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Abstract: A square metal plate (Chladni plate) is excited harmonically by a vibration shaker, while
the whole system is set in an anechoic chamber to stop reflections, isolate the system from sound
entering from the surroundings, and deal with direct sounds only. As far as the authors are aware,
such an arrangement has not been achieved so far. Vibration modes are visualized by using poppy
grains scattered over the upper surface of the plate and are also recorded by a camera located
above it, inserted among the acoustic wedges on the roof of the chamber, which made it possible to
record the patterns and avoid unpleasant sounds associated with some of them. Four distinctive
vibration modes of the plate are then originally identified using vibrational and acoustic mode
identification. These responses from the plate are measured both by an accelerometer attached to the
central point of the plate and by a microphone set on the same vertical line as the accelerometer but
above it, measuring the direct sound. The signals from the accelerometer and the microphone are
then compared in two experimental arrangements, and their forms and the frequency contents are
found to be equivalent. It is shown that the existing symmetry, i.e., the exact correspondence between
vibrational and acoustic responses, can be used as the identifier of the patterns formed on the plate
and the associated modal frequency.
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1. Introduction

Ernst Florens Friedrich Chladni (1756–1827) was a German-born physicist and musi-
cian of Hungarian and Slovak origin, who is perhaps best known for inventing a technique
to demonstrate the various vibration modes on a surface [1,2]. He published this technique
in 1787 in his book Entdeckungen über die Theorie des Klanges (‘Discoveries in the Theory of
Sound’) [3], which consisted of drawing a bow over a piece of metal whose surface was
lightly covered with sand; the plate was bowed until it reached modal resonance when
the vibration caused the sand to move and concentrate along the nodal lines, along which
the surface was motionless as the vibration amplitude was zero, causing the sand to create
mode shapes as beautiful patterns. The patterns formed by nodal lines are named after him
and are now called Chladni figures or Chladni patterns, although Chladni was building
on earlier experiments performed by Robert Hooke. In 1680, Hooke applied a bow to a
glass plate that had flour on it and noticed the emergence of nodal patterns. But even half a
century before Hooke, in 1632, patterns displayed on an oscillating body were described
by Galileo Galilei. Galilei wrote: ‘As I was scraping a brass plate with a sharp iron chisel
to remove some spots from it and was running the chisel rather rapidly over it, I once
or twice, during many strokes, heard the plate emit a rather strong and clear whistling
sound: on looking at the plate more carefully, I noticed a long row of fine streaks parallel
and equidistant from one another. Scraping with the chisel repeatedly, I noticed that it
was only when the plate emitted this hissing noise that any marks were left upon it; when

Symmetry 2023, 15, 1748. https://doi.org/10.3390/sym15091748 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091748
https://doi.org/10.3390/sym15091748
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1456-1135
https://doi.org/10.3390/sym15091748
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091748?type=check_update&version=1


Symmetry 2023, 15, 1748 2 of 9

the scraping was not accomplished by this sibilant note there was not the least trace of
such marks.’ However, the first person to record this phenomenon in writing is thought to
have been Leonardo da Vinci. After noticing how the dust on his worktable moved as he
vibrated the table in the late 1400s, he wrote: ‘I say that when a table is struck along diverse
lines, the dust on it is concentrates in various shapes of hills and small mountains. . . The
dust which divides itself into various mountains on the struck table descends from the
hypotenuse of these hillocks, enters beneath their bases, and raises again around the axis of
the region under the top of the mountain.’

Chladni’s techniques and patterns have been applied in various fields of research,
such as musical instruments [4–6], seismology [7], nanomechanics [8,9], theoretical and
applied mechanics [10–12], etc. Woodhouse and co-workers [10–12] developed a simple and
effective procedure for evaluating the four elastic constants of a thin orthotropic rectangular
plate based on the experimental results: Young’s moduli in two orthogonal directions,
in-plane shear modulus, and Poisson’s ratio.

Numerical investigations in different types of software have been carried out to
visualize and quantify them so widely that even a graphical user interface NumChladni
currently exists [13], as well as an open access Chladni plate simulation application [14].

Researchers also examined various shapes of the plates and the corresponding Chladni
patterns [15–18]. Chladni’s patterns have been obtained, including their inversions [19]. It
has become more common to use a loudspeaker driven by an electronic signal generator
or a vibrating shaker to produce vibration modes with interesting nodal lines. Regarding
the driving source, experimental evidence suggests that the resonant frequencies and
eigenfrequencies may differ greatly due to the tight coupling between the driving source
and the vibrating system. [20–22].

The influence of the environment in which the Chladni plates are placed was investi-
gated as well. It was experimentally confirmed in [15] that the Chladni patterns are not
affected by the ambient air and remain almost undisturbed if the extra masses are placed at
the nodal lines or at the central excitation point. It was concluded in [23] that when the plate
was submerged in water, the water currents caused by the displacement of the plate guided
the solid particles towards the circles with no transverse acoustic velocities. When very
light particles were utilized, they exhibited behavior different from that seen in air-induced
inverse Chladni patterns that produce antinodes. The authors of [24] created a vibrating
drum by suspending polystyrene microbeads in water, injecting the suspension into a
microfluidic device, and stretching a polysilicone membrane across a circular aperture at
the base. This method is an alternative to scattering sand on metal plates. Then, using a
camera mounted on a microscope, they captured the positions of the microbeads. The beads
arranged themselves at the antinodes as a result of the plate vibration and acoustic stream-
ing in the fluid. It was demonstrated in [25] how unconventional Chladni patterns might
emerge in cylindrical fluid channels, with the patterns being produced by the vibrations of
the walls of the tubes and related to the resonant modes of the fluid channels.

In [26], the authors considered a structure that had two panels with coupling elements
between them, but no mechanical coupling with the excitation. Based on their research, it
was concluded that Chladni figures would be a useful tool for examining the mode forms
of a structure during rapid temperature changes and for detecting small amplitude changes
on the structure’s surface. Coupling was also of interest in [27]. It was demonstrated therein
that the coupling strength considerably affects the amplitude and nodal-line patterns of
the eigenfunctions. It was established that using point-driven Chladni plates can produce
a clear demonstration of the nodal-line pattern’s dependence on the coupling strength.
In [28], the impact of applying a stiffener at the plate’s antinode locations was taken into
consideration. For the plate with the stiffener, the Chladni designs were obtained at a
higher frequency than those for the plate without the stiffener.

In this work, an original approach is taken as follows: a vibrating plate is placed
in an anechoic chamber to deal with the direct sound only, and the focus is both on
vibrations and acoustics. As far as the authors are aware, this arrangement and the
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associated measurements have not been performed so far. The plate is centrally attached
to the top of a shaker, which produces a vertical harmonic excitation with a known and
controlled frequency. The vibrational response is measured using an accelerometer attached
to the central point of the plate. The acoustic response is measured using a microphone
placed above the accelerometer. Two approaches are experimentally taken to compare
the vibrations and acoustic responses. The details of the experiments are provided in
Section 2, and the results obtained are presented in Section 3. A discussion is presented in
Section 4. There is also an Appendix A that is related to Section 2 and shows a carefully
and thoughtfully arranged setup and preparatory activities for the experiments to ensure
that the proceedings’ measurements and results are reliable.

2. Materials and Methods (Experiments and Analysis)

A schematic description of the first experimental setup, i.e., a vibrating plate in a mini-
anechoic chamber, is shown in Figure 1a and its photo is shown in Figure 1b. A thin square
aluminium plate, as shown in Figure 1b, 250 mm × 250 mm × 2 mm, is centrally attached
to a shaker (LDS vibrator type V408,10/32UNF) by a screw supporter and excited in a
vertical direction. The frequency of the sinusoidal drive signal is defined in the LabVIEW
software and fed to the shaker via a dynamic signal acquisition module/card (NI USB4331)
and an amplifier (LPA1000). The response from the central point of the upper surface of the
plate is taken using an accelerometer (PCB 352C22, sensitivity 10 mV/g). In Experimental
Setup 1 (Figure 1a), this signal is recorded using an acquisition card (NI UBS4331). Nodal
lines of the distinctive mode shapes are visualized by using poppy grains scattered over
the upper surface of the plate and are also recorded by a camera placed above it. The signal
from the camera is taken outside the chamber to a computer, which makes it possible to
produce videos and photos of the experiments and the patterns of interest. The acoustic
response is obtained from a microphone system PCB 378B02 (1/2′′ prepolarized free-field
condenser microphone with a sensitivity of 50 mV/Pa and 1/2′′ ICP preamplifier), placed
above the central point of the plate. The signal is then, via the NI USB4331 card, taken to
an oscilloscope (Rohde & Schwartz RTB2K-102), which is depicted by a violet arrow in
Figure 1a. It should be noted that the careful and thoughtful preparation for the experiment
also includes the validation that the responses taken are from the plate and not from the
shaker, which is elaborated in the Appendix A. The sinusoidal signal of variable frequency
and amplitude has been created in LabView and sent to the shaker, and the resulting
signal is also acquired from the acquisition module in the opposite direction, as depicted
by the opposite green arrows in Figure 1a. Four characteristic frequencies are used as
follows: 289 Hz, 553 Hz, 1430 Hz, and 1900 Hz (this is discussed in Section 3 related to
Tables 1 and 2). In all the cases, the amplitude of the signal is set to 14 g.
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Table 1. Photos of the vibration and acoustic responses with the values of the corresponding frequencies.
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The corresponding results are discussed in Section 3 and included in Table 2.
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3. Results

Table 1 contains both the vibrational response and acoustic response acquired for
four distinctive mode shapes labelled as Mode A, B, C, and D obtained in Experimental
Setup 1 (Figure 1). The second column of Table 1 contains photos of the patterns created on
the plate. The third and fourth columns show the vibration response obtained from the
accelerometer: the frequency response diagram and the corresponding vibration frequency
value fv. The fifth and sixth columns present the acoustic responses obtained in terms of
the acoustic signals’ photos from the oscilloscope and the corresponding frequency values
fs. Table 1 shows that only in Mode A, the response recorded was complex (periodic and
two-harmonic), whereas in all other cases, it was pure (sinusoidal). In Modes B–D, the
ratio of the frequencies fv/fs is calculated to be unity, so both the vibration signal from the
accelerometer and the acoustic signal from the microphone have the same frequency, which
implies that the identification of the mode can be used from either of these signals, i.e.,
utilizing the vibro-acoustic response from the plate. In Mode A, the same unity value is
obtained as the ratio of the excitation frequency and the one corresponding to the lowest
value in the response, which is also indicated in Table 1.

The results from Experiment 2 are collected In Table 2 for all four modes A-D, as noted
in the first column of this table. The second column of Table 1 contains photos of the patterns
created on the plate. The third and fourth columns show the vibration response obtained
from the accelerometer: the frequency response diagram and the corresponding vibration
frequency value fv. The fifth and sixth columns present the acoustic responses obtained in
terms of the acoustic signals’ photos from the oscilloscope and the corresponding frequency
values, fs. Table 1 shows that only in Mode A, the response recorded was complex (periodic
and two-harmonic), whereas in all other cases, it was pure (sinusoidal).

They clearly show the same frequency for both the vibration and sound signals
acquired and agree with the results obtained in Experimental Setup 1. However, this
approach offers the possibility to directly observe the shapes of the signals as well as their
phase correlation.

4. Discussion

Chladni plates and patterns have been extensively investigated from a research and
educational point of view, but this study, as far as the authors are aware, has taken an origi-
nal approach, in which vibro-acoustic responses of the Chladni plate were experimentally
collected and analysed for the sake of mode identification. To achieve this, a vibrating
plate was placed in an anechoic chamber. The aim was to measure just a direct sound
from the plate and to protect experimenters from the unpleasant sound associated with
certain modal frequencies as they could cause subjectively disturbing psychophysiological
effects. The plate was centrally attached to the top of a shaker via a screw, and the shaker
was harmonically excited in the vertical direction with a known and controlled frequency,
transferring vibrations to the plate. The resulting vibrational modes and nodal lines were
identified by using poppy grains spread over the plate, and the photos and videos were
taken by a camera placed above the setup, which was inserted among the acoustic wedges
on the roof of the chamber. An accelerometer was attached to the center of the plate. The
acoustic response was measured using a microphone placed above the central point of
the plate. Both the vibrational and acoustic responses were measured in the two experi-
mental arrangements. The first one included taking the signal from the accelerometer to
LabView software and the signal from the microphone to the oscilloscope. Their forms
and the frequency contents were compared and found to be equivalent. The second one
involved taking both signals to a two-channel oscilloscope, in which their features could be
compared straightforwardly. Thus, it was shown in both arrangements that one can use
either vibrational or acoustic responses as identifiers of the corresponding patterns formed
on the plate and the associated modal frequency. The existing symmetry using the exact
correspondence between vibrational and acoustic responses can create a strong educational
message and useful demonstrations for those interested in physics and vibro-acoustics, in
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particular. In addition, the existing symmetry as an equivalence in the shape and frequency
content of two signals may open some horizons for engineering applications, such as
mode identification.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/sym15091748/s1, Video S1: Chladni plate in Mode A; Video S2: Chladni
plate in Mode B; Video S3: Chladni plate in Mode C; Video S4: Chladni plate in Mode D.
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Appendix A

To verify whether the experimental results stem from the plate and not from the shaker
itself, an element with the same mass as the plate (0.2785 kg) was built using lead as a
concentrated mass, as shown in Figure A1a, and attached to a shaker centrally. The shaker
was driven at the frequencies shown in Table 1, and the acoustic response was recorded
using the same microphone system placed above the mass (Figure A1b). In Modes A and B,
the amplitude of the acoustic pressure recorded was zero, whereas in Modes C and D, it
was extremely small and negligible, confirming that the signals acquired in the experiments
with the plate really stem from the plate.
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