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1. Introduction

During the last sixty years, many results have been obtained in the fixed-point theory
of nonlinear operators in complete metric spaces [1–15]. The first result in this area of
research is Banach’s celebrated theorem [16], which shows the existence of a unique fixed
point of a strict contraction. This area of research includes the analysis of the asymptotic
behavior of (inexact) iterates of a nonexpansive operator and their convergence to its fixed
points. This research is also devoted to feasibility, common fixed points, iterative methods
and variational inequalities with numerous applications in engineering and the medical
and natural sciences [17–24].

In our joint paper with D. Butnariu and S. Reich [5], we proved that if for a self-
mapping of a complete metric that is uniformly continuous on bounded sets all its iterates
converge uniformly on bounded sets, then this convergence is stable under the presence of
a small errors. In our present work, we obtain an extension of this result for self-mappings
of a metric space with a graph. We also obtain a convergence result for a contractive-type
mapping in a metric space with a graph.

It should be mentioned that nonexpansive mappings in metric spaces with graphs
have recently been studied in [10,25–34].

2. The First and the Second Main Results

Assume that (X, ρ) is a metric space. For every point u ∈ X and each nonempty set
D ⊂ X, set

ρ(u, D) := inf{ρ(u, v) : v ∈ D}.

For every point u ∈ X and each number r > 0, put

B(u, r) := {v ∈ X : ρ(u, v) ≤ r}.

For every operator S : X → X, set S0(u) = u for all u ∈ X, S1 = S and Si+1 = S ◦ Si

for every nonnegative integer i. We denote the set of all fixed points of S by F(S).
Assume that G is a graph such that V(G) ⊂ X is the set of all its vertices and the set

E(G) ⊂ X× X is the set of all its edges. We also assume that

(x, x) ∈ E(G), x ∈ X.
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The graph G is identified with the pair (V(G), E(G)).
Fix θ ∈ X.
Assume that A : X → X is a mapping and that the following assumptions hold:
(A1) There exists a unique point xA ∈ X satisfying A(xA) = xA.
(A2) An(x)→ xA as n→ ∞ uniformly over all bounded subsets of X.
(A3) A is bounded on bounded subsets of X.
(A4) For each ε, M > 0 there exists δ > 0 such that for each x, y ∈ B(θ, M) satisfying

(x, y) ∈ E(G) and ρ(x, y) ≤ δ

the relations
(A(x), A(y)) ∈ E(G) and ρ(A(x), A(y)) ≤ ε

are valid.
The next result is proved in Section 3.

Theorem 1. Assume that K is a nonempty bounded subset of X and that ε > 0. Then, there exist
δ > 0 and a natural number N such that for each integer n ≥ N and each sequence {xi}n

i=0 ⊂ X,
which satisfies

x0 ∈ K

and
ρ(A(xi), xi+1) ≤ δ and (A(xi), xi+1) ∈ E(G)

for each integer i ∈ {0, . . . , n− 1}, the inequalities

ρ(xi, xA) ≤ ε, i = N, . . . , n

and
ρ(xi, Ai(x0)) ≤ ε, i = 0, . . . , 2N

hold.

Since Theorem 1 holds for any positive ε, it easily implies the following result.

Corollary 1. Assume that {xi}∞
i=0 is a bounded sequence such that

lim
i→∞

ρ(A(xi), xi+1) = 0

and that (A(xi), xi+1) ∈ E(G) for all integers i ≥ 0. Then, limi→∞ xi = xA.

The next result is also proved in Section 3.

Theorem 2. Assume that ε > 0. Then, there exist δ > 0 such that for each sequence {xi}∞
i=0,

which satisfies
ρ(x0, xA) ≤ δ

and
ρ(A(xi), xi+1) ≤ δ and (A(xi), xi+1) ∈ E(G)

for each integer i ≥ 0, the inequality
ρ(xi, xA) ≤ ε

holds for each integer i ≥ 0.
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It should be mentioned that our results are obtained for a large class of operators. They
cover the case when E(G) = X× X, which was considered in [5], the class of nonexpansive
mappings A : X → X on a metric space X with graphs satisfying

ρ(A(x), A(y)) ≤ ρ(x, y)

for each (x, y) ∈ E(G). It also contains the class of monotone nonexpansive mappings [35,36]
and the class of uniformly locally nonexpansive mappings [37].

3. Proofs of Theorems 1 and 2
3.1. Proof of Theorem 1

We may assume without loss of generality that

ε < 1/4, B(xA, 8) ⊂ K. (1)

Assumption (A2) implies that there exists an integer N ≥ 8 for which

ρ(An(x), xA) ≤ ε/4 for each integer n ≥ N and each x ∈ K. (2)

Assumption (A3) implies that Am(K) is bounded for all integers m ≥ 1. Thus, there is
S > 0 for which

Ai(K) ⊂ B(xA, S), i = 0, . . . , 2N. (3)

By induction and (A4), there exists {γi}2N
i=0 ⊂ (0, ∞) such that

γ2N = ε(16N)−1 (4)

and that for each i = 0, . . . , 2N − 1,

γi ≤ γi+1(4N)−1 (5)

and

(A(x), A(y)) ∈ E(G) and ρ(A(x), A(y)) ≤ (4N)−1γi+1

for all x, y ∈ B(xA, S + 4) satisfying ρ(x, y) ≤ γi, (x, y) ∈ E(G).
(6)

Set
δ = γ0/2. (7)

Lemma 1. Assume that {zi}2N
i=0 ⊂ X satisfies

z0 ∈ K (8)

and for each i = 0, . . . , 2N − 1,

ρ(zi+1, A(zi)) ≤ δ, (A(zi), zi+1) ∈ E(G). (9)

Then,
ρ(zi, Ai(z0)) ≤ ε, i = 0, . . . , 2N

and
ρ(zi, xA) ≤ ε, i = N, . . . , 2N.

Proof. In view of (7) and (9),

ρ(z1, A(z0)) ≤ γ0, (A(z0), z1) ∈ E(G). (10)
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Equations (3) and (10) imply that

A(z0) ∈ B(xA, S), z1 ∈ B(xA, S + 1). (11)

It follows from (6), (7), (9) and (11) that

ρ(A2(z0), A(z1)) ≤ γ1(4N)−1, (A2(z0), A(z1)) ∈ E(G).

By (9),
(A(z1), z2) ∈ E(G), ρ(A(z1), z2) ≤ γ0 ≤ γ1(4N)−1.

Assume that k ∈ {1, . . . , 2N − 1} and that for each i ∈ {1, . . . , k}

(Ak−i+1(zi−1), Ak−i(zi)) ∈ E(G) (12)

and
ρ(Ak−i+1(zi−1), Ak−i(zi)) ≤ γk−1. (13)

(By (9), Equations (12) and (13) hold for k = 1.) By (3), (4), (8) and (13),

ρ(Ak(z0), xA) ≤ S (14)

and for each p ∈ {1, . . . , k},

ρ(Ak(z0), Ak−p(zp)) ≤
p−1

∑
i=0

ρ(Ak−i(zi), Ak−i−1(zi+1))

≤ pγk−1 ≤ 2Nγ2N ≤ ε/8.

(15)

It follows from (14) and (15) that for each p ∈ {1, . . . , k},

ρ(xA, Ak−p(zp)) ≤ S + 1, (16)

ρ(Ak(z0), zk) ≤ ε/8. (17)

By (6), (13) and (16), for each i ∈ {1, . . . , k},

(Ak−i+2(zi−1), Ak−i+1(zi)) ∈ E(G),

and
ρ(Ak−i+2(zi−1), Ak−i+1(zi)) ≤ γk.

In view of (9),

(A(zk), zk+1) ∈ E(G), ρ(A(zk), zk+1) ≤ γk.

Thus, the assumption made for k also holds for k + 1. Therefore, we showed by
induction that our assumption holds for k = 1, . . . , 2N and that for all k = 1, . . . , 2N,

ρ(Ak(z0), zk) ≤ ε/8. (18)

By (2), (8) and (18), for each i ∈ {N, . . . , 2N},

ρ(zi, xA) ≤ ρ(zi, Ai(z0)) + ρ(Ai(z0), xA) ≤ ε/8 + ε/4.

Lemma 1 is proved.
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Let us complete the proof of Theorem 1. Assume that n ≥ N is an integer and that the
sequence {xi}n

i=0 ⊂ X satisfies
x0 ∈ K (19)

and for every i ∈ {0, . . . , n− 1},

ρ(xi+1, A(xi)) ≤ δ, (A(xi), xi+1) ∈ E(G). (20)

In n ≤ 2N, then the assertion of Theorem 1 follows from Lemma 1. Therefore, we may
assume without loss of generality that

n > 2N.

Lemma 1 implies that

ρ(xj, xA) ≤ ε, j = N, . . . , 2N. (21)

We prove that
ρ(xj, xA) ≤ ε, j = N, . . . , n.

Assume the contrary. Then, there exists an integer q ∈ (2N, n] such that

ρ(xq, xA) > ε. (22)

By (21) and (22), we may assume without loss of generality that

ρ(xj, xA) ≤ ε, j ∈ {2N, . . . , q− 1}. (23)

Define

zj = xj+q−N , j = 0, . . . , N, zj+1 = A(zj), j = N, . . . , 2N − 1. (24)

We show that {zi}2N
i=0 satisfies the assumptions of Lemma 1. By (20) and (24), we need

only to show that z0 ∈ K. In view of (21), (23) and (24),

z0 = xq−N , ρ(z0, xA) ≤ ε

and
z0 ∈ K.

Lemma 1 and (24) imply that

ρ(xA, xq) = ρ(xA, zN) ≤ ε.

This contradicts (22). The contradiction we have reached completes the proof of
Theorem 1.

3.2. Proof of Theorem 2

Proof. We may assume that ε < 1. Set

K = B(xA, 4).

Theorem 1 and the continuity of A at xA imply that there exist

δ ∈ (0, ε/2)

and a natural number N such that the following property holds:
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(a) For each integer n ≥ N and each sequence {xi}n
i=0 ⊂ X that satisfies

x0 ∈ K

and
ρ(A(xi), xi+1) ≤ δ and (A(xi), xi+1) ∈ E(G)

for each integer i ∈ {0, . . . , n− 1}, the inequalities

ρ(xi, xA) ≤ ε/8, i = N, . . . , n, (25)

ρ(xi, Ai(x0)) ≤ ε/8, i = 0, . . . , 2N (26)

and
ρ(Ai(x0), xA) ≤ ε/8, i = 0, . . . , 2N (27)

hold.
Assume that an integer n ≥ N and that a sequence {xi}n

i=0 ⊂ X satisfy

ρ(x0, xA) ≤ δ

and for each integer i ∈ {0, . . . , n− 1},

ρ(A(xi), xi+1) ≤ δ and (A(xi), xi+1) ∈ E(G).

Then, by property (a), Equations (25)–(27) hold. By (26) and (27), for each i ∈
{0, . . . , N},

ρ(xi, xA) ≤ ρ(xi, Ai(x0)) + ρ(Ai(x0), xA) < ε.

Theorem 2 is proved.

4. The Third Main Result

Assume that (X, ρ) is a complete metric space and G is a graph such that V(G) ⊂ X is
the set of all its vertices and the set E(G) ⊂ X× X is the set of all its edges. We also assume
that the space X is bounded:

D := sup{ρ(x, y) : x, y ∈ X} < ∞.

Assume that Q is a natural number Q such that the following assumption holds:
(A5) For each x, y ∈ X there exist x0, . . . , xq ∈ X such that q ≤ Q,

x0 = x, xq = y,

(xi, xi+1) ∈ E(G), i = 0, . . . , q− 1.

Assume that A : X → X and that φ : [0, ∞)→ [0, 1] is a decreasing function such that

φ(t) < 1 for all t > 0 (28)

and that the following assumption holds:
(A6) For all x, y ∈ X, if (x, y) ∈ E(G), then (A(x), A(y)) ∈ E(G) and

ρ(A(x), A(y)) ≤ φ(ρ(x, y))ρ(x, y).

We prove the following result.

Theorem 3. There exists xA ∈ X such that An(x) → xA as n → ∞ uniformly for x ∈ X.
Moreover, if A is continuous at xA, then A(xA) = xA.
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Proof. Let ε ∈ (0, 1). In order to prove our theorem, it is sufficient to show that there exists
a natural number p such that for each x, y ∈ X,

ρ(Ap(x), Ap(y)) ≤ ε.

Choose an integer
p > 1 + ε−1Q2D(1− φ(εQ−1)). (29)

Let x, y ∈ X. By (A5), there exist an integer q ≤ Q and x0, . . . , xq ∈ X such that

x0 = x, xq = y, (30)

(xi, xi+1) ∈ E(G), i = 0, . . . , q− 1. (31)

It order to complete the proof, it is sufficient to show that there exists j ∈ {0, . . . , p}
such that

ρ(Aj(xi), Aj(xi+1)) ≤ ε/Q, i = 0, . . . , Q− 1.

Assume the contrary. Then, for each j ∈ {0, . . . , p},

max{ρ(Aj(xi), Aj(xi+1)) : i = 0, . . . , q− 1} > ε/Q.

Let j ∈ {0, . . . , p}. In view of the equation above, there exists

ij ∈ {0, . . . , q− 1}

such that
ρ(Aj(xij), Aj(xij+1)) > ε/Q. (32)

Assumption (A6) and (31) imply that

ρ(Aj+1(xi), Aj+1(xi+1)) ≤ ρ(Aj(xi), Aj(xi+1)), i = 0, . . . , q− 1. (33)

Assumption (A6) and (31), (32) imply that

ρ(Aj+1(xij), Aj+1(xij+1)) ≤ φ(ρ(Aj(xij), Aj(xij+1)))ρ(Aj(xij), Aj(xij+1))

≤ φ(ε/Q)ρ(Aj(xij), Aj(xij+1))

and

ρ(Aj(xij), Aj(xij+1))− ρ(Aj+1(xij), Aj+1(xij+1))

≥ (1− φ(ε/Q))ρ(Aj(xij), Aj(xij+1)) ≥ (1− φ(ε/Q))ε/Q.
(34)

By (33) and (34),

q−1

∑
i=0

ρ(Aj(xi), Aj(xi+1)−
q−1

∑
i=0

ρ(Aj+1(xi), Aj+1(xi+1)) ≥ (1− φ(ε/Q))ε/Q. (35)

In view of (35),

QD ≥
q−1

∑
i=0

ρ(xi, xi+1)

≥
q−1

∑
i=0

ρ(xi, xi+1)−
q−1

∑
i=0

ρ(Ap(xi), Ap(xi+1))
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=
p−1

∑
j=0

(
q−1

∑
i=0

ρ(Aj(xi), Aj(xi+1))−
q−1

∑
i=0

ρ(Aj+1(xi), Aj+1(xi+1)))

≥ pεQ−1(1− φ(ε/Q))

and
p ≤ ε−1Q2D(1− φ(ε/Q)).

This contradicts (29). The contradiction we have reached completes the proof of
Theorem 3.

5. Conclusions

In this paper, we study the behaviour of inexact iterates of a self-mapping A of a metric
space with a graph. Assuming that A is bounded on bounded sets and that it uniformly
converges on bounded sets to a unique fixed point, we show that this convergense is stable
under the presence of computational errors. A prototype of our results for self-mappings
of a metric space without graphs was obtained in our joint paper with D. Butnariu and
S. Reich [5]. It should be mentioned that our results are obtained for a large class of
operators. They cover the case when E(G) = X× X, which was considered in [5], the class
of nonexpansive mappings A :→ X on a metric space X with graphs satisfying

ρ(A(x), A(y)) ≤ ρ(x, y)

for each (x, y) ∈ E(G). This also contains the class of monotone nonexpansive mappings [35,36]
and the class of uniformly locally nonexpansive mappings [37].

Funding: This research received no external funding.
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