the international political situation and
Japan’s unique position in international finance can be seen in the upper end of the range.

A preliminary effort that underlies this paper is [3]. They analyzed a data set of the
Nikkei NEEDS financial data (https://needs.nikkei.co.jp (accessed on 9 September 2023)),
extracted from a database system [4]. There are over 1500 Japanese firms in the data set,
and they are listed in the first section of the Tokyo Stock Market. They fit a log-log model
(will be defined in Section 4.1) with the normal error fitted to the sales as the response
variable and the number of employees and the total assets as the explanatory variables,
based on the results of the data visualization.

Another related work [5] uses a financial data set that is extracted from the ‘Osiris’
database system (It is produced by the Bureau van Dijk KK), with information on over
80,000 listed and delisted firms. It reports that the log-log model with normal error is not
suitable for the modeling of the sales caused by increasing the size of the data set, and the
authors construct the log-log model with skew-symmetric error.

Both previous studies are based on exploratory data analysis (EDA) [6–8], and, in the
same spirit, we analyze the Nikkei NEEDS financial data extracted from a database system
(called SWKAD [9]) and re-examine the results of [3] based on EDA.

An interpretation of EDA is to obtain an appropriate model by repeating the cycle of
statistical modeling based on the findings obtained by first summarizing and visualizing
the data and then further summarizing and visualizing the results fitted to the data and
refining the model by verifying the fitted results. This is a method to obtain an appropriate
model by repeating this cycle. In this paper, as well, EDA is an important part of our
research method. See also Figure 1 for EDA.

Figure 1. Concept diagram of EDA [6].

We use the data analysis environment R (e.g., [10]) and the {tidyverse} [8] and
{plotly} [11] packages for data processing and visualization. For modeling, we consider
solutions to problems that were difficult to handle in [3] by using the {sn} package to handle
families of skew-symmetric distributions in R.

The structure of this paper is as follows. First, after explaining the financial data
that we deal with in this paper (Section 2), we visualize the financial data in terms of a
populational perspective (Section 3). Based on the findings obtained from data visualization,
statistical modeling using a regression model for the cross-section data is performed, and
the validity of the model is verified in an exploratory manner by applying it to the actual
data (Section 4). Furthermore, after attempting to improve the model by fitting a log-log
model that uses the industry information as a dummy variable to the cross-section data
(Section 5), the model is modified to include the industry classification information as a

https://needs.nikkei.co.jp
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dummy variable (Section 5). In the final section, we summarize the results of this paper
and discuss future issues (Section 6). In the Supplemental Material, information on the
Nikkei industrial classification codes and our computer environment, etc. is given.

2. Data Set

In this paper, we use the following data set (see Table 1). It contains financial data
based on the consolidated financial results (for the fiscal year ending March 2022) of the
population of (general business) firms listed on the Prime Market of the Tokyo Stock
Exchange (hereinafter referred to as ‘TSE Prime’). The data in Table 1 are generally called
cross-sectional data.

Table 1. Data set of TSE Prime listed firms extracted from Nikkei NEEDS financial database (the first
ten data are extracted from all 1137 data).

Name YMD Sector1 Sector2 Sector3 AC Sales Employees Assets

1 KYOKUYO0000001 31 March 2022 2 35 341 1 253575 2208 130460
2 NIPPONSUISAN0000003 31 March 2022 2 35 341 1 693682 9662 505731
3 MARUHANICHIRO0000004 31 March 2022 2 35 341 1 866702 12352 548603
4 NITTETSUMINING0000022 31 March 2022 2 37 362 1 149082 2019 197732
5 MITSUIMATSUSHIMAHOLDINGS0000023 31 March 2022 2 37 361 1 46592 1305 67837
6 FURUKAWA0000043 31 March 2022 1 19 181 1 199097 2804 229727
7 MITSUIMINING&SMELTING0000045 31 March 2022 1 19 181 1 633346 11881 637878
8 TOHOZINC0000046 31 March 2022 1 19 181 1 124279 1051 145796
9 MITSUBISHIMATERIALS0000047 31 March 2022 1 19 181 1 1811759 23711 2125032
10 SUMITOMOMETALMINING0000049 31 March 2022 1 19 181 3 1259091 7202 2268756

Each column in Table 1 represents the following:

Name: Firm name + Nikkei Firm Code (1137 firms)
YMD: Closing date
Sector1: Nikkei Industry Sector Code (Major) (1: manufacture, 2: non-manufacture)
Sector2: Nikkei Industry Sector Code (Middle)
Sector3: Nikkei Industry Sector Code (Minor)
AC: Accounting criterion (1: Japanese standard accounting, 2: United States standard

accounting, 3: International Financial Reporting Standards (IFRS))
Sales: Amount of sales (Unit: Million Yen)
Employee: Number of employees (Unit: People)
Assets: Total assets (Unit: Million Yen)

The data set is obtained by using the financial data extraction system SKWAD [9]. A
summary of the data used is given by Figure 2.

Summary! "
name ymd sector1 sector2 sector3

Length:1137 Min. :2022-03-31 1:582 71 :189 704 :182
Class :character 1st Qu.:2022-03-31 2:555 23 :116 210 : 37
Mode :character Median :2022-03-31 43 :104 071 : 36

Mean :2022-03-31 07 : 94 444 : 32
3rd Qu.:2022-03-31 21 : 89 262 : 30
Max. :2022-03-31 41 : 66 225 : 28

(Other):479 (Other):792
ac sales employees assets

Min. :1.000 Min. : 751 Min. : 16 Min. : 1944
1st Qu.:1.000 1st Qu.: 48876 1st Qu.: 1151 1st Qu.: 61760
Median :1.000 Median : 125094 Median : 2867 Median : 144898
Mean :1.259 Mean : 545655 Mean : 11090 Mean : 1223918
3rd Qu.:1.000 3rd Qu.: 382561 3rd Qu.: 7817 3rd Qu.: 435492
Max. :3.000 Max. :31379507 Max. :372817 Max. :303846980# $

1

Figure 2. Summary of Data.
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3. Data Visualization and Its Implications

In this paper, since we perform regression analysis using the cross-sectional data, we
give some scatter plots. Note that the results of these visualizations give useful information
for statistical modeling.

For more information on data visualization in general, see, for example, [12–16].

3.1. Data Visualization

Let us consider the visualization of the data set. We give some plots to visualize the
distribution. In order to examine the simultaneous distribution between two variables, we
draw a scatter plot for each 2 pair of variables in the form of a matrix (Figure 3). That is,
a pairwise scatter plot or a scatter plot matrix provides useful information. From all the
scatter plots in Figure 3, we can see that the data are ’dense’ near the origin and ’sparse’
away from the origin. This result can be regarded as a two-dimensional skewness.

Corr:
0.770

Corr:
0.462

Corr:
0.415

sales employees assets

sales
em

ployees
assets

0e+00 1e+07 2e+07 3e+07 0e+00 1e+05 2e+05 3e+05 0e+00 1e+08 2e+08 3e+08

0e+00

1e−06

2e−06

3e−06

0e+00

1e+05

2e+05

3e+05

0e+00

1e+08

2e+08

3e+08

Figure 3. Pairwise scatter plot (or scatter plot matrix) of sales, number of employees, and total assets
of firms in TSE Prime for the fiscal year ending March 2022.

Furthermore, in order to examine the simultaneous distribution among the three
variables, we can do so by drawing a three-dimensional scatter plot. Figure 4 is a three-
dimensional scatter plot of the sales, number of employees, and total assets of a company
for the fiscal year ending 31 March 2022. As with the counter scatter plot, this plot shows
that the data are ‘dense’ near the origin and ‘sparse’ away from the origin. This result can
be regarded as a three-dimensional skewness.
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Figure 4. Three-dimensional scatter plot of sales, number of employees, and total assets of firms in
TSE Prime for the fiscal year ending March 2022.

These results indicate that the cross-sectional data fixed at the period ending March
2022 follow a skewed distributionwith high density near the origin and low density away
from the origin.

3.2. Implications of Visualization

The results of the data visualization so far suggest that the data are skewed, but it is
difficult to obtain proper results by statistical inference or statistical modeling based on the
normal distribution, ignoring this information. In order to solve this problem, as pointed
out by [3], the logarithm of the data should be taken. This may lead to symmetrization by
expanding small values near the origin and compressing large values (cf. [6,17–19]). From
this point of view, the pairwise scatter plots (Figure 3) and the three-dimensional scatter
plot (Figure 4) are redrawn on a logarithmic scale in Figure 5 and Figure 6, respectively.

From these visualizations, we can see that the distribution structure of the data on a
logarithmic scale approaches symmetry, which suggests that statistical modeling based on
the (multivariate) normal distribution is reasonable to some extent (cf. [3]). However, if we
look carefully at the paired scatter plot (Figure 5), the distribution is slightly skewed to the
right, and the logarithmic total assets (log.assets) and logarithmic sales (log.sales) can
be seen to be ’slant’ from the lower right to the upper left, rather than being elliptical. In
order to model distributions with such a structure, we can use distributions belonging to
the family of skew-symmetric distributions proposed by [20] and [21].

In the next and subsequent sections, we will take the perspective of EDA [6] and
perform statistical modeling based on the findings of these visualizations.
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Figure 5. Logarithmic scale pairwise scatter plot.

Figure 6. Logarithmic scale three-dimensional scatter plot.
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4. Regression Modeling of Cross-Sectional Data

In this section, we consider the financial data in terms of cross-sections and fit various
regression models. The time period is fixed as the fiscal year ending March 2022.

4.1. Fitting Log-Log Model with Normal Error

We perform statistical modeling based on the visualization results given in the previous
section. It is proposed to fit the following model:

salesi = γ× employees
α1
i × assets

α2
i × εi, εi

i.i.d.∼ LN(0, σ2) (1)

This model is generally called the multiplicative model, where the error distribution is
the lognormal distribution LN(0, σ2). The model (1) is a Cobb–Douglas-type production
function (cf. [1,22–24]). For the log-normal distribution, see, for example, [25].

The model (1) can be expressed as a normal linear model by taking the logarithm of
both sides of the model:

log(salesi) = α0 + α1 log(employeesi) + α2 log(assetsi) + log(εi), log(εi)
i.i.d.∼ N(0, σ2) (2)

Now, the multiplicative model is linearized with respect to the parameters, with
logarithmic variables on both sides of the equation. Here, we will call the model (2) the log-
log model with normal error, following the classification of [26] (p. 59). Some log-log models
have been applied for a long time to various fields, such as Economics and Biology. See, for
example, [22] for its application to Econometrics and [27] for its application to Biology.

The regression coefficients α0, α1, α2 are estimated by the least squares method (say α̂0,
α̂1, α̂2). The coefficients of determination and the adjusted coefficients of determination are
given as follows:

R2 = 0.8964, R2
= 0.8962

However, the plot of regression diagnostics (Figure 7) indicate the existence of some
influential data. In general, the analysis to detect influential data is called sensitivity
analysis, and special indicators and plots have been proposed. Here, we give index plots of
the most basic ones: the hat values, the Studentized residuals, and the Cook’s distances
(Figure 8). For details, see [19,28].

A numerical summary of these indices is given in Table 2. From these results, we
can conclude that JAPANEXCHANGEGROUP0075107-3 (Japan Exchange Group, Inc., Credit &
Leasing, Tokyo, Japan) is the most influential data set. The second most influential data
set is JAPANSECURITIESFINANCE0070514-1 (Japan Securities Finance Co., Ltd. Credit &
Leasing, Tokyo, Japan), followed by JAPANPOSTHOLDINGS0038793-1 (Japan Post Co., Ltd.
Services, Tokyo, Japan) and TOMENDEVICES00306071-1 (Tomen Devices Co., Wholesale
Trade, Tokyo, Japan), which can be confirmed to be highly influential. Note that these
firms have very high or low sales relative to the number of employees and assets of the
other firms.

Of note, the banking industry has a unique profit structure in Japan, and for this
reason it will not be included in the empirical analysis that follows. Even if the data set is
processed with such a policy, in reality, some specific financial institutions may remain in
the data set. The Japan Exchange Group and Japan Securities Finance are companies with
particular roles. Japan Post was included in the primary screening because it is the holding
company for a privatized post office and is classified as a service company.
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Figure 7. Plots of residuals based on the results of fitting log-log model with normal error to financial
data for TSE Prime listed firms for the fiscal year ending March 2022. (upper-left) index plots of
the residuals, (lower-left) plot of residuals against fitted values, (upper-right) normal Q-Q plot of
residuals, and (lower-right) smoothed density function plot of the residuals.
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Tomen Device (Wholesale Trade) has the same employee size and total assets as the
previous year, yet somehow its sales grew 53% in FY2021. Given that this company is
Samsung Electronics’ distributor in Japan, the reason for the rapid growth in sales may lie in
the surge in demand for semiconductors as the digital transformation of the manufacturing
industry progresses.

Table 2. Studentized residuals, Hat values, and Cook’s distances of influential data.

StudRes Hat CookD

TOMENDEVICES0030607-1 5.03 0.01 0.07
JAPANPOSTHOLDINGS0038793-1 −3.47 0.02 0.08
JAPANSECURITIESFINANCE0070514-1 −7.01 0.05 0.76
JAPANEXCHANGEGROUP0075107-3 −7.07 0.05 0.80

From the results of the above analysis, we remove these data as heterogeneous and
re-fit a log-log model with normal errors. The coefficients of determination and the adjusted
coefficients of determination are given as follows:

R2 = 0.9081, R2
= 0.9079

We can see that the determination rate slightly increases to about 91%. In addition, the
plot of regression diagnostics (Figure 9) shows no particularly influential data of note.
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Figure 9. Plots of residuals based on the results of fitting a log-log model with normal errors after
removing influential data.

However, looking at the normal Q-Q plot of the residuals in the regression diagnostic
plots (Figure 9), it is questionable whether the residuals follow a normal distribution at
the bottom, which makes the normality of the error doubtful. This phenomenon was
also observed in [3], but the discussion was insufficient. In this paper, we consider an
explanation of this problem by some models that assume errors following asymmetric
families of distributions, such as the skew-normal (SN) and skew-t (ST) distributions treated
in [5]. For details, see [20,21].
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4.2. Fitting Log-Log Model with Skew-Normal Error

Consider the following model of a log-log model with skew-normal error:

log(salesi) = α0 + α1 log(employeesi) + α2 log(assetsi) + log(εi), log(εi)
i.i.d.∼ SN(0, ω2, α) (3)

where the notation ’SN(ξ, ω2, α)’ denotes the skew-normal distribution with the direct
parameter (ξ, ω2, α).

Figure 10 gives some plots for regression diagnostics with the following residuals:

eSN.CPi := log(salesi)−
{
(α̂0 + ω̂bδ̂) + α̂1 log(employeesi) + α̂2 log(assetsi)

}
, (4)

zSN.sDPi :=
log(salesi)− {α̂0 + α̂1 log(employeesi) + α̂2 log(assetsi)}

ω̂
(5)

where α̂j (j = 0, 1, 2), ω̂, α̂ are the maximum likelihood estimates (MLE) of αj, ω, α, respectively,
and b :=

√
2/π, δ̂ := α̂/

√
1 + α̂2. Note that (4) and (5) are called the centered parameter (CP)

residuals and the scaled direct parameter (DP) residuals, respectively. For details, see [5,21].
From the results, we can see that the P-P plot deviates slightly from the straight line. It

is considered that the model does not capture the structure of the error distribution.
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Figure 10. Histogram of CP residuals and statistical model (left panel); P-P plot of squared scaled
DP residuals (right panel).

4.3. Fitting Log-Log Model with Skew-t Error

Consider the following model of the log-log model with skew-t error:

log(salesi) = α0 + α1 log(employeesi) + α2 log(assetsi) + log(εi), log(εi)
i.i.d.∼ ST(0, ω2, α, ν) (6)

where the notation ’ST(ξ, ω2, α, ν)’ denotes the skew-t distribution with the direct parame-
ter (ξ, ω2, α, ν).

The results of fitting the model (6) to the data for the fiscal year ending March 2022
without the influential data are given in Table 3.

Table 3. Regression results: log-log model with skew-t error.

Estimate Std.Err z-Ratio Pr{>|z|}

(Intercept.DP) 1.0344 0.0980 10.56 0.0000
log(employees) 0.2985 0.0165 18.11 0.0000

log(assets) 0.6817 0.0150 45.40 0.0000
ω 0.3623 0.0213 17.03 0.0000
α 0.5435 0.1717 3.17 0.0016
ν 3.7783 0.4997 7.56 0.0000
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All parameters are significant from Table 3.
Here, the significance tests rely on the classical fact that the maximum likelihood

estimates are approximately normal under certain conditions, and their asymptotic variance
can be calculated in terms of the Fisher information. See [29] for example. The maximum
likelihood estimate divided by its standard error can be used as a test statistic for the
null hypothesis that the population value of the parameter equals zero; hence, the fourth
column of Table 3 is labeled as ‘z-ratio’.

An adjusted sample regression plane is given by

log(sales) = (α̂0 + ω̂bν̂+1δ̂) + α̂1 log(employees) + α̂2 log(assets)

= (1.034 + 0.362× 1.016× 0.478) + 0.299 log(employees) + 0.682 log(assets)

= 1.21 + 0.299 log(employees) + 0.682 log(assets), (7)

where bν̂+1 :=
√
(ν̂ + 1)/πΓ((ν̂)/2)/Γ((ν̂ + 1)/2), δ̂ = α̂/

√
1 + α̂2.

Figure 11 gives the logarithmic scale three-dimensional scatter plot and the adjusted
sample regression plane when fitting the log-log model with skew-t errors.

Figure 11. Logarithmic scale three-dimensional scatter plot and sample regression plane: log-log
model with skew-t errors after removing the influential data.

Figure 12 gives some plots for regression diagnostics and the following residuals are
used:

eST.pCPi := log(salesi)−
{
(α̂0 + ω̂bν̂+1δ̂) + α̂1 log(employeesi) + α̂2 log(assetsi)

}
, (8)

zST.sDPi :=
log(salesi)− {α̂0 + α̂1 log(employeesi) + α̂2 log(assetsi)}

ω̂
(9)

where (8) is called the pseudo-CP residuals. For details, see also [5,21].
The results show that no particular problem is found.
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Figure 12. Histogram and P-P plot of residuals.

4.4. Model Selection for Log-Log Models

Based on the previous results, it is expected that the log-log model with skew-t errors
fits well. This is evaluated by the Akaike Information Criterion (AIC) [30] and Bayesian
Information Criterion (BIC) [31–34].

The values of the dimension of parameters (‘dim’), AIC, and BIC for the model are
given in Table 4 when fitting a log-log model with the normal (‘Normal’), the skew-normal
(‘Skew-Normal’), and the skew-t (‘Skew-t’) errors to the data, excluding the influential data,
respectively.

Table 4. Table of AIC and BIC: log-log models.

Dim AIC BIC

Normal 4 1496.43 1516.56
Skew-Normal 5 1494.69 1519.85

Skew-t 6 1397.36 1427.56

From this result, it is found that the best model is the log-log model with the skew-t
errors.

5. Fitting Log-Log Model with Dummy Variables

Through the statistical modeling and fitting to the data so far, we were able to construct
the log-log model with the normal errors to explain sales with a determination rate of
nearly 90% for the cross-sectional financial data for firms closing their fiscal year ending
31 March 2022. The regression diagnostics on the fits also show that those assuming a
skew-symmetric distribution family in the error structure, especially the skew-t errors, are
more appropriate.

On the other hand, the bubble chart (Figure 13) shows that every industry (adopting
the Nikkei middle classification codes) seems to have a different regression line but with
a more or less similar slope. Specifically, we can expect that the ‘intercept’ of the model
is different for each industry. For details of these codes, please refer to Section S1 in the
Supplementary Material.

The simplest form of statistical modeling using information from this visualization is
to extend the model using sector-specific dummy variables (cf. [3]). To generate dummy
variables, we rely on the Nikkei industry middle classification, which consists of 33 in-
dustries. Whether or not dummies are used, constructing models by industrial sector is a
common practice to improve the accuracy in the statistical modeling of entire industries.
In [35], the industry sector is explained as a fundamental factor, as well as country and size
(small cap, large cap, etc.). [36] (Chapter 32) also demonstrated how the industry sector
works in terms of investment.
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Figure 13. Bubble chart of financial data for firms closing in March 2022: color-coded according to
Nikkei middle classification codes.

5.1. Fitting Log-Log Model with Skew-t Error and Dummy Variables

Consider the following log-log model with the skew-t error and some dummy vari-
ables:

log(salesi) = α0 + α1 log(employeesi) + α2 log(assetsi) +
m

∑
j=1

δjDij + log(εi), log(εi)
i.i.d.∼ ST(0, ω2, α, ν) (10)

where j = 1, . . . , m(= 33), and

Dij :=

{
1, if the firm i belongs to the j-th industry,
0, if the enterprise i does not belong to the j th industry.

Note that we define δ1 := 0 for uniqueness of estimation.
The estimated regression coefficients for this model are given in Table 5. Most regres-

sion coefficients are found to be significant. We can conclude that virtually all parameters
are significant, but we will return to this point shortly. The group of the empirical regression
planes is represented as follows (see also Figure 14).

log(sales) = (α̂0 + ω̂bν̂+1δ̂ + δ̂j) + α̂1 log(employees) + α̂2 log(assets)

= (1.244 + δ̂j) + 0.294 log(employees) + 0.702 log(assets), j = 1, . . . , 33 (11)
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Table 5. Regression results: log-log model with skew-t errors and dummy variables.

Estimate Std.Err z-Ratio Pr{>|z|} TFP

log(employees) 0.2938 0.0157 18.73 0.0000 —
log(assets) 0.7024 0.0150 46.88 0.0000 —

ω 0.2564 0.0158 16.18 0.0000 —
α −0.5675 0.1853 −3.06 0.0022 —
ν 3.5863 0.4394 8.16 0.0000 —

Petroleum 0.6154 0.1416 4.35 0.0000 1.8594
Wholesale Trade 0.4497 0.0604 7.44 0.0000 1.6937

Retail Trade 0.3023 0.0718 4.21 0.0000 1.5463
Fish and Marine Products 0.2622 0.1422 1.84 0.0652 1.5062

Shipbuilding and Repairing 0.1085 0.2643 0.41 0.6813 1.3525
Foods (Intercept.DP) 1.3660 0.1057 12.92 0.0000 1.2440

Construction −0.0029 0.0588 −0.05 0.9605 1.2411
Iron and Steel −0.1624 0.0730 −2.22 0.0261 1.0816

Warehousing and Harbor Transportation −0.2067 0.1117 −1.85 0.0644 1.0373
Sea Transportation −0.2110 0.1273 −1.66 0.0973 1.0330

Non-Ferrous Metal and Metal Products −0.2252 0.0674 −3.34 0.0008 1.0188
Utilities—Gas −0.2267 0.1132 −2.00 0.0452 1.0173

Real Estate −0.2507 0.0924 −2.71 0.0067 0.9933
Mining −0.2623 0.1424 −1.84 0.0655 0.9817

Pulp and Paper −0.2710 0.0912 −2.97 0.0030 0.9730
Trucking −0.2751 0.0840 −3.28 0.0010 0.9689

Motor Vehicles and Auto Parts −0.2935 0.0640 −4.59 0.0000 0.9505
Other Manufacturing −0.3027 0.0770 −3.93 0.0001 0.9413

Services −0.3048 0.0555 −5.49 0.0000 0.9392
Transportation Equipment −0.3107 0.1125 −2.76 0.0058 0.9333

Chemicals −0.3284 0.0562 −5.84 0.0000 0.9156
Communication Services −0.4065 0.0943 −4.31 0.0000 0.8375

Stone, Clay, and Glass Products −0.4198 0.0756 −5.55 0.0000 0.8242
Electric and Electronic Equipment −0.4450 0.0561 −7.94 0.0000 0.7990

Machinery −0.4734 0.0567 −8.36 0.0000 0.7706
Rubber Products −0.4754 0.1016 −4.68 0.0000 0.7686

Drugs −0.4848 0.0706 −6.86 0.0000 0.7592
Precision Equipment −0.5204 0.0716 −7.27 0.0000 0.7236

Textile Products −0.5943 0.0868 −6.85 0.0000 0.6497
Utilities—Electric −0.6013 0.0900 −6.68 0.0000 0.6427

Credit and Leasing −0.8536 0.1031 −8.28 0.0000 0.3904
Railroad Transportation −1.0878 0.0749 −14.52 0.0000 0.1562

Air Transportation −1.1681 0.1623 −7.20 0.0000 0.0759

Note that δ̂ is a function of α̂, which is one of the direct parameters of the skew-t
distribution.

The AIC of the estimated model is 701.23, with the number of estimated parameters
being 38. Thus, the introduction of sector dummy variables has led to a large reduction in
the AIC, from 1397.36 (see Table 4) to 701.23.

The constant term in the Cobb–Douglas production function (namely γ in Equation (1))
is called total factor productivity (TFP). TFP is usually measured as the ratio of aggre-
gate output to aggregate inputs. Thus, if we assume Cobb–Douglas production function
Y = γLα1 Kα2 , where Y, L, K denote sales, employees, and assets, respectively, it is evident
that TFP is calculated by Y/Lα1 Kα2 , which reduces to γ.

There are many factors affecting TFP. Major factors are (1) the market and the economy,
(2) technology and innovation, and (3) culture and society. For a comprehensive review
of TFP, see [37]. In Equation (11), α̂0 + ω̂bν̂+1δ̂ + δ̂j = 1.244 + δ̂j is the logarithm of TFP,
but we refer to this term simply as TFP because there is probably no misunderstanding in
this section.
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The industry dummy estimates in Table 5 are sorted in descending order of TFP. The
values for each industry in the ’estimate’ column are all δ̂j, except for the result for the food
industry (‘Foods’), which is estimated as the direct parameter intercept of the model.

The ‘Foods’ sector is chosen as a reference because it includes a moderate number of
firms, neither too few nor too many. We find that δ̂js for ‘Construction’ and ‘Shipbuilding
and Repairing’ is close to zero and apparently ‘insignificant’. This is correct as an interpreta-
tion of testing null of δ̂j = 0, but it should be interpreted that the TFP of these industries is
quite close to that of the reference industry, namely the ‘Foods’ industry. In fact, the TFP of
these three industries is very similar. Therefore, virtually all the parameters are significant,
but some of them might be grouped. We will return to this issue later in Section 5.3.

Figure 14. Logarithmic scale three-dimensional scatter plot and sample regression planes: log-log
model with skew-t errors and dummy variables.

The plots for regression diagnostics (Figure 15) show that no particular problem is
found.
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5.2. Economic Implications

In this subsection, we answer the two questions mentioned in the Introduction. As for
the labor share estimates (α̂1), they changed slightly with each refinement of the model. We
observed α̂1 = 0.3552 with the log-log model with normal errors, while α̂1 = 0.2938 with
the sector dummies introduced in the log-log model with skew-t errors (see Table 5). It is
worth noting that the labor share estimated by least squares after simply linearizing the
model with log transformation overestimates the labor share by more than 20% compared
to the results of elaborate statistical modeling. It seems clear which estimate should be
trusted in terms of predictability and explanatory power.

It should be noted, however, that the labor share here has a different meaning and
level from the labor share in GDP statistics. Here, the number of employees corresponds to
the labor input, while, in the GDP statistics, the compensation of employees is the input.
Considering that the labor share in Japan has been declining in recent years, which has
been problematic, but is still around 60% (see [38]), our problem setting should be regarded
as a completely separate analysis from the national accounts.

The second issue presented in our Introduction concerned the econometric interpreta-
tion of industry dummies. It is called total factor productivity (TFP) and is discussed in
Section 5.1. The industry dummy estimates reported in Table 5 are listed in descending
order. In FY2021, we were still in the midst of the COVID-19 crisis, and the results of the
analysis clearly show that the bottom two industries (railroad and air transportation) had
almost no growth factors due to the shrinking travel demand.

On the other hand, the petroleum industry, which is at the top of the list, can be
associated more with international conditions and the peculiarities of Japan’s monetary
policy than to COVID-19-related factors. The petroleum industry showed record profits for
the fiscal year ending 31 March 2022, as the weak yen and soaring crude oil prices boosted
sales prices. This may have stemmed from the fact that our model is a model for sales, not
a model that explains value added.

As for wholesale and retail trade, which are the top two and three TFP sectors, this
could also be interpreted as an indication that the stay-home demand was still strong in
the COVID-19 period. In general, for FY2021, the TFP reflected the social and economic
conditions of the year, especially at the extremes of descending order.

5.3. Grouping ‘Insignificant’ Sectors and Final Model Comparison

Looking at Table 5, one might wonder whether distinct dummy parameters are neces-
sary for all industries. In particular, it seems natural to group the industries with estimates
that appear insignificant in Table 5 because their constant terms are close to the reference
(Foods). Hence, we grouped the eight sectors (Foods, Shipbuilding and Repairing, Fish
and Marine Products, Mining, Construction, Sea Transportation, Warehousing and Harbor
Transportation, Utilities—Gas) and assumed that δj = 0 for all of them.

We avoid presenting a new version of Table 5 due to space limitations and note the
main points of the estimation results for the constrained model. Now, the grouped eight
industries, including Foods, are the reference, and their TFP estimate is α̂0 + ω̂bν̂+1δ̂ =
1.363 + 0.2564× 0.9641× (−0.4475) = 1.252, a slight change from the unconstrained model
estimate (1.244). It is observed that the ranking of industries in descending order of TFP is
invariant. The grouped industries’ TFP is ranked between that of Retail Trade and Iron and
Steel. The constrained model has seven fewer parameters, and its AIC is 704.14 while its
BIC is 860.15.

Now, we present the table for final model comparison. In terms of the explanatory
power regarding log(salesi), industry dummies have the largest effect, so we adopt a
model with only sector dummies (‘Distinct Sector Dummies Only’) as the baseline for
comparison. Then, by incorporating continuous explanatory variables log(employeesi)
and log(assetsi), we consider the log-log normal model with distinct sector dummies
(‘Log-Log Normal/w DSDs’), log-log skew-normal model with distinct sector dummies
(‘Log-Log Skew-Normal/w DSDs’), log-log skew-t model with distinct sector dummies
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(‘Log-Log Skew-t/w DSDs’), and finally the log-log skew-t model with partially grouped
sector dummies (‘Log-Log Skew-t/w PGSDs’). The results are summarized in Table 6,
where ‘dim’ stands for the number of free parameters.

Table 6. Final model comparison by AIC and BIC.

Dim AIC BIC

Distinct Sector Dummies Only 34 4013.01 4184.12
Log-Log Normal/w DSDs 36 840.75 1021.93
Log-Log Skew-Normal/w DSDs 37 820.13 1006.33
Log-Log Skew-t/w DSDs 38 701.23 892.47
Log-Log Skew-t/w PGSDs 31 704.14 860.15

The dummy variable has a large effect, but without the number of employees and
total assets, the explanatory power of the model is very poor. Improvement by refining the
error distribution is incremental. As to whether dummies should be grouped, the AIC and
BIC lead to different conclusions. The AIC is a criterion based on the predictability of new
data from the same probability structure, while the BIC is a selection criterion where one
strongly believes that the currently assumed model family contains the true model. Users
can choose according to the purpose of the analysis.

It is possible to proceed further with the annexation of industry dummies in this
analysis, but it would be better to do so as a separate study based on a more systematic
methodology. This point is also noted in Section 6.

6. Conclusions and Discussion

Based on the financial data for almost all companies listed on the TSE Prime market in
FY2021, we gradually refined a model that explains sales by the number of employees and
assets from the standpoint of exploratory data analysis. Starting from a Cobb–Douglas-type
functional form linearized by a log transformation, the assumption of a skew-t distribution
in the error structure and the introduction of industry dummies are useful not only in
searching for a good-fitting model, but also in ensuring the accuracy of important parame-
ters such as the labor share. The introduction of industry dummies, which is a frequently
used method in practice, not only helps to improve the accuracy of the model, but also
allows for interpretation in light of the socioeconomic situation at the time of the analysis.

There are a couple of possible directions to extend this analysis. One is to look at the
results of the cross-section analysis over time to see how stable the estimated results are in
each year. However, given the possible turnover in the group of firms analyzed, it is unclear
how effective the introduction of a time-series model would be. Although frameworks and
algorithms have been proposed for time series analysis based on skew-distributions, their
implementation has been difficult, and no significant applicability has emerged. Rather,
instead of relying a priori on industry classification, it may be interesting to search for a
new clustering by TFP, in descending order of high sales potential. It could also be aided
by some form of unsupervised learning, although it could be formulated as some sparse
constraints on the firm-wise intercept terms.
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